Cache-aware Roofline Model: Performance, Power and Energy-efficiency

Aleksandar Ilic

Diogo Marques, Frederico Pratas, Leonel Sousa Rafael Campos, Ricardo Nobre, Sergio Santander-Jiménez

inesc-id.pt

Cache-aware Roofline Model

Cache-aware Roofline Model: Outline

Cache-aware Roofline Model

A. Ilic, F. Pratas and L. Sousa, "Cache-aware Roofline Model: Upgrading the Loft", IEEE Computer Architecture Letters (2014) D. Marques, A. Ilic, Z. Matveev and L. Sousa, "Application-driven Cache-Aware Roofline Model", Elsevier FGCS (2020)

Roofline in a nutshell

Communication overlapped with computation

Max performance capped by peak compute throughput or available bandwidth (processor's view)

What is bandwidth?

Cache-aware Roofline Model (CARM)¹: Bandwidth as seen by the core

- Obtained via micro-benchmarking

Original Roofline Model (ORM)²: Bandwidth between memory levels

- Can be obtained from data-sheets

¹ A. Ilic, F. Pratas and L. Sousa, "Cache-aware Roofline Model: Upgrading the Loft", IEEE Computer Architecture Letters (2014)
 ⁶ | ² S. Williams, A. Waterman, D. Patterson, "Roofline: An Insightful Visual Performance Model for Multicore Architectures", Commun. ACM (2009)

Implications ...

Cache-aware Roofline Model¹

- One model, one arithmetic intensity
- One application "point"

¹ A. Ilic, F. Pratas and L. Sousa, "Cache-aware Roofline Model: Upgrading the Loft", IEEE Computer Architecture Letters (2014)

7 | 2 S. Williams, A. Waterman, D. Patterson, "Roofline: An Insightful Visual Performance Model for Multicore Architectures", Commun. ACM (2009)

Cache-aware Roofline Model

- Shows absolute <u>architecture</u> maximums* (You can't break them! Can your application exploit them?)

How to "plot" my code?

- CARM arithmetic intensity is exactly what you expect it to be!

* We will relax this requirement in the next part of the talk

Cache-aware Roofline Model

- Shows absolute <u>architecture</u> maximums (You can't break them! Can your application exploit them?)

How to "plot" my code?

- CARM arithmetic intensity is exactly what you expect it to be!

Intel Advisor Roofline feature

- CARM is there since 2017

(improve access pattern, use of caches)

(all kinds of everything)

(vectorize, parallelize...)

Cache-aware Roofline Model

- Shows absolute <u>architecture</u> maximums (You can't break them! Can your application exploit them?)

How to "plot" my code? - CARM arithmetic intensity is exactly what you expect it to be!

How to use CARM?

1 Detect the boundness region

- What are my expected maximums?
- Provides first optimization hints

(2) Draw an imaginary vertical line

- What are my main bottlenecks? (observe intersected lines)
- Focus your optimization (aim at surpassing the line above)

③ Optimize your code: Break above roofs!

- You should move up (as your performance improves)
- Unless you restructure the code, or your compiler decides so...

(improve access pattern, use of caches)

(all kinds of everything)

(vectorize, parallelize...)

Cache-aware Roofline Model

- Shows absolute architecture maximums (You can't break them! Can your application exploit them?)

How to "plot" my code?

- CARM arithmetic intensity is exactly what you expect it to be!

How to use CARM?

(1) Detect the boundness region

- What are my expected maximums?
- Provides first optimization hints

(2) Draw an imaginary vertical line

- What are my main bottlenecks? (observe intersected lines)
- Focus your optimization (aim at surpassing the line above)

(3) Optimize your code: Break above roofs!

- You should move up (as your performance improves)
- Unless you restructure the code, or your compiler decides so...

(improve access pattern, use of caches)

(all kinds of everything)

(vectorize, parallelize...)

Cache-aware Roofline Model

- Shows absolute architecture maximums (You can't break them! Can your application exploit them?)

How to "plot" my code?

- CARM arithmetic intensity is exactly what you expect it to be!

How to use CARM?

(1) Detect the boundness region

- What are my expected maximums?
- Provides first optimization hints

(2) Draw an imaginary vertical line

- What are my main bottlenecks? (observe intersected lines)
- Focus your optimization (aim at surpassing the line above)

(3) Optimize your code: Break above roofs!

