
DPC++ on Nvidia GPUs

DPC++ on Nvidia GPUs

Ruyman Reyes Castro

CTO

IXPUG/TACC

Stuart Adams,

Staff Software Engineer

© 2020 Codeplay Software Ltd.3

Products Markets

Company Customers

Enabling AI & HPC
to be Open, Safe &

Accessible to All

High Performance Compute (HPC)
Automotive ADAS, IoT, Cloud Compute

Smartphones & Tablets
Medical & Industrial

Technologies: Artificial Intelligence
Vision Processing

Machine Learning
Big Data Compute

Leaders in enabling high-performance
software solutions for new AI processing
systems

Enabling the toughest processors with tools
and middleware based on open standards

Established 2002 in Scotland with ~80
employees

Integrates all the industry
standard technologies needed
to support a very wide range
of AI and HPC

C++ platform via the SYCL™
open standard, enabling vision
& machine learning e.g.
TensorFlow™

The heart of Codeplay's
compute technology enabling
OpenCL™, SPIR-V™, HSA™ and
Vulkan™

And many more!

© 2020 Codeplay Software Ltd.4

• What is DPC++ and SYCL

• Using SYCL for CUDA

• Design of SYCL for CUDA

• Implementation of SYCL for CUDA

• Interoperability with existing libraries

• Using oneMKL on CUDA

• Conclusions and future work

Summary

© 2020 Codeplay Software Ltd.5

Intel’s DPC++

SYCL 2020

SYCL 1.2.1

What is DPC++?

• Data Parallel C++ (DPC++) is

an open, standards-based alternative to

single-architecture proprietary

languages, part of oneAPI spec.

• It is based on C++ and SYCL, allowing

developers to reuse code across

hardware targets (CPUs and

accelerators such as GPUs and FPGAs)

and also perform custom tuning for

a specific accelerator.

© 2020 Codeplay Software Ltd.6

• Codeplay has been part of
the SYCL community from
the beginning

• Our team has helped to
shape the SYCL open
standard

• We implemented the first
conformant SYCL product

Codeplay and SYCL

© 2020 Codeplay Software Ltd.7

DPC++
LLVM open
source project

CUDA
back-
end

Integrates with
native CUDA

Nvidia
GPUs

Target
hardware

• Our contribution to the open
source LLVM project adds
support for Nvidia GPUs

• Uses directly CUDA through
a plugin mechanism

• Codeplay will help the
upstreaming effort so SYCL
support is available on clang

Codeplay and DPC++

© 2020 Codeplay Software Ltd.8

Incremental porting

• Port CUDA applications to SYCL
one kernel at a time

oneAPI Apps on Nvidia

• Existing oneAPI applications can
run unmodified on NVIDIA
hardware

Access CUDA libraries

• oneAPI / SYCL applications can call
native CUDA libraries directly from
DAG

Using DPC++ with CUDA and Nvidia

© 2020 Codeplay Software Ltd.9

Porting to SYCL/DPC++

• Measure performance at any
stage using existing CUDA
tools

• Can compile your SYCL
application with LLVM CUDA

• Replace one CUDA kernel with
a SYCL kernel, test and run
another

Incremental porting Migrate host code to
SYCL and keep your

CUDA kernels

© 2020 Codeplay Software Ltd.10

• Run on any platform
unmodified

• Identify platform-
specific gaps

• Target multiple
devices from the
same application

SYCL: Unified
Programming

Model

• Select different kernels
depending on the
available platform

• Access advanced
hardware features via
DPC++ extensions

• CUDA specific extensions
to improve performance

Use DPC++
extensions to

improve
performance

Run oneAPI applications on CUDA platforms

The only code required is a CUDA
selector to tell DPC++ to use CUDA

devices

© 2020 Codeplay Software Ltd.11

DPC++ implements Codeplay’s SYCL extensions to call native
libraries from SYCL Directed Acyclic Graphs

Use CUDA libraries on SYCL dependency graphs

Kernel
on

CPU

cuBLAS
gemm

Kernel
on

GPU

Call to cublasSgemm scheduled alongside the other kernels

© 2020 Codeplay Software Ltd.12

Using SYCL for CUDA

© 2020 Codeplay Software Ltd.13

• Linux (Ubuntu 18.04 preferred)

• CUDA 10.1 or newer

• Hardware sm_50 or above

Requirements

© 2020 Codeplay Software Ltd.14

• Currently in ongoing development, see
https://github.com/intel/llvm for up-to-date instructions

• DPC++ releases don’t currently include CUDA support.

• The project must be built from source to include CUDA support.

• Build instructions are in the “Getting Started Guide”

How do you get it?

https://github.com/intel/llvm

© 2020 Codeplay Software Ltd.15

• Compile your code using the CUDA target triple

• Run your application with the CUDA backend enabled

Using SYCL for CUDA

No changes required
to your SYCL code

Environment variable used by
default device selection

© 2020 Codeplay Software Ltd.16

• We’ve created examples of how to use the CUDA back-end!
• See how to write a SYCL device selector for CUDA devices.

