
Intel Parallel 
Computing Centers

Scalable Ray Tracing Using 
the Distributed FrameBuffer

Will Usher, Ingo Wald, Jefferson Amstutz, Johannes Günther, 
Carson Brownlee, and Valerio Pascucci



Challenging Rendering Problems Demand 
More Compute and Memory
• Expensive shading/geometry and high-resolutions require more 

compute for interactive rendering
• Large datasets (100+GB to TBs) cannot fit on one node
• In Situ visualization inherently requires multi-node rendering

951GB volume + 4.35B triangles at 4096x1024

222M triangles w/ path tracing at 12800x5760



Prior Work

• Sort-last: Distribute sub-regions of data to render, sort partial 
images produced on each node

• Sort-first: Distribute sub-regions of image to render, sort objects 
before or during rendering

• Hybrid: Combine image and data work distributions



Sort-Last: Object-Space Work Distribution

• “Data-parallel” rendering
• Brick dataset and distribute 

among nodes, or using an 
existing distribution (in situ)

• Render each brick locally, 
composite partial images [Hsu 
93; Ma et al. 94; Peterka et al. 09; Moreland et 
al. 11; Grosset et al. 15]

}



Sort-First: Image-Space Work Distribution

• “Image-parallel” rendering
• Work unit: Image tiles
• Load balancing [Wald et al. 01; Ize et 

al. 11]

• Large data: page from disk or 
network into cache on-
demand [Wald et al. 01; DeMarle et al. 
03, 04 & 05; Ize et al. 11]

Rank 0

Rank 1



Limitations of Prior Work

• Purpose-built solutions for each approach (sort-last, sort-first)
• Widely available software for sort-last [Moreland et al. 11] imposes 

restrictions on the data-distribution between nodes
• Sort-first methods can bottleneck on the master process at 

high-resolutions
• Widely used methods do not overlap image 

compositing/processing with rendering



Our Contributions

• A flexible and scalable parallel framework to run image 
compositing and processing tasks for distributed renderers



Our Contributions

• A flexible and scalable parallel framework to run image 
compositing and processing tasks for distributed renderers

• A set of parallel rendering algorithms built on this approach, 
covering standard use cases and more complex configurations



Our Contributions

• A flexible and scalable parallel framework to run image 
compositing and processing tasks for distributed renderers

• A set of parallel rendering algorithms built on this approach, 
covering standard use cases and more complex configurations

• An extension of OSPRay to implement a distributed API, 
exposing the parallel rendering capabilities to end users



The Distributed FrameBuffer



The DFB Tile Processing Pipeline



Tile Task Dependencies

• Rendered input tiles can build 
a per-tile task dependency 
tree at runtime

• Tree construction and 
dependency tracking is 
managed by the 
TileOperation



Tile Operations

• Specifies how tiles should be 
combined to form the final 
image from the input tree

• E.g., averaging, depth sorting, 
alpha-compositing



Pixel Operations

• Optional additional post-processing can be added via PixelOps
• Tone mapping, denoising, etc.
• Re-routing tiles to a display wall

• Independent of the Renderer and TileOperation



Asynchronous MPI Messaging Layer

• Communication runs on a background thread on each process, 
using non-blocking MPI

• DFB tile and pixel operations executed on background threads 
as dependencies are recieved

• Tile messages compressed with Snappy [Google]

• Final tiles are gathered to the master process with MPI_Gatherv



Rendering with the Distributed 
FrameBuffer



Anatomy of a Distributed Renderer

• Distributed Renderer = 
Renderer + TileOperation

• Renderer: Render local data 
to create tile task inputs

• TileOperation: Interpret and 
combine tile task inputs to 
make the finished image



Image-Parallel Rendering

• Renderer: Assign each tile to be rendered by a unique process
• TileOperation: Expect a single input tile, forward to output

Rank 0

Rank 1
Distributed 
FrameBuffer

Distributed 
FrameBuffer



Load Balancing Image-Parallel Rendering

• Renderer: Assign each tile to be rendered by one or more 
processes

• TileOperation: Expect a varying number of input tiles and
average them together

