
Toward Easing the Use
of Optane DIMMs as
Part of Heterogeneous
Memory Systems

Marc Jordà, Harald Servat,
and Antonio J. Peña

Sept. 25, 2019 IXPUG’19 Geneva, Switzerland

Motivation

• Heterogeneity in computing explored:
• Heterogeneous processing

• Heterogeneous memory …

• Different memory technologies within computers already a reality
• Scratchpad

• Embedded processors

• GPUs

• High Bandwidth Memory (HBM)

• Intel KNL

• GPUs

• (Byte-addressable) NVRAM
• HP’s “The Machine”

• Intel Optane

• We expect more memory heterogeneity

2
Intel 3D XPoint Technology

Intel KNL memory architecture

Motivation

• Different features:
• Size, resilience, access patterns, energy, persistency…

• Examples:
• Scratchpad:

• Cachelike speeds, small sizes

• Vector-specialized (e.g.: GDDR)

• High bandwidth if cont. accesses

• Low-power memory

• Increased energy/speed ratio

• ECC-enabled memory

• Fault tolerance; speed & size ↑

• I/O class (e.g.: NVRAM)

• Large; reduced speeds & energy

• Faster reading than writing

3

Motivation

• To efficiently exploit heterogeneous memory:
• Bring them as first-class citizens
• Move from hierarchical to explicitly managed

• Application’s data distribution?
• OS? Heuristics? On-the-fly monitoring? Hardware-assisted? Historic data?

User hints?
• Need ecosystem to assist users/developers: tools

• Profilers, libraries, runtime systems

4

Heterogeneous Memory Systems

• KNL: DRAM + MCDRAM (BW, Lat.) R.I.P.

• Byte-addressable NVRAM (persistent)
• Intel® Optane™ DC Persistent Memory (DIMM)

• Intel® Optane™ SSD (NVMe)

• Goal: Assess optimal data distribution
• Maximize performance

• Minimize energy

• …

D
R

A
M

5

Heterogeneous Memory Systems

• KNL: DRAM + MCDRAM (BW, Lat.) R.I.P.

• Byte-addressable NVRAM (persistent)
• Intel® Optane™ DC Persistent Memory (DIMM)

• Intel® Optane™ SSD (NVMe)

• Goal: Assess optimal data distribution
• Maximize performance

• Minimize energy

• …

D
R

A
M

O

p
tan

e

SSD
s

O
p

tan
e

D

IM
M

s

6

Heterogeneous Memory Systems

• Heterogeneous Memory Methodologies
• Page level

• Leverages OS’s view

• Can monitor hot vs. cold pages, # of allocations, total size, global status

• Easy migrations

• Object granularity (object: variable, static array, heap buffer, etc.)
• Leverage object semantics

• Usually same access pattern across entire object

• User-friendly – user may hint / control

8

Optane DIMM Systems

• Two levels of memory
• Main memory (DRAM)

• Processor has direct access to all of main memory

• Regular DRAM latency/bandwidth

• Intel® Optane™ DC Persistent Memory
• Very high capacity + persistency

• Higher latency, but much better than SSDs

9

Processors

DRAM

Optane
DIMMs

Memory Modes

• App Direct Mode (Heter. Memory)
• DRAM and Optane DIMMs are both available

• More overall memory available

• Software managed (applications need to handle themselves)

• 2LM Mode (Cache-mode)
• DRAM as cache for Optane DIMMs

• Only Optane DIMMs address space

• Done in hardware (applications don’t need to be modified)

Processor DRAM
Optane
DIMMs

Processor

DRAM

Optane
DIMMs

10

Methodology

 Object-differentiated data-oriented profiling + distribution algorithm (analysis):

1. Profile to determine per-object last-level cache misses / avg. access time

2. Assess the optimal distribution of the different objects among the memory subsystems

• Minimize processor stall cycles

Compiler
Toolchain

Memory
Profiler

Profile
Analyzer

Source
Code

Executable
Object

Execution
Input

Runtime
Allocator

Profile
Data

Object
Distribution

1

2
3

4

5

6 7

8

13

Extrae

hmem_advisor FLEXMALLOC

A. J. Peña and P. Balaji, “Toward the efficient use of multiple
explicitly managed memory subsystems”, IEEE Cluster 2014

Evolved version of:

