
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Data Parallel C++ - New Features

Find out what’s new in Data Parallel C++ Language

(Presentation Starts at 14:15 CST, 10/15/2020)

1

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Learning Objectives

Use new DPC++ features like Unified Shared Memory to
simplify heterogeneous programming

Understand advantages of using Sub-groups in DPC++

Understand advantages of using Data Parallel C++ Library
for heterogeneous computing.

2

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Data Parallel C++

= C++ and SYCL* standard and extensions

Based on modern C++

▪ C++ productivity benefits and familiar constructs

Standards-based, cross-architecture

▪ Incorporates the SYCL standard for data parallelism and heterogeneous
programming

What is Data Parallel C++?

Khronos® is a registered trademark and SYCL is a trademark of the Khronos Group, Inc.

3

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

4

Enhance Productivity

• Simple things should be simple to express

• Reduce verbosity and programmer burden

Enhance Performance

• Give programmers control over program execution

• Enable hardware-specific features

DPC++: Fast-moving open collaboration feeding into the SYCL* standard

• Open source implementation with goal of upstream LLVM

• DPC++ extensions aim to become core SYCL*, or Khronos* extensions

DPC++ Extends SYCL 1.2.1

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

DPC++ = C++ + SYCL* + New Features

DPC++ New Features:

• Unified Shared Memory (USM)

• Sub-Groups

• And more…

Main goals of DPC++ New Features are to simplify programming
and achieve performance by exposing hardware features.

5

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

UNIFIED SHARED MEMORY (USM)

Unified Shared Memory is pointer-based approach to
memory model for heterogeneous programming

6

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

WHY Unified Shared Memory (USM)
The SYCL 1.2.1 standard provides a Buffer memory abstraction

• Powerful and elegantly expresses data dependences

However…

• Replacing all pointers and arrays with buffers in a C++ program can be a
burden to programmers

USM provides a pointer-based alternative in DPC++

• Simplifies porting to an accelerator

• Gives programmers the desired level of control

• Complementary to buffers

7

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

DEVELOPER VIEW OF USM

8

Developers can reference same memory object in host and device code with
Unified Shared Memory

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

queue q;

int *data = malloc_shared<int>(N, q);

for(int i=0;i<N;i++) data[i] = 10;

q.parallel_for(range<1>(N), [=](id<1> i){

data[i] += 1;

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data, q);

DPC++ Unified Shared Memory

Unified Shared Memory enables the accessing memory on the host and device
with same pointer reference

Host can initialize

Device can modify

Host has output

Setup Unified
Shared Memory

9

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

queue q;

int *data = static_cast(int*)(malloc(N * sizeof(int), q));

for(int i=0;i<N;i++) data[i] = 10;

{

buffer<int, 1> my_buffer(data, range<1>(N));

q.submit([&] (handler &h){

auto my_accessor = my_buffer.get_access<access::mode::read_write>(h);

h.parallel_for(range<1>(N), [=](id<1> idx){

my_accessor[idx] += 1;

});

});

}

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data);

SYCL BUFFERS AND ACCESSORS
Memory Model with Buffers & Accessors – requires defining buffers and
accessors and synchronize as required

Create buffer

Create accessor

Host memory setup

Device can modify

Host has output

Host can initialize

10

Buffer destruction

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

DPC++ Unified Shared Memory

Unified Shared Memory can be setup as follows:

int *data = malloc_shared<int>(N, q);

You can also use a more familiar C++/C style malloc:

int *data = static_cast<int*>(malloc_shared(N * sizeof(int), q));

11

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

DPC++ Unified Shared Memory

Allocation
Type

Description Accessible
on HOST

Accessible
on DEVICE

device Allocations in device memory (explicit) NO YES

host Allocations in host memory (implicit) YES YES

shared Allocations can migrate between host and

device memory (implicit)

YES YES

Unified shared memory provides both explicit and implicit models
for managing memory.