- You should move up (as your performance improves)
- Unless you restructure the code, or your compiler decides so...

Matrix Multiplication

All codes AVX vectorized!*

[1] Basic implementation (row major)

[2] Transposed B (improved mem. access)

[3,4,5] Cache blocking: L3, L2, L1

[6] Intel MKL

* A. Ilic, F. Pratas and L. Sousa, "Cache-aware Roofline Model: Upgrading the Loft", IEEE Computer Architecture Letters (2014) * A. Ilic, F. Pratas and L. Sousa, "Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling for Multi-Cores", IEEE Trans. on Computers (2017)

Application-driven CARM

(scaling rooflines to meet application demands)

14 | D. Marques, A. Ilic, Z. Matveev and L. Sousa, "Application-driven Cache-Aware Roofline Model", Elsevier FGCS (2020)

ISO-3DFD: Quite optimized 3D stencil (scalar)

CARM characterization cheat-sheet

	Absolute	Application-driven
region	mixed	memory
max. perf.	compute (add)	memory (L1)
bottleneck	memory/compute	memory
optimize	everything	memory (or nothing)

Application-driven CARM

- models architecture maximums exploitable by your application
- improves characterization and hints (bottlenecks, optimization)
- provides consistent characterization during optimization process

ISO-3DFD: Scalar (left) vs. AVX512 (right)

Application-driven CARM

Cache-aware Roofline Model

A. Ilic, F. Pratas and L. Sousa, "Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling for Multi-Cores", IEEE Trans. on Computers (2017)

CARM: Power Consumption

Performance CARM

- Contributions of comps and mops overlapped (in time)

Power CARM

- Contributions of comps and mops superposed (average power)

CARM: Power Consumption

Performance CARM

- Contributions of comps and mops overlapped (in time)

Power CARM: Cores

- Contributions of comps and mops superposed (average power)

Total Power CARM: Defining envelope

60 Intel 3770K 4 Cores I 3→C ?→(Ivy Bridge (AVX MAD) 56 **Total Power Roofline** Power Package [W] 52 I 1 → 48 44 DRAM→C 40 36 2⁻⁸ 2⁻⁶ 2⁻² 20 2² 24 26 2⁸ 2-4 Arithmetic Intensity [flops/byte]

CARM for different RAPL domains

Maximum efficiency for infinite arithmetic intensity!

Power-efficiency CARM [flops/W]

Energy CARM [Joule]

EDP-Efficiency CARM [flops/Js]

27

2⁵

24

2³

Performance [Gflops/s]

Matrix Multiplication

AVX MAD 10 **Energy-Efficiency** CARM 2⁻² 20 2² 2⁴ Arithmetic Intensity [flops/byte]

28

В Х

[6] Intel MKL

* A. Ilic, F. Pratas and L. Sousa, "Cache-aware Roofline Model: Upgrading the Loft", IEEE Computer Architecture Letters (2014) 22 | * A. Ilic, F. Pratas and L. Sousa, "Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling for Multi-Cores", IEEE Trans. on Computers (2017)

All codes AVX vectorized!*

[1] **Basic implementation (row major)**

[2] Transposed B (improved mem. access)

> Α =

> > =

[3,4,5] Cache blocking: L3, L2, L1

Cache-aware Roofline Model: Extensions

CARM-based DVFS analysis

A. Ilic, F. Pratas, L. Sousa, "Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling for Multi-Cores", IEEE Trans. on Computers (2017)
 A. Lopes, F. Pratas, L. Sousa, A. Ilic, "Exploring GPU performance, power and energy-efficiency bounds with Cache-aware Roofline Modeling", ISPASS (2017)
 N. Denoyelle, B. Goglin, A. Ilic, E. Jeannot, L. Sousa, "Modeling Non-Uniform Memory Access on Large Compute Nodes with the Cache-Aware Roofline Model", IEEE TPDS (2018)

Epistasis Detection: CARM-driven Optimization

R. Nobre, A. Ilic, S. Santander-Jiménez, L. Sousa, "Exploring the Binary Precision Capabilities of Tensor Cores for Epistasis Detection", IPDPS (2020) R. Campos, D. Marques, S. Santander-Jiménez, L. Sousa, A. Ilic, "Heterogeneous CPU+ iGPU Processing for Efficient Epistasis Detection", EuroPar (2020)

Epistasis in a nutshell

Some SNP interactions may cause life-threating diseases (e.g., Alzheimer, breast cancer) Discovering which and how many is important, but challenging task!