Rank 0

Rank 1
Distributed 
FrameBuffer

Distributed 
FrameBuffer



Sort-Last Data-Parallel Rendering

• Renderer: Render local data 
for tiles it touches, and a 
background tile for the tiles 
owned by the process



Sort-Last Data-Parallel Rendering

• Renderer: Render local data 
for tiles it touches, and a 
background tile for the tiles 
owned by the process

• TileOperation: Collect 
generation 0 and generation 1 
tiles, sort and blend 
fragments of generation 1 
tiles



Sort-Last Data-Parallel Rendering

• Renderer: Render local data 
for tiles it touches, and a 
background tile for the tiles 
owned by the process

• TileOperation: Collect 
generation 0 and generation 1 
tiles, sort and blend 
fragments of generation 1 
tiles



Rendering Hybrid Data Distributions

• Load balance data-parallel 
rendering by partially 
replicating data among nodes

Gen: 0
Children : 3

Rank 0

} Gen: 0
Children : 2

Rank 1

}
Gen: 0
Children : 4

Rank 2

Gen: 0
Children : 2

Rank 3

}



Rendering Hybrid Data Distributions

• Load balance data-parallel 
rendering by partially 
replicating data among nodes

• Renderer: Assign a unique 
process among those sharing 
each to render it for each tile

Gen: 0
Children : 3

Rank 0

} Gen: 0
Children : 2

Rank 1

}
Gen: 0
Children : 4

Rank 2

Gen: 0
Children : 2

Rank 3

}



Rendering Hybrid Data Distributions

• Load balance data-parallel 
rendering by partially 
replicating data among nodes

• Renderer: Assign a unique 
process among those sharing 
each to render it for each tile

Gen: 0
Children : 3

Rank 0

} Gen: 0
Children : 2

Rank 1

}
Gen: 0
Children : 4

Rank 2

Gen: 0
Children : 2

Rank 3

}



Rendering Hybrid Data Distributions

• Load balance data-parallel 
rendering by partially 
replicating data among nodes

• Renderer: Assign a unique 
process among those sharing 
each to render it for each tile

Gen: 0
Children : 3

Rank 0

} Gen: 0
Children : 2

Rank 1

}
Gen: 0
Children : 4

Rank 2

Gen: 0
Children : 2

Rank 3

}



Rendering Hybrid Data Distributions

• Load balance data-parallel 
rendering by partially 
replicating data among nodes

• Renderer: Assign a unique 
process among those sharing 
each to render it for each tile

Gen: 0
Children : 3

Rank 0

} Gen: 0
Children : 2

Rank 1

}
Gen: 0
Children : 4

Rank 2

Gen: 0
Children : 2

Rank 3

}



Rendering Hybrid Data Distributions

• Load balance data-parallel 
rendering by partially 
replicating data among nodes

• Renderer: Assign a unique 
process among those sharing 
each to render it for each tile

Gen: 0
Children : 3

Rank 0

} Gen: 0
Children : 2

Rank 1

}
Gen: 0
Children : 4

Rank 2

Gen: 0
Children : 2

Rank 3

}



Rendering Hybrid Data Distributions

• Load balance data-parallel 
rendering by partially 
replicating data among nodes

• Renderer: Assign a unique 
process among those sharing 
each to render it for each tile

• TileOperation: Identical to 
typical sort-last cases

Gen: 0
Children : 3

Rank 0

} Gen: 0
Children : 2

Rank 1

}
Gen: 0
Children : 4

Rank 2

Gen: 0
Children : 2

Rank 3

}



Rendering Hybrid Data Distributions

• Load balance data-parallel 
rendering by partially 
replicating data among nodes

• Renderer: Assign a unique 
process among those sharing 
each to render it for each tile