Automatic data accessibility and explicit data movement supported

12

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

queue q;

int *data = static_cast<int*>(malloc(N * sizeof(int)));

int *data_device = static_cast<int*>(malloc_device(N * sizeof(int), q));

for(int i=0;i<N;i++) {data[i] = 10;}

auto e1 = q.memcpy(data_device, data, sizeof(int)*N);

auto e2 = q.submit([&] (handler &h){

h.depends_on(e1);

h.parallel_for(range<1>(N), [=](id<1> i){

data_device[i] *= 2;

});

});

q.submit([&] (handler &h){

h.depends_on(e2);

h.memcpy(data, data_device, sizeof(int)*N);

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data); free(data_device, q);

USM – Explicit DATA TRANSFER

malloc_device() will allocate
memory on device, Host will
not have access

13

Copy memory explicitly from
host to device using
q.memcpy()

Make any data modification on
device

Copy the memory explicitly
from device to host using
q.memcpy()

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

queue q;

int *data = malloc_shared<int>(N, q);

for(int i=0;i<N;i++) data[i] = 10;

q.parallel_for(range<1>(N), [=](id<1> i){

data[i] += 1;

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data, q);

USM – Implicit DATA TRANSFER
malloc_shared() will allocate
memory that can move
between host and device. Host
and device will have access

14

Make any data modification on
device

Host has access to the device
modified memory

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Hands-on Coding on Intel DevCloud

USM Implicit and Explicit Data Movement

15

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Unified Shared Memory – When to use it
SYCL* Buffers are powerful and elegant

• Use if the abstraction applies cleanly in your application, and/or buffers aren’t disruptive
to your development

USM provides a familiar pointer-based C++ interface

• Useful when porting C++ code to DPC++, by minimizing changes

• Use shared allocations when porting code, to get functional quickly

• Note that shared allocation is not intended to provide peak performance out of box

• Use explicit USM allocations when controlled data movement is needed

16

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Unified shared Memory

• Summary

• What is Unified Shared Memory (USM)?

• Implicit and Explicit data movement between host and
device

• Handling data dependency in multiple kernel tasks using
wait event, depends_on method and in_order queue
property

17

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SUB Groups

On many modern hardware platforms, a subset of the
work-items in a work-group are executed simultaneously
or with additional scheduling guarantees.

These subset of work-items are called sub-groups,
leveraging sub-groups will help to map execution to low-
level hardware and may help in achieving higher
performance.

18

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

ND_RANGE Kernels
ND-Range kernel is a way to express parallelism which
enable mapping executions to compute units on hardware.

19

range<3> N(8, 8, 8);

range<3> B(4, 4, 4);

h.parallel_for(nd_range<3>(N, B), [=](nd_item<1> item){

// CODE THAT RUNS ON DEVICE

});

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

How it maps to Hardware (INTEL GEN11 GRAPHICS)

All work-items in a
work-group are
scheduled on one
Compute Unit,
which has its own
local memory

A subset of work-groups
called sub-groups are
mapped to vector hardware

20

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Sub-groups

A subset of work-items within a work-group that may
map to vector hardware.

Why use Sub-groups?

• Work-items in a sub-group can communicate directly using
shuffle operations, without explicit memory operations.

• Work-items in a sub-group can synchronize using sub-group
barriers and guarantee memory consistency using sub-group
memory fences.

• Work-items in a sub-group have access to sub-group
collectives, providing fast implementations of common parallel
patterns.

21

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

ND_Range KERNEL EXECUTION
Parallel execution with ND_RANGE Kernel helps to group work items that
maps to hardware resources. This helps to tune applications for performance.

