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Cache-aware Roofline Model: Outline

PERFORMANCE POWER ENERGY-EFFICIENCY CASE-STUDY



A. Ilic, F. Pratas and L. Sousa, “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2014)
D. Marques, A. Ilic, Z. Matveev and L. Sousa, “Application-driven Cache-Aware Roofline Model”, Elsevier FGCS (2020)

Cache-aware Roofline Model

PERFORMANCE POWER ENERGY-EFFICIENCY CASE-STUDY



Roofline in a nutshell
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Core L1 L2 LLC DRAM

Communication overlapped with computation
Max performance capped by peak compute throughput or available bandwidth (processor’s view) 



What is bandwidth?
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Core L1 L2 LLC DRAM

Core L1 L2 LLC DRAM

Cache-aware Roofline Model (CARM)1: Bandwidth as seen by the core
- Obtained via micro-benchmarking

Original Roofline Model (ORM)2: Bandwidth between memory levels 
- Can be obtained from data-sheets

1 A. Ilic, F. Pratas and L. Sousa, “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2014)
2 S. Williams, A. Waterman, D. Patterson, "Roofline: An Insightful Visual Performance Model for Multicore Architectures”, Commun. ACM (2009)



Implications …

7 |

Core L1 L2 LLC DRAM

Core L1 L2 LLC DRAM

1 A. Ilic, F. Pratas and L. Sousa, “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2014)
2 S. Williams, A. Waterman, D. Patterson, "Roofline: An Insightful Visual Performance Model for Multicore Architectures”, Commun. ACM (2009)
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Cache-aware Roofline Model1
- One model, one arithmetic intensity
- One application “point”

Original Roofline Model2
- Several models, several intensities
- Several application “points”



Implications … bring cool features 
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Cache-aware Roofline Model
- Shows absolute architecture maximums*

(You can’t break them! Can your application exploit them?)

A. Ilic, F. Pratas and L. Sousa, “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2014)
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Peak performance (think: throughput of your ALUs)

* We will relax this requirement in the next part of the talk

How to “plot” my code?
- CARM arithmetic intensity is exactly what you expect it to be!

...
float a = A[i];
float b = B[i];
float c = a*b;
C[i] = c; 

...

...
ld r1, mem[add1]
ld r2, mem[add2]  
mul r3, r1, r2
st mem[add3], r3  
...

...
MEM_RETIRED.LOADS
MEM_RETIRED.STORES
INST_RETIRED.FLOPS
CPU_CLK_CYCLES.ALL
...

code

assembly

counters

12 bytes1 flop AI = 1/12your code



Implications … bring cool features 
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Cache-aware Roofline Model
- Shows absolute architecture maximums

(You can’t break them! Can your application exploit them?)

A. Ilic, F. Pratas and L. Sousa, “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2014)
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How to “plot” my code?
- CARM arithmetic intensity is exactly what you expect it to be!

Intel Advisor Roofline feature
- CARM is there since 2017



Implications … bring cool features 
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Cache-aware Roofline Model
- Shows absolute architecture maximums

(You can’t break them! Can your application exploit them?)

A. Ilic, F. Pratas and L. Sousa, “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2014)
D. Marques, et.al., “Performance analysis with Cache-aware Roofline Model in Intel Advisor”, HPCS (2017)
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Peak performance (think: throughput of your ALUs)

How to “plot” my code?
- CARM arithmetic intensity is exactly what you expect it to be!

How to use CARM?
① Detect the boundness region

- What are my expected maximums?
- Provides first optimization hints

② Draw an imaginary vertical line
- What are my main bottlenecks? (observe intersected lines)
- Focus your optimization (aim at surpassing the line above)

③ Optimize your code: Break above roofs!
- You should move up (as your performance improves)
- Unless you restructure the code, or your compiler decides so…

memory bound
(improve access pattern, use of caches)

compute bound
(vectorize, parallelize…)

mixed
(all kinds of everything)

memory mixed compute



Implications … bring cool features 
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A. Ilic, F. Pratas and L. Sousa, “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2014)
D. Marques, et.al., “Performance analysis with Cache-aware Roofline Model in Intel Advisor”, HPCS (2017)
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A. Ilic, F. Pratas and L. Sousa, “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2014)
D. Marques, et.al., “Performance analysis with Cache-aware Roofline Model in Intel Advisor”, HPCS (2017)



Matrix Multiplication
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All codes AVX vectorized!*

Basic implementation (row major) 

=xA B C

[1]

Transposed B (improved mem. access) 

=xA B C

[2]

Cache blocking: L3, L2, L1

=xA B C

[3,4,5]

Intel MKL

=x

[6]

* A. Ilic, F. Pratas and L. Sousa, “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2014)
* A. Ilic, F. Pratas and L. Sousa, “Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling for Multi-Cores”, IEEE Trans. on Computers (2017)
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Variable Architecture Maximums