• See how to interop with native CUDA libraries.

• As a bonus, compare SYCL code with the CUDA equivalent.

• We are adding more examples soon.

https://github.com/codeplaysoftware/SYCL-For-CUDA-Examples

Looking for Example Code?

© 2020 Codeplay Software Ltd.17

Design of SYCL for CUDA

© 2020 Codeplay Software Ltd.18

SYCL 1.2.1 was intended for OpenCL 1.2

• If a SYCL 2.2 ever existed, it was based on OpenCL 2.2

• What could be a good alternative target to demonstrate SYCL as a High Level Model?

• Let’s have an open discussion about SYCL for non-OpenCL!

Sure let’s do Vulkan!

• Not that simple, SYCL was designed for compute rather than graphics

• There is already a potential route via clspv + clvk

Have you heard about CUDA?

• Existing OpenCL + PTX path (available on ComputeCpp) works but performance could be
better

• Native CUDA support is the best solution to expand the ecosystem

SYCL for CUDA

© 2020 Codeplay Software Ltd.19

• What works?
• Platform model (Platform/Device/Context)

• Buffers, copy

• NDRange kernels

• What is broken?
• Interoperability

• Needs to be revised to allow both OpenCL and CUDA handles to be accessed.

• Necessary, so implemented via get_native extension.

• Images and samplers
• CUDA images are sampled on construction.

• SYCL/OpenCL Images are sampled in the kernel.

• SYCL program class
• OpenCL compilation model does not match CUDA.

SYCL 1.2.1 on CUDA

© 2020 Codeplay Software Ltd.20

Implementation of SYCL for CUDA

© 2020 Codeplay Software Ltd.21

PI/CUDA plugin

CUDA Driver API

Nvidia
device

© 2020 Codeplay Software Ltd.22

The PlugIn (PI) API

• Decoupling the SYCL runtime from OpenCL
• Introduce a new C API, mapping closely to OpenCL API design.

• Acts as a level of indirection between SYCL runtime and the target
platform.

• Plugins
• Each back-end is implemented as a shared library.

• SYCL runtime can load and use multiple plugins at once.

• The programmer can control which plugins SYCL runtime will use.

© 2020 Codeplay Software Ltd.23

The PI API

OpenCL

sycl/plugins/opencl/pi_opencl.cpp

CUDA

sycl/plugins/cuda/pi_cuda.cpp

PI

sycl/include/CL/sycl/detail/pi.h

© 2020 Codeplay Software Ltd.24

PI CUDA Limitations

• Single device per context.

• No images.
• CUDA images do not map to OpenCL or SYCL 1.2.1.

• No separation of image and sampler.

• No online compilation.

© 2020 Codeplay Software Ltd.25

Environment Variables

• SYCL_BE
• SYCL_BE=PI_CUDA: Use PI Cuda backend plugin.

• SYCL_BE=PI_OPENCL: Use PI OpenCL backend plugin.

• SYCL_PI_TRACE
• SYCL_PI_TRACE=1: Enable tracing of PI plugins / device discovery.

• SYCL_PI_TRACE=2: Enable tracing of PI calls.

• SYCL_PI_TRACE=-1: Enable all levels of tracing.

© 2020 Codeplay Software Ltd.26

Interoperability with CUDA

© 2020 Codeplay Software Ltd.27

Interop in SYCL 1.2.1

• Many of the SYCL runtime classes encapsulate an
associated OpenCL type.

• .get() member function retains the OpenCL object and
returns it.

• Uh-oh – we're not using OpenCL anymore!

• How do we expose backend-specific native handles in
1.2.1?

© 2020 Codeplay Software Ltd.28

SYCL Generalization Proposal

• Proposal seeks to decouple SYCL from OpenCL.
• Query the backend at runtime.
• New get_native function returns correct native type for a

given backend enumerator.

• New make function creates SYCL objects from native objects.

• Create a sycl::context from a CUcontext or
cl_context.

https://github.com/KhronosGroup/SYCL-Shared/blob/master/proposals/sycl_generalization.md

https://github.com/KhronosGroup/SYCL-Shared/blob/master/proposals/sycl_generalization.md

© 2020 Codeplay Software Ltd.29

Using get_native

using namespace cl::sycl;

CUcontext context = get_native<backend::cuda>(syclContext);

CUstream stream = get_native<backend::cuda>(syclQueue);

CUdevice device = get_native<backend::cuda>(syclDevice);

CUevent event = get_native<backend::cuda>(syclEvent);

enum class backend { opencl, cuda, host };

© 2020 Codeplay Software Ltd.30

SYCL RT Interop

• Only some features of the proposal are implemented.

• get_native is implemented for most CUDA types. It is only
implemented for a few OpenCL types.

• No make implementation, so interop is strictly from SYCL to CUDA. You
cannot create SYCL resources from CUDA resources.

© 2020 Codeplay Software Ltd.31

Using Native Libraries in SYCL

• A wide ecosystem of CUDA libraries already exists.

