Simple Implementation of Quantum Bits in

 Silicon by Decoupling them in Space and Time
IXPUG Annual Conference Geneva 2019

Dr. Nagi Mekhiel
Department of Electrical, Computer and Biomedical Engineering
Ryerson University, Toronto, CANADA
nmekhiel@ee.ryerson.ca

Introduction

- Research in quantum computing is very important to develop applications for medicine, business, trade, environmental and national security purposes.
- Shor Algorithm in quantum computer factor an integer N in Log N
- There are Challenges in the implementation of Quantum Bits

Motivations

- Today's physical quantum computers suffers from noise
- Quantum-computing needs temperature of liquid helium
- quantum fault-tolerance is difficult, the error rate in terms of 'qubit-errors' scales up linearly
- loss of quantum coherence (called decoherence), caused by vibrations, temperature fluctuations, electromagnetic waves and other interactions
- "Problem with Quantum Computers, It's called decoherence", Scientific America June 10, 2019

Implementing Quantum Bits in Silicon

- FPGA to decouple each Q bit and map it either in time or Space
- Classical deterministic values of bits are provided by the system in space and time such that all combination of Q -words becomes available from the system
- probing multiple signals in parallel for bits mapped to space and after waiting for the time that allows the bits mapped to time to become available
- INTEL Processor as Host to implement application algorithm

The System To Implement Q-Bits in Silicon

- Using INTEL PROCESSOR as HOST
- GPU FOR PROBING PROCESSORS
- FPGA FOR Q-BITS IN SILICON

Implementation Example

Time	Q3Q2=00	Q3Q2=01	Q3Q2=10	Q3Q2=11
Space	Q3Q2Q1Q0	Q3Q2Q1Q0	Q3Q2Q1Q0	Q3Q2Q1Q0
Q1Q0=Q3Q2	$0000(0)$	$0101(5)$	$1010(10)$	$1111(15)$
Q1Q0=Q3/Q2	$0001(1)$	$0100(4)$	$1011(11)$	$1110(14)$
Q1Q0=/Q3Q2	$0010(2)$	$0111(7)$	$1000(8)$	$1101(13)$
Q1Q0=/Q3/Q2	$0011(3)$	$0110(6)$	$1001(9)$	$1100(12)$

Complexity of Implementation:

- 20 Q-bits needs 500 Transistors and takes 250 ns in 4 GHz Silicon
- 50 Q-bits needs 1200 Transistors and takes 8 ms in 4 GHz Silicon

Conclusions

- Simplify implementation in Silicon
- Predictable not probabilistic outcome
- Using mature technology as CMOS
- Cost of implementation is far less than Q bits of current systems
- Utilizing advancements of classical computers with developed algorithms and applications for classical computers
- Easy to add error correction to data
- Data from the system is available all the time and not limited to the time when quantum computing phenomena is useable
- Easy to use to develop new algorithms for quantum computing
- Limited to small number of Q-bits

