
SPMD / SIMD on GPUs
Patrick Steinbrecher

2IXPUG 2021

Terminology

CPU GPU

Core EU
Execution Unit

Hyper-Thread Hardware-Thread

Vector Registers GRF
General Register File

§ Hardware-thread executes SIMD
§ EU has 7 hardware-threads
• 4 kB of GRF per thread

• e.g. 128 SIMD8 registers for 4 byte data type

§ 8 EUs == 1 Sub-Slice (SS)
• shared L1 cache per SS

3IXPUG 2021

Execution Unit
§ HW-thread executes SIMD
• Native SIMD length = 256 bit

§ Flexible SIMD width
• SIMD1, SIMD2, … , SIMD16, SIMD32

• might be masked or broken down in
hardware for native width

• SIMD8 enough to reach SP-peak

• SIMD4 = ½ SP-peak

§ Code branches
• HW-thread will execute both branches

in serial and mask off SIMD lanes for
each branch correspondingly

§ Load/Store
• Referred to as ‘send’ instruction

• Scatter/Gather supported
• Same performance as aligned block load

if gather has addresses in same cache line

• ‘send’ can permute data in load path

4IXPUG 2021

Programming Models
§ How can parallelism be expressed?
• SIMD: Single Instruction Multiple Data

• SPMD: Single Program Multiple Data

§ SIMD and SPMD have strong memory layout requirements
• See next slide

§ Support for SIMD and SPMD is not limited by hardware in general.
It is dependent on availability of modern compilers.

§ Intel GPUs and CPUs have compiler support for SPMD and SIMD!

5IXPUG 2021

Memory Layouts

§ Array of Structs (AoS)

§ Very poor cache line utilization

§ Struct of Arrays (SoA)

§ Close to 100% cache line utilization

§ In simple cases can have 100% cache line utilization

§ Array of Structs of Arrays (AoSoA)
§ 100% cache line utilization

§ AoSoA and SoA are required memory layouts for
SPMD and SIMD programming model

6IXPUG 2021

OpenMP compile-time options

§ SPMD-mode
• OpenMP thread = SIMD lane

• Vectorization over multiple threads

• Use GPU like a traditional GPU

• Ideal for applications with prior
OpenCL-like background

§ SIMD-mode
• OpenMP thread = EU thread

• Vectorization within a thread

• Use GPU like a CPU

• Ideal for applications with prior
CPU background

• Has 1 additional level of hierarchical
parallelism

• #pragma omp simd

7IXPUG 2021

OpenMP compile-time options

§ SPMD-mode § SIMD-mode

8IXPUG 2021

Kokkos with SIMD-mode on Intel GPUs

#pragma omp target
#pragma omp parallel

#pragma omp for nowait

#pragma omp simd

#pragma omp barrier
#pragma omp for simd nowait

if (omp_get_thread_num() == 0)

9IXPUG 2021

HotQCD implementation using OpenMP

§ One code base that runs on both CPU and GPU
§ Without any changes in kernels between both architectures

§ No defines to change code path

§ No intrinsics

§ Relies on complex_simd<float_type,n> class which:
§ Uses internal float_type array

§ Uses #pragma omp simd for SIMD-mode

§ Can load from AoSoA with scalar types for SPMD-mode

10IXPUG 2021

Stencil Operator

11IXPUG 2021

Stencil Operator

12IXPUG 2021

Multiple Right-hand Sides

13IXPUG 2021

HotQCD approach to SPMD and SIMD

§ Code is based on complex_simd<float_type,n> class

QCD<no_simd_memory_layout> stencil;
stencil.run<no_simd_kernel>();

§ no_simd_memory_layout: defines AoSoA memory layout
§ no_simd_kernel: defines if kernel uses scalar or SIMD operators

§ SIMD-mode: no_simd_memory_layout == no_simd_kernel

§ SPMD-mode: no_simd_kernel=scalar < no_simd_memory_layout
§ introduces outer loop over SIMD lanes
§ scalar types can read from AoSoA memory layout

14IXPUG 2021

§ Store separated sites
continuously in memory

§ Single Instruction = Stencil
§ Multiple Data = Sites

§ Use vector registers like
scalars to perform matrix
times vector operations

Vectorization using AoSoA

15IXPUG 2021

Defines AoSoA layout

Complex SIMD lane loop

For SIMD-mode:

For SPMD-mode:
§ no_isf == 1

§ e.g. no_isf == 8

For SPMD mode

§ SIMD operator for no_isf == 1

§ Scalar operator for no_isf == 8

3x3 matrix times 3-dim vector

no_simd 3x3 complex matrices

with read coalescing

Right-hand side loop

For SIMD mode:
§ move simd clause inside

vector class objects

16IXPUG 2021

Performance on Integrated Graphics

§ OpenMP compiler generates
ideal code vectorization
§ See next slides

§ Lattice QCD kernel runs at 90%
caching efficiency
§ Scales with more right-hand sides

§ Matches theoretical expectation

Intel® Iris® Pro P580

17IXPUG 2021

Complex Multiplication

Each send loads 16 floats

SIMD8 complex mul

18IXPUG 2021

no_isf 3x3 complex matrices

§ no_isf == 8

§ Requires 9 SIMD16 loads

19IXPUG 2021

no_isf 3-dim complex vectors

§ no_isf == 8

§ Requires 3 SIMD16 loads

20IXPUG 2021

no_isf matrix times vector

21IXPUG 2021

Load next vector iteration

§ irhs loop is unrolled

22IXPUG 2021

no_isf 3-dim complex vectors

§ no_isf == 8

§ Requires 3 SIMD16 stores

23IXPUG 2021

Summary

§ The GPU programming style is not determined by
hardware

§ Intel GPU allows to program in the style that fits your
application background. Both OpenMP and DPC++
support:
• SPMD and SIMD programming model

§ #pragma omp simd allows to use Intel GPU like a CPU

24IXPUG 2021

Notices & Disclaimers
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist
you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
complete information visit www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Refer to http://software.intel.com/en-us/articles/optimization-notice for more information regarding performance and optimization choices in Intel
software products

Configurations details: Performance shown for HotQCD stencil kernel is using 32^3x128 lattice volume on Intel® Xeon® Processor E3-1585 v5 with
Intel® Iris® Pro Graphics P580 using Intel® oneAPI Compiler beta09.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

http://www.intel.com/benchmarks

