IXPUG banner image

The drug discovery process currently employed in the pharmaceutical industry typically requires about 10 years and $2-3 billion to deliver one new drug. This is both too expensive and too slow, especially in emergencies like the COVID-19 pandemic. In silico methodologies need to be improved to better select lead compounds that can proceed to later stages of the drug discovery protocol accelerating the entire process. No single methodological approach can achieve the necessary accuracy with required efficiency. Here we describe multiple methodological and supporting infrastructural innovations at scale. Specifically, how we used TACC’s Frontera on > 8000 compute nodes to sustain 144M/hour docking hits, and to screen ?100 Billion drug candidates. These capabilities have been used by the US-DOE National Virtual Biotechnology Laboratory, and represent important progress towards improvement of computational drug discovery, both in terms of size of libraries screened, but also the possibility of generating training data fast enough for very powerful (docking) surrogate models. Shantenu Jha is the Chair of Computation & Data Driven Discovery Department at Brookhaven National Laboratory, and Professor of Computer Engineering at Rutgers University. His research interests are at the intersection of high-performance distributed computing and computational & data science. Shantenu leads the RADICAL-Cybertools project which are a suite of middleware building blocks used to support large-scale science and engineering applications. He was appointed a Rutgers Chancellor's Scholar (2015) and was the recipient of the inaugural Chancellor's Excellence in Research (2016) for his cyberinfrastructure contributions to computational science. He is a recipient of the NSF CAREER Award (2013), the Gordon Bell Award (2020) and several other prizes at SC'xy and ISC’xy, as well as the winner of IEEE SCALE 2018. More details can be found at:

Event Name

IXPUG Webinar Series


COVID-19,in silico methodologies,TACC,Frontera,US-DOE,biotechnology,computational drug discovery,surrogate models