Diverse Application Characteristics

Application-driven CARM
(scaling rooflines to meet application demands)

INST MIX AVX/SSE LD/ST FP SHARE

THROUGHPUT BANDWIDTH CORE COUNT UTILIZATION

D. Marques, A. Ilic, Z. Matveev and L. Sousa, “Application-driven Cache-Aware Roofline Model”, Elsevier FGCS (2020)



ISO-3DFD: Quite optimized 3D stencil (scalar)
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* obtained from cache simulation

Absolute CARM

Application-driven CARM

mixed region
(bound by both memory and compute)

memory bound

CARM characterization cheat-sheet

Absolute Application-driven

region mixed memory

max. perf. compute (add) memory (L1)

bottleneck memory/compute memory 

optimize everything memory (or nothing)

Application-driven CARM
- models architecture maximums exploitable by your application
- improves characterization and hints (bottlenecks, optimization)
- provides consistent characterization during optimization process



ISO-3DFD: Scalar (left) vs. AVX512 (right)
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Cache-aware Roofline Model

A. Ilic, F. Pratas and L. Sousa, “Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling for Multi-Cores”, IEEE Trans. on Computers (2017)

PERFORMANCE POWER ENERGY-EFFICIENCY CASE-STUDY



CARM: Power Consumption
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Performance CARM
- Contributions of comps and mops overlapped (in time)

A. Ilic, F. Pratas and L. Sousa, “Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling for Multi-Cores”, IEEE Trans. on Computers (2017)
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CARM: Power Consumption
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Performance CARM
- Contributions of comps and mops overlapped (in time)

A. Ilic, F. Pratas and L. Sousa, “Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling for Multi-Cores”, IEEE Trans. on Computers (2017)
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Total Power CARM: Defining envelope
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A. Ilic, F. Pratas and L. Sousa, “Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling for Multi-Cores”, IEEE Trans. on Computers (2017)
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Energy-efficiency CARM
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Power-efficiency CARM [flops/W]

A. Ilic, F. Pratas and L. Sousa, “Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling for Multi-Cores”, IEEE Trans. on Computers (2017)

Maximum efficiency for infinite arithmetic intensity! 

Energy CARM [Joule]

EDP-Efficiency CARM [flops/Js]

Arithmetic intensity [flops/byte]

Arithmetic intensity [flops/byte]

Arithmetic intensity [flops/byte]



Matrix Multiplication
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All codes AVX vectorized!*

Basic implementation (row major) 

=xA B C

[1]

Transposed B (improved mem. access) 

=xA B C

[2]

Cache blocking: L3, L2, L1

=xA B C

[3,4,5]

Intel MKL

=x

[6]

* A. Ilic, F. Pratas and L. Sousa, “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters (2014)
* A. Ilic, F. Pratas and L. Sousa, “Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling for Multi-Cores”, IEEE Trans. on Computers (2017)

Performance 
CARM



Cache-aware Roofline Model: Extensions
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CARM-based DVFS analysis 

GPU CARM: Performance, Power, DVFS NUMA CARM: Multi-socket, KNL

A. Ilic, F. Pratas, L. Sousa, “Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling for Multi-Cores”, IEEE Trans. on Computers (2017)
A. Lopes, F. Pratas, L. Sousa, A. Ilic, “Exploring GPU performance, power and energy-efficiency bounds with Cache-aware Roofline Modeling”, ISPASS (2017)
N. Denoyelle, B. Goglin, A. Ilic, E. Jeannot, L. Sousa, “Modeling Non-Uniform Memory Access on Large Compute Nodes with the Cache-Aware Roofline Model”, IEEE TPDS (2018)



Epistasis Detection: CARM-driven Optimization

R. Nobre, A. Ilic, S. Santander-Jiménez, L. Sousa, “Exploring the Binary Precision Capabilities of Tensor Cores for Epistasis Detection”, IPDPS (2020)
R. Campos, D. Marques, S. Santander-Jiménez, L. Sousa, A. Ilic, “Heterogeneous CPU+ iGPU Processing for Efficient Epistasis Detection”, EuroPar (2020)

PERFORMANCE POWER ENERGY-EFFICIENCY CASE-STUDY



Epistasis in a nutshell
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x x
Some SNP interactions may cause life-threating diseases (e.g., Alzheimer, breast cancer)  

Discovering which and how many is important, but challenging task!