22

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Sub-groups

h.parallel_for(nd_range<1>(N,B), [=](nd_item<1> item){

intel::sub_group sg = item.get_sub_group();

// KERNEL CODE

});

23

sub_group class

The sub-group handle can be
obtained from the nd_item using
the get_sub_group()

Once you have the sub-group
handle, you can query for more
information about the sub-group,
do shuffle operations or use
collective functions.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Sub-groups
h.parallel_for(nd_range<1>(N,B), [=](nd_item<1> item){

intel::sub_group sg = item.get_sub_group();

if(sg.get_local_id() == 0){

out << "sub_group id: " << sg.get_group_id()[0]

<< " of " << sg.get_group_range()

<< ", size=" << sg.get_local_range()[0]

<< endl;

}

});

24

The sub-group handle can be
queried to get other information:

• get_local_id() returns the index of
the work-item within its sub-group

• get_local_range() returns the size
of sub_group

• get_group_id() returns the index
of the sub-group

• get_group_range() returns the
number of sub-groups within the
parent work-group

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Sub-groups
h.parallel_for(nd_range<1>(N,B), [=](nd_item<1> item){

intel::sub_group sg = item.get_sub_group();

size_t i = item.get_global_id(0);

/* Shuffles */

//data[i] = sg.shuffle(data[i], 2);

//data[i] = sg.shuffle_up(0, data[i], 1);

//data[i] = sg.shuffle_down(data[i], 0, 1);

data[i] = sg.shuffle_xor(data[i], 1);

});

25

Sub-Group Shuffles

• One of the most useful features
of sub-groups is the ability to
communicate directly between
individual work-items without
explicit memory operations.

• Shuffle operations enable us to
remove work-group local
memory usage from our kernels
and/or to avoid unnecessary
repeated accesses to global
memory.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Sub-groups
h.parallel_for(nd_range<1>(N,B), [=](nd_item<1> item){

intel::sub_group sg = item.get_sub_group();

size_t i = item.get_global_id(0);

/* Collectives */

data[i] = reduce(sg, data[i], intel::plus<>());

//data[i] = reduce(sg, data[i], intel::maximum<>());

//data[i] = reduce(sg, data[i], inte::minimum<>());

});

26

Sub-Group Collectives

• The collective functions
provide implementations of
closely-related common
parallel patterns.

• Providing these
implementations as library
functions increases developer
productivity and gives
implementations the ability to
generate highly optimized code
for individual target devices.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Hands-on Coding on Intel DevCloud

Sub-Group Shuffle and Collectives

27

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SUB-GROUPS

• Summary

• What are Sub-Groups?

• Why are they useful?

• Learned about sub-group shuffle operations and using sub-
group collectives

28

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

What is DPC++ Library?

The Intel® oneAPI Data Parallel C++ Library (oneDPL) is a
companion to the Intel® oneAPI DPC++ Compiler and
provides an alternative for C++ developers who create
heterogeneous applications and solutions.

Its APIs are based on familiar standards and maximizes
productivity and performance across CPUs, GPUs, and
FPGAs.

29

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

What is DPC++ Library?

DPC++ Library consists of the following components:

• Standard C++ APIs - C++ standard APIs have been tested and function
well within DPC++ kernels.

• Parallel STL - algorithms which offers efficient support for both parallel
and vectorized execution of algorithms for Intel® processors is extended
with support for DPC++ compliant devices by introducing special DPC++
execution policies.

• Extensions APIs - additional set of algorithm, classes and iterators.

30

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

std::sort(v.begin(), v.end());

queue q(gpu_selector{});

std::sort(oneapi::dpl::execution::make_device_policy(q)), v.begin(), v.end()

);

WHY USE DPC++ Library ?

The Intel oneAPI DPC++ Library helps to maximize productivity and
performance across CPUs, GPUs, and FPGAs.

Compute on host

31

Compute on GPU
with oneDPL

Execution policy tells where
the library function is executed

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

queue q;

std::vector<int> v(N);

{

buffer<int> buf(v.data(),v.size());

q.submit([&](handler &h){

auto V = buf.get_access<access::mode::read_write>(h);

h.parallel_for(range<1>(N),[=] (id<1> i){ V[i] = 20; });

});

}

for(int i = 0; i < v.size(); i++) std::cout << v[i] << std::endl;

WHY USE DPC++ Library ?