Promising Early Results (KNL, loads only)

Code numactl –p 1
(MCDRAM*)

Cache
Mode

miniFE 1.15x 1.27x

HPCG 1.49x 1.25x

Lulesh 1.22x 0.89x

BT 1.00x 1.00x

CGPOP 0.83x 0.85x

SNAP 0.90x 0.91x

MAXW-
DGTD

1.04x 0.98x

GTC-P 1.34x 1.06x

Speedup of Framework w.r.t. other approaches

MCDRAM*: allocate as much
as it fits in HBM, FCFS

14

 Caveats:

– Dynamic allocation (Lulesh)

• Will require runtime vs. profiling

– Lack of some HW counters

– Stack frame allocation not managed by
memkind

• We can do some assembly to place these in
different mems.

H. Servat, A. J. Peña, G. Llort, E. Mercadal, H. C. Hoppe, and J.
Labarta. “Automating the application data placement in hybrid
memory systems”, in IEEE Cluster, Hawaii, USA, Sep. 2017.

System description

 Hardware

– 2S – Intel Xeon Platinum 8260L CPU @ 2.30GHz (pre-qual), HT
disabled

• Only single socket executions

– 2x 16 GB of DRAM (16 GB x socket)

• 2 of 6 DIMM channels populated per socket – 1/3 of platform
bandwidth

– 12x 512 GB Optane™ DC Persistent Memory (3 TB x socket)

 Software stack

– Fedora 27 (kernel 4.18.8-100.fc27.x86_64) – 2018ww40 BKC

– Intel Compiler Suite 2019u3

– Memkind checked out October’18

15

Some Results
 Quite some cases beat cache mode in

fair comparison

– E.g., MiniFE: ~100% improvement w.r.t.
cache mode

• Even ¼ RAM w.r.t cache mode

 In other cases we are within negligible
performance

 And some other cases require runtime
actions (next step yr 2)

16

0

1000

2000

3000

4000

5000

6000

Loads Loads + Stores (L1) Loads + Stores (L3)

Fo
M

 (
z/

s)

MiniFE

4 GB 8 GB 16 GB Cache mode (16 Gb / socket) 0

500

1000

1500

2000

2500

Loads (L3) Loads (L3) + Stores
(L1D)

Loads (L3) + Stores
(L3*)

Fo
M

 (
z/

s)

Lulesh

4 GB 8 GB 16 GB Cache mode (16 Gb / socket)

0
1
2
3
4
5
6
7
8

Loads (L3) Loads (L3) + Stores
(L1D)

Loads (L3) + Stores
(L3*)

G
Fl

o
p

s

FlexMalloc configuration

HPCG

4 GB 8 GB 16 GB Cache mode (16 Gb / socket)

Summary

• Heterogeneity is here for good and to stay

• Not only heterogeneous processing elements
• Also memory and others

• Heterogeneous memory management APIs in production
• Little help on deciding where to place data

• Research efforts on automatic/guided data distribution

• Some ongoing work ideas:
• Runtime monitoring (migrations, reuse, get rid of previous profiling)

• Seamless integration (no need for user intervention)

• Improve profiling metrics

• Integrate with other programming models (e.g., OpenMP)

17

Team Acknowledgements

• Muhammad Owais, former Jr. SW Engineer, BSC

• Marc Jordà, SW Engineer, BSC

• Antonio J. Peña, AccelCom group leader, BSC

• Jesús Labarta, CS Director, BSC

• Harald Servat, HPC SW Engineer, Intel

• Marie-Christine Sawley, Exascale Lab Director, Intel

18

Project Acknowledgements

• This work is done under the Intel-BSC Exascale Laboratory
Statement of Work 5.1 on 3D Xpoint Memory Technology

• Antonio J. Peña has received funding from the European
Union’s Horizon 2020 research and innovation program under
the Marie-Sklodowska Curie grant agreement No. 749516

Thank you

marc.jorda@bsc.es

