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Challenging Rendering Problems Demand 
More Compute and Memory
• Expensive shading/geometry and high-resolutions require more 

compute for interactive rendering
• Large datasets (100+GB to TBs) cannot fit on one node
• In Situ visualization inherently requires multi-node rendering

951GB volume + 4.35B triangles at 4096x1024

222M triangles w/ path tracing at 12800x5760



Prior Work

• Sort-last: Distribute sub-regions of data to render, sort partial 
images produced on each node

• Sort-first: Distribute sub-regions of image to render, sort objects 
before or during rendering

• Hybrid: Combine image and data work distributions



Sort-Last: Object-Space Work Distribution

• “Data-parallel” rendering
• Brick dataset and distribute 

among nodes, or using an 
existing distribution (in situ)

• Render each brick locally, 
composite partial images [Hsu 
93; Ma et al. 94; Peterka et al. 09; Moreland et 
al. 11; Grosset et al. 15]

}



Sort-First: Image-Space Work Distribution

• “Image-parallel” rendering
• Work unit: Image tiles
• Load balancing [Wald et al. 01; Ize et 

al. 11]

• Large data: page from disk or 
network into cache on-
demand [Wald et al. 01; DeMarle et al. 
03, 04 & 05; Ize et al. 11]
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Limitations of Prior Work

• Purpose-built solutions for each approach (sort-last, sort-first)
• Widely available software for sort-last [Moreland et al. 11] imposes 

restrictions on the data-distribution between nodes
• Sort-first methods can bottleneck on the master process at 

high-resolutions
• Widely used methods do not overlap image 

compositing/processing with rendering
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Our Contributions

• A flexible and scalable parallel framework to run image 
compositing and processing tasks for distributed renderers

• A set of parallel rendering algorithms built on this approach, 
covering standard use cases and more complex configurations

• An extension of OSPRay to implement a distributed API, 
exposing the parallel rendering capabilities to end users



The Distributed FrameBuffer



The DFB Tile Processing Pipeline



Tile Task Dependencies

• Rendered input tiles can build 
a per-tile task dependency 
tree at runtime

• Tree construction and 
dependency tracking is 
managed by the 
TileOperation



Tile Operations

• Specifies how tiles should be 
combined to form the final 
image from the input tree

• E.g., averaging, depth sorting, 
alpha-compositing



Pixel Operations

• Optional additional post-processing can be added via PixelOps
• Tone mapping, denoising, etc.
• Re-routing tiles to a display wall

• Independent of the Renderer and TileOperation



Asynchronous MPI Messaging Layer

• Communication runs on a background thread on each process, 
using non-blocking MPI

• DFB tile and pixel operations executed on background threads 
as dependencies are recieved

• Tile messages compressed with Snappy [Google]

• Final tiles are gathered to the master process with MPI_Gatherv



Rendering with the Distributed 
FrameBuffer



Anatomy of a Distributed Renderer

• Distributed Renderer = 
Renderer + TileOperation

• Renderer: Render local data 
to create tile task inputs

• TileOperation: Interpret and 
combine tile task inputs to 
make the finished image



Image-Parallel Rendering

• Renderer: Assign each tile to be rendered by a unique process
• TileOperation: Expect a single input tile, forward to output
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Load Balancing Image-Parallel Rendering

• Renderer: Assign each tile to be rendered by one or more 
processes

• TileOperation: Expect a varying number of input tiles and
average them together
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Rank 1
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FrameBuffer

Distributed 
FrameBuffer
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Rendering Hybrid Data Distributions

• Load balance data-parallel 
rendering by partially 
replicating data among nodes
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Rendering Hybrid Data Distributions
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Scalable Support for Display Walls

• Route tiles directly to the display wall from the tile owner in the 
pixel operation

• Skip bottleneck of aggregating large images to the master



A Data-Distributed API for 
OSPRay



Distributed Rendering Support in OSPRay

• Extend OSPRay with a new MPIDistributedDevice API backend
• Distributed data abstracted as a set of OSPModels (bricks) with 

possible replication
• Supports existing OSPRay geometry and volume modules 

rendered as local data, composited with DFB
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Results



Benchmark Configurations

• Run on:
• TACC Stampede2 KNL & SKX
• ANL Theta KNL

• Similar KNL nodes, but very different networks
• Benchmarks use one process per-node and threads for 

on-node parallelism
• All benchmarks render a rotation around the dataset



Image-Parallel Rendering Scalability

• Two transparent isosurfaces on the 
Richtmyer-Meshkov, 516M triangles

• Shadows and ambient occlusion
• Stampede2 SKX

2 4 8 16 32 64
Nodes

1

4

16

64

Fr
a

m
es

pe
r-

se
co

nd
(F

P
S) 2048x2048

4096x4096



Data-Parallel Rendering: Compositing 
Benchmark vs. IceT
• Modify data-parallel renderer in 

OSPRay to use IceT for direct 
comparison

• Synthetic dataset with 643 volume 
brick per-node

• Also allows comparison between 
network architectures, job schedulers, 
system differences



IceT Comparison: Overall Performance
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IceTComparison: Timing Breakdown
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Data-Parallel Rendering: DNS Volume with 
Isosurfaces
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Hybrid-Parallel Rendering Performance

• Partially replicate bricks of 
data among nodes to improve 
load balancing



Hybrid-Parallel Rendering Performance

• Partially replicate bricks of 
data among nodes to improve 
load balancing

• 64 nodes: 2 bricks per/node
0 50 100 150 200 250 300

Frame

100

200

300

400

Ti
m

e
(m

s)

1 Brick

2 Bricks

64 KNL Nodes



Hybrid-Parallel Rendering Performance

• Partially replicate bricks of 
data among nodes to improve 
load balancing

• 64 nodes: 2 bricks per/node
• 128 nodes: 2 or 4 bricks 

per/node
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Intel Parallel 
Computing Centers

Thanks!

• DFB and Distributed API out now in 
OSPRay 1.8.0!
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