Lets look at a simple DPC++ code example and see how DPC++ Library can be
used to simplify programming.

DPC++ Kernel

Code can be

accomplished with

one line of

oneDPL code

32

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

queue q;

std::vector<int> v(N);

std::fill(oneapi::dpl::execution::make_device_policy(q), v.begin(), v.end(),

20);

for(int i = 0; i < v.size(); i++) std::cout << v[i] << std::endl;

WHY USE DPC++ Library ?

The DPC++ library function used here is Parallel STL std::fill, which executes
the functionality on the device and handles all the memory transfers.

DPC++ Library
function

33

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#include<CL/sycl.hpp>

#include <oneapi/dpl/algorithm>

#include <oneapi/dpl/execution>

constexpr int N = 4;

int main() {

sycl::queue q;

std::vector<int> v(N);

std::fill(oneapi::dpl::execution::make_device_policy(q), v.begin(), v.end(), 20);

for(int i = 0; i < v.size(); i++) std::cout << v[i] << std::endl;

}

DPC++ Library Example
Familiar Parallel STL standard algorithm with a execution policy that executes
on heterogeneous device and is optimized for data parallelism.

DPC++ Library
header files

34

DPC++ Library
function

Execution policy tells
where the library
function is executed

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

HOW DPC++ Library WORKS?

• Parallel STL algorithms can be called with ordinary iterators

• A temporary SYCL buffer is created and the data is copied to this buffer.

• After processing of the temporary buffer on a device is complete, the data is
copied back to the host.

std::fill(oneapi::dpl::execution::make_device_policy(q), v.begin(), v.end(), 20);

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

queue q;

std::vector<int> v{2,3,1,4};

std::for_each(make_device_policy(q), v.begin(), v.end(), [](int &a){ a *= 2; });

std::sort(make_device_policy(q), v.begin(), v.end());

for(int i = 0; i < v.size(); i++) std::cout << v[i] << std::endl;

MULTIPLE DPC++ Library Algorithms

Lets look at a simple DPC++ code example that uses multiple oneDPL
algorithms

Works but memory
is copied back to

host after each
library function

36

To minimize copies and retain memory on device,
we use “Buffer Iterators”

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

queue q;

std::vector<int> v{2,3,1,4};

{

buffer buf(v);

auto buf_begin = oneapi::dpl::begin(buf);

auto buf_end = oneapi::dpl::end(buf);

std::for_each(make_device_policy(q), buf_begin, buf_end, [](int &a){ a *= 2; });

std::sort(make_device_policy(q), buf_begin, buf_end);

}

for(int i = 0; i < v.size(); i++) std::cout << v[i] << std::endl;

DPC++ Library – Buffer Iterators

Lets look at a how we can minimize memory copies by using buffer iterators

Create sycl buffer

37

Buffer Iterators

Memory copied
back to host on

buffer destruction

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

queue q;

int* data = malloc_shared<int>(N, q);

std::fill(make_device_policy(q), data, data + N, 20);

q.wait();

for (int i = 0; i < N; i++) std::cout << data[i] << std::endl;

free(data, q);

DPC++ Library – USM Pointers

Lets look at a simple DPC++ code example and see how DPC++ Library can be
used with Unified Shared Memory (USM) pointers.

USM Shared
Allocation

38

Wait for
completion

Iterate Pointers

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Hands-on Coding on Intel DevCloud

oneAPI Data Parallel C++ Library

39

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SUMMARY

DPC++ is a standards-based, cross-architecture language to deliver
uncompromised productivity and performance across CPUs and
accelerators

• Extends the SYCL 1.2.1 standard with new features

New features being developed through a community project

• https://github.com/intel/llvm

• Feel free to open an Issue or submit a PR!

40

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

Notices & Disclaimers
This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact
your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata
are available on request. No product or component can be absolutely secure. Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS
IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S.
and other countries.

41

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