• TileOperation: Identical to 
typical sort-last cases

Gen: 0
Children : 3

Rank 0

} Gen: 0
Children : 2

Rank 1

}
Gen: 0
Children : 4

Rank 2

Gen: 0
Children : 2

Rank 3

}



Scalable Support for Display Walls

• Route tiles directly to the display wall from the tile owner in the 
pixel operation

• Skip bottleneck of aggregating large images to the master



A Data-Distributed API for 
OSPRay



Distributed Rendering Support in OSPRay

• Extend OSPRay with a new MPIDistributedDevice API backend
• Distributed data abstracted as a set of OSPModels (bricks) with 

possible replication
• Supports existing OSPRay geometry and volume modules 

rendered as local data, composited with DFB

Application Rank

OSPRay

Application Rank

OSPRay



Distributed Rendering Support in OSPRay

• Extend OSPRay with a new MPIDistributedDevice API backend
• Distributed data abstracted as a set of OSPModels (bricks) with 

possible replication
• Supports existing OSPRay geometry and volume modules 

rendered as local data, composited with DFB

Application Rank

OSPRay

Application Rank

OSPRay



Distributed Rendering Support in OSPRay

• Extend OSPRay with a new MPIDistributedDevice API backend
• Distributed data abstracted as a set of OSPModels (bricks) with 

possible replication
• Supports existing OSPRay geometry and volume modules 

rendered as local data, composited with DFB

Application Rank

OSPRay

Application Rank

OSPRay



Distributed Rendering Support in OSPRay

• Extend OSPRay with a new MPIDistributedDevice API backend
• Distributed data abstracted as a set of OSPModels (bricks) with 

possible replication
• Supports existing OSPRay geometry and volume modules 

rendered as local data, composited with DFB

Application Rank

OSPRay

Application Rank

OSPRay



Results



Benchmark Configurations

• Run on:
• TACC Stampede2 KNL & SKX
• ANL Theta KNL

• Similar KNL nodes, but very different networks
• Benchmarks use one process per-node and threads for 

on-node parallelism
• All benchmarks render a rotation around the dataset



Image-Parallel Rendering Scalability

• Two transparent isosurfaces on the 
Richtmyer-Meshkov, 516M triangles

• Shadows and ambient occlusion
• Stampede2 SKX

2 4 8 16 32 64
Nodes

1

4

16

64

Fr
a

m
es

pe
r-

se
co

nd
(F

P
S) 2048x2048

4096x4096



Data-Parallel Rendering: Compositing 
Benchmark vs. IceT
• Modify data-parallel renderer in 

OSPRay to use IceT for direct 
comparison

• Synthetic dataset with 643 volume 
brick per-node

• Also allows comparison between 
network architectures, job schedulers, 
system differences



IceT Comparison: Overall Performance

4 8 16 32 64 128 256
Nodes

0

50

100

150

200

250

300

350

Ti
m

e
(m

s)

Stampede2KNL

4 8 16 32 64 128 256
Nodes

0

50

100

150

200

250

300

350

Ti
m

e
(m

s)

OSPRay 2kx2k

IceT 2kx2k

OSPRay 4kx4k

IceT 4kx4k

ThetaKNL



IceTComparison: Timing Breakdown

4 8 16 32 64 128 256
Nodes

0

50

100

150

200

250

300

Ti
m

e
(m

s)

Stampede2KNL

4 8 16 32 64 128 256
Nodes

0

50

100

150

200

250

300

Ti
m

e
(m

s)

OSPRay Local 2kx2k

OSPRay Overhead 2kx2k

IceT Local 2kx2k

IceT Overhead 2kx2k

OSPRay Local 4kx4k

OSPRay Overhead 4kx4k

IceT Local 4kx4k

IceT Overhead 4kx4k

ThetaKNL



Data-Parallel Rendering: DNS Volume with 
Isosurfaces

16 32 64 128
Nodes

2

4

8

16

32

Fr
a

m
es

pe
r-

se
co

nd
(F

P
S) 2048x2048

4096x4096

16 32 64 128
Nodes

0

200

400

600

Ti
m

e
(m

s)