Short Bio Recap: Codifying your genotype

Binarizing your genotype

Think: Patient 0 (PO) with genotype 1 does not have disease (control)

Binarizing your genotype

Allele - A2

C

SNP

Think: Patient 1 (P1) with genotype 2 has disease (case)

Dataset structure

Dataset structure Our dataset: 10 040 SNPs x 104 448 samples

2-way Epistasis Detection: Pair-wise interaction

Dataset structure

Our dataset: 10 040 SNPs x 104 448 samples

Our dataset: 50 395 780 combinations

Each frequency table evaluated with Bayesian K2 score Epistasis: Minimum K2 score among all combinations!

30 | R. Nobre, A. Ilic, S. Santander-Jiménez, L. Sousa, "Exploring the Binary Precision Capabilities of Tensor Cores for Epistasis Detection", IPDPS (2020) R. Campos, D. Marques, S. Santander-Jiménez, L. Sousa, A. Ilic, "Heterogeneous CPU+ iGPU Processing for Efficient Epistasis Detection", EuroPar (2020)

Cache-aware Roofline Model in Intel® Advisor

Let's CARMify it!

Mixed region, but seems memory bound Let's be smart: Restructure our algorithm!

Three Genotypes + Phenotype

Increase arithmetic intensity

Pair-wise interaction: SNPs (X,Y)

"New" Dataset structure (removed: phenotype and genotype 2)

Reducing memory transfers! Boosting our arithmetic intensity!

Three Genotypes + Phenotype

Two Genotypes, No Phenotype

Let's CARMify it (again)!

Wait! Being smart decreases performance! How come?!

34 | Results obtained with a "special version" of Intel® Advisor | Platform: Intel® i7-8700K (3.7GHz) with HT/Prefetching/TurboBoost disabled, single core

Two Genotypes, No Phenotype

Let's CARMify it (again)!

Wait! Being smart decreases performance! How come?!

35 | Results obtained with a "special version" of Intel® Advisor | Platform: Intel® i7-8700K (3.7GHz) with HT/Prefetching/TurboBoost disabled, single core

Two Genotypes, No Phenotype

Let's continue optimizing...

CARM and perf. decrease may suggest memory issues! Let's "tile" our dataset for caches!

Two Genotypes, No Phenotype

Improvements, at last!!!

Tiling worked! We now have both: performance increase and speedup!

37 | Results obtained with a "special version" of Intel® Advisor | Platform: Intel® i7-8700K (3.7GHz) with HT/Prefetching/TurboBoost disabled, single core

Improvements, at last!!!

Mixed region, but close to "compute" roof! Let's vectorize!

CARM in action

Let's multi-thread it!

CARM in action ...

Epistasis Detection on Intel CPU+iGPU

Cache-aware Roofline Model: Conclusions

D. Marques, A. Ilic, Z. Matveev and L. Sousa, "Application-driven Cache-Aware Roofline Model", Elsevier FGCS (2020)
R. Nobre, A. Ilic, S. Santander-Jiménez, L. Sousa, "Exploring the Binary Precision Capabilities of Tensor Cores for Epistasis Detection", IPDPS (2020)
R. Campos, D. Marques, S. Santander-Jiménez, L. Sousa, A. Ilic, "Heterogeneous CPU+ iGPU Processing for Efficient Epistasis Detection", EuroPar (2020)
A. Ilic, F. Pratas and L. Sousa, "Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling for Multi-Cores", IEEE Trans. on Computers (2017)
A. Lopes, F. Pratas, L. Sousa, A. Ilic, "Exploring GPU performance, power and energy-efficiency bounds with Cache-aware Roofline Modeling", ISPASS (2017)
A. Ilic, F. Pratas and L. Sousa, "Cache-aware Roofline Model: Upgrading the Loft", IEEE Computer Architecture Letters (2014)

Thank you!

For the second s **DEFINING TECHNOLOGY**

EUROPEAN UNION European Regional Development Fund

Supported by Intel Corporation and Portuguese national funds through FCT under projects UIDB/50021/2020 and PTDC/CCI-COM/31901/2017 (HiPErBio).