Short Bio Recap: Codifying your genotype

26 |

Genotype

0

1

2

Allele - A1 Allele - A2

Homozygous Major

Heterozygous

Homozygous Minor

A1 A2

dominant allele
recessive allele



Binarizing your genotype

27 |

Genotype
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Think: Patient 0 (P0) with genotype 1 does not have disease (control) 
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Binarizing your genotype
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Dataset structure
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Our dataset: 10 040 SNPs x 104 448 samples



2-way Epistasis Detection: Pair-wise interaction
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Dataset structure

Search space: All SNP combinations
(0,1) (0,2) (0,3) (0,4) (…) (0,M-1)

(1,2) (1,3) (1,4) (…) (1,M-1)
(2,3) (2,4) (…) (2,M-1)

(3,4) (…) (3,M-1)
(…)

(…) (M-2,M-1)

M(M-1)/2
combinations

X0
X1
X2

SNP X

phenotype

Y0
Y1
Y2

SNP Y

Pair-wise interaction: SNPs (X,Y)

Each frequency table evaluated with Bayesian K2 score
Epistasis: Minimum K2 score among all combinations!

00 01 02 10 11 12 20 21 22

frequency table

ph.type: 0
ph.type: 1

genotype 
combination

X2 Y2X1 Y0

X2 Y2

andphenotype

popcnt

not

X1 Y0

andphenotype

popcnt

R. Nobre, A. Ilic, S. Santander-Jiménez, L. Sousa, “Exploring the Binary Precision Capabilities of Tensor Cores for Epistasis Detection”, IPDPS (2020)
R. Campos, D. Marques, S. Santander-Jiménez, L. Sousa, A. Ilic, “Heterogeneous CPU+ iGPU Processing for Efficient Epistasis Detection”, EuroPar (2020)

Our dataset: 10 040 SNPs x 104 448 samples Our dataset: 50 395 780 combinations



Cache-aware Roofline Model in Intel® Advisor 
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Let’s CARMify it!
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Results obtained with a “special version” of Intel® Advisor | Platform: Intel® i7-8700K (3.7GHz) with HT/Prefetching/TurboBoost disabled, single core  



Increase arithmetic intensity
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Controls
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“New” Dataset structure
(removed: phenotype and genotype 2)

Pair-wise interaction: SNPs (X,Y)

Reducing memory transfers!
Boosting our arithmetic intensity!
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R. Nobre, A. Ilic, S. Santander-Jiménez, L. Sousa, “Exploring the Binary Precision Capabilities of Tensor Cores for Epistasis Detection”, IPDPS (2020)
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Let’s CARMify it (again)!

34 |

0.5

100

0.7

1

4

7

10

40

70

0.013 640.04 0.07 0.1 0.4 0.7 1 4 7 10 40

Peak: 9.13 GALUOPS

L3
 B

an
dw

idt
h: 

17
.37

 G
B/se

c

L2
 B

an
dw

idt
h: 

27
.12

 G
B/se

c

L1
 B

an
dw

idt
h: 

45
.47

 G
B/se

c

DRAM B
an

dw
idt

h: 
5.1

3 G
B/se

c

ALUOP/Byte (Arithmetic Intensity)

G
A

LU
O

P
S

Three Genotypes + Phenotype

and

popcnt

not

Two Genotypes, No Phenotype

and

popcnt

nor nor

Wait! Being smart decreases performance!
How come?!

1.2x performance
decrease

Results obtained with a “special version” of Intel® Advisor | Platform: Intel® i7-8700K (3.7GHz) with HT/Prefetching/TurboBoost disabled, single core  



Let’s CARMify it (again)!
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Wait! Being smart decreases performance!
How come?!

1.2x

ALUops:  4.3x decrease
Bytes:  6.2x decrease

Arith. Intensity:  1.4x increase

Good thing!
We do have potentially better algorithm

(6.2x less memory operations!)

Not so good thing!
Your speedup better be pretty high to maintain 
the performance of previous version (think: IPC)!

Our speedup is “only” 1.8x, hence the drop!
(we are totally aware that this sounds super weird)

performance
decrease

Results obtained with a “special version” of Intel® Advisor | Platform: Intel® i7-8700K (3.7GHz) with HT/Prefetching/TurboBoost disabled, single core  



Let’s continue optimizing…
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CARM and perf. decrease may suggest memory issues! 
Let’s “tile” our dataset for caches!

Results obtained with a “special version” of Intel® Advisor | Platform: Intel® i7-8700K (3.7GHz) with HT/Prefetching/TurboBoost disabled, single core  



Improvements, at last!!!
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Tiling worked!
We now have both: performance increase and speedup!

2.5x performance
improvement

2.5x
speedup



Improvements, at last!!!
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Mixed region, but close to “compute” roof!
Let’s vectorize!

mixed region



CARM in action …
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3.1x scalar popcounts:
our biggest issue!

Let’s multi-thread it!

3.3x
speedup



CARM in action …
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18.6x scalar popcounts:
our biggest issue!

19.6x
speedup



Epistasis Detection on Intel CPU+iGPU

41 | R. Campos, D. Marques, S. Santander-Jiménez, L. Sousa, A. Ilic, “Heterogeneous CPU+ iGPU Processing for Efficient Epistasis Detection”, EuroPar (2020)

Best Performance Best Power and Energy-Efficiency



Cache-aware Roofline Model: Conclusions
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