• We want to tap into this ecosystem with SYCL.

• This is not possible in SYCL 1.2.1.

• We needed to find a solution to enable interop between
SYCL RT and native CUDA libraries.

© 2020 Codeplay Software Ltd.32

Codeplay Interop Task Proposal

• We can borrow a Codeplay proposal.

• New features in sycl::handler that allow third-
party APIs to be called.

• Interop task commands are executed using the same SYCL
1.2.1. dependency tracking mechanisms.

• Native API calls are scheduled for you!

https://github.com/codeplaysoftware/standards-proposals/blob/master/interop_task/interop_task.md

https://github.com/codeplaysoftware/standards-proposals/blob/master/interop_task/interop_task.md

© 2020 Codeplay Software Ltd.33

Using interop_task

https://github.com/codeplaysoftware/SYCL-For-CUDA-Examples/blob/master/example-02/sycl_sgemm.cpp

Get CUstream from
interop_handler.

Get CUdeviceptr from
interop_handler.

Call native CUDA API!

https://github.com/codeplaysoftware/SYCL-For-CUDA-Examples/blob/master/example-02/sycl_sgemm.cpp

© 2020 Codeplay Software Ltd.34

Using oneMKL with SYCL on Nvidia GPUs

© 2020 Codeplay Software Ltd.35

• OneMKL Interface is an open source Math Kernel Library

• Developers can use it to target Intel CPUs and GPUs; and now
Nvidia GPUs

• To achieve the best performance for Nvidia GPUs, this library
calls native cuBLAS functions

OneMKL Interface

© 2020 Codeplay Software Ltd.36

OneMKL Interface on NVIDIA

Achieving Performance

• oneMKL uses the cuBLAS interface directly

• CUDA memory and contexts can be accessed directly
from SYCL.

• cuBLAS handle can be associated with the specified SYCL
context and underlying CUDA context, directly calling the
cuBLAS routine.

• DPC++ runtime manages the kernel scheduling when
there are data dependencies among multiple cuBLAS
routines.

oneMKL

DPC++

cuBLAS

© 2020 Codeplay Software Ltd.37

OneMKL get_native

https://github.com/oneapi-src/oneMKL/blob/master/src/blas/backends/cublas/cublas_scope_handle.cpp

https://github.com/oneapi-src/oneMKL/blob/master/src/blas/backends/cublas/cublas_scope_handle.cpp

© 2020 Codeplay Software Ltd.38

OneMKL interop_task

https://github.com/codeplaysoftware/standards-proposals/blob/master/interop_task/interop_task.md)

https://github.com/codeplaysoftware/standards-proposals/blob/master/interop_task/interop_task.md

© 2020 Codeplay Software Ltd.39

Performance Results

We have run the BabelStream Benchmarks and
compared results from:

• Native CUDA code

• OpenCL code

• SYCL code using the Nvidia implementation

About BabelStream

“Measure memory transfer rates to/from global
device memory on GPUs”

All run on: CUDA 10.1 on GeForce GTX 980

Benchmarks website: http://uob-hpc.github.io/BabelStream

http://uob-hpc.github.io/BabelStream

© 2020 Codeplay Software Ltd.40

Conclusions & Future Work

© 2020 Codeplay Software Ltd.41

• DPC++ can build SYCL applications that are also CUDA
applications

• Using DPC++
• It’s possible for developers to write standard C++ SYCL code and run on Nvidia

GPUs

• It’s also possible to use the cuBLAS native library via oneMKL
• Performance is achieved by integrating with native CUDA interfaces

• It’s possible to try it out today using the open source DPC++ LLVM project

• The only code change required is to change your device selector

Conclusion

© 2020 Codeplay Software Ltd.42

• Our current focus is on conformance with the SYCL
compatibility test suite

• We are working on further performance enhancements

• Additional SYCL extensions will be implemented to expand
the features available

Future plans

© 2020 Codeplay Software Ltd.43

• Join us in the intel/llvm repository

• Report issues and feature requests

• Review or contribute Pull requests

Participate!

@codeplaysoft codeplay.cominfo@codeplay.com

Thank You!

© 2020 Codeplay Software Ltd.45

Nvidia and CUDA are trademarks of Nvidia Corporation.

Intel is a trademark of Intel Corporation.

SYCL is a trademark of the Khronos Group Inc.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by
permission by Khronos.

Codeplay and ComputeCpp are trademarks of Codeplay Software
Limited.

Other names and brands may be claimed as the property of others.

Trademark disclaimer

© 2020 Codeplay Software Ltd.46

Please head over to the SYCL For CUDA Examples repo!

Examples
• SYCL application running on CUDA.

• SYCL interop with CUDA Driver API.

• SYCL interop with CUDA Runtime API.

Exercise
• Write SYCL interop with cuBLAS.

SYCL for CUDA Hands On

https://github.com/codeplaysoftware/SYCL-For-CUDA-Examples/

https://github.com/codeplaysoftware/SYCL-For-CUDA-Examples/