Local 2048x2048

Compositin g 2048x2048

Local 4096x4096

Compositin g 4096x4096

• DNS single-precision volume 
10240x7680x1536 (451GB)

• Two transparent isosurfaces, 5.43B 
triangles total

• Stampede2 KNL

Overall Performance Timing Breakdown

CompositingCompositing



Hybrid-Parallel Rendering Performance

• Partially replicate bricks of 
data among nodes to improve 
load balancing



Hybrid-Parallel Rendering Performance

• Partially replicate bricks of 
data among nodes to improve 
load balancing

• 64 nodes: 2 bricks per/node
0 50 100 150 200 250 300

Frame

100

200

300

400

Ti
m

e
(m

s)

1 Brick

2 Bricks

64 KNL Nodes



Hybrid-Parallel Rendering Performance

• Partially replicate bricks of 
data among nodes to improve 
load balancing

• 64 nodes: 2 bricks per/node
• 128 nodes: 2 or 4 bricks 

per/node

0 50 100 150 200 250 300
Frame

100

200

300

400

Ti
m

e
(m

s)

1 Brick

2 Bricks

64 KNL Nodes

0 50 100 150 200 250 300
Frame

100

150

200

250

Ti
m

e
(m

s)

1 Brick

2 Bricks

4 Bricks

128 KNL Nodes



Intel Parallel 
Computing Centers

Thanks!

• DFB and Distributed API out now in 
OSPRay 1.8.0!

We would like to thank Damon McDougall and Paul Navrátil for assistance investigating MPI performance 
at TACC and Mengjiao Han for help with the display wall example. This work is supported in part by the 
Intel Parallel Computing Centers Program, NSF:CGV Award: 1314896, NSF:IIP Award: 1602127, 
NSF:ACI Award:1649923, DOE/SciDAC DESC0007446, CCMSC DE-NA0002375 and NSF:OAC Award: 
1842042. This work used resources of the Argonne Leadership Computing Facility, which is a U.S. 
Department of Energy Office of Science User Facility supported under Contract DE-AC02-06CH11357. 
The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas
at Austin for providing HPC resources that have contributed to the research results reported in this paper.


	Scalable Ray Tracing Using the Distributed FrameBuffer
	Challenging Rendering Problems Demand More Compute and Memory
	Prior Work
	Sort-Last: Object-Space Work Distribution
	Sort-First: Image-Space Work Distribution
	Limitations of Prior Work
	Our Contributions
	Our Contributions
	Our Contributions
	The Distributed FrameBuffer
	The DFB Tile Processing Pipeline
	Tile Task Dependencies
	Tile Operations
	Pixel Operations
	Asynchronous MPI Messaging Layer
	Rendering with the Distributed FrameBuffer
	Anatomy of a Distributed Renderer
	Image-Parallel Rendering
	Load Balancing Image-Parallel Rendering
	Sort-Last Data-Parallel Rendering
	Sort-Last Data-Parallel Rendering
	Sort-Last Data-Parallel Rendering
	Rendering Hybrid Data Distributions
	Rendering Hybrid Data Distributions
	Rendering Hybrid Data Distributions
	Rendering Hybrid Data Distributions
	Rendering Hybrid Data Distributions
	Rendering Hybrid Data Distributions
	Rendering Hybrid Data Distributions
	Rendering Hybrid Data Distributions
	Scalable Support for Display Walls
	A Data-Distributed API for OSPRay
	Distributed Rendering Support in OSPRay
	Distributed Rendering Support in OSPRay
	Distributed Rendering Support in OSPRay
	Distributed Rendering Support in OSPRay
	Results
	Benchmark Configurations
	Image-Parallel Rendering Scalability
	Data-Parallel Rendering: Compositing Benchmark vs. IceT
	IceT Comparison: Overall Performance
	IceT Comparison: Timing Breakdown
	Data-Parallel Rendering: DNS Volume with Isosurfaces
	Hybrid-Parallel Rendering Performance
	Hybrid-Parallel Rendering Performance
	Hybrid-Parallel Rendering Performance

