
William Arndt

Optimization of the

Model for Prediction Across

Scales: Ocean Core

Targeting Production Scale

Use of Knights Landing

Processor Architecture

September 26, 2018

IXPUG Fall Conference

Hillsboro, Oregon

Project Organization

• E3SM – Energy Exascale Earth System Model

• Part of ECP initiative at the Department of Energy

• 300+ contributors over lifetime of project

• LLNL, PNNL, Sandia, LANL, ORNL, LBNL, Argonne, UCAR

• MPAS framework – Model for Prediction Across Scales

• 50+ contributors

• Simulations implemented via unstructured mesh

• 800,000 lines of Fortran

• NESAP - NERSC Exascale Science Applications Program

– Fund post docs to adapt high impact applications to KNL

Coupled Climate Model

MPAS-Ocean

LANL

MPAS-Sea Ice

LANL

HOMME/CAM

SNL, PNNL,

LLNL

Land Surface:

ORNL, PNNL

Flux Coupler

ORNL, ANL

MPAS-Land Ice

LANL

Unstructured Mesh Model of Earth

• Low Resolution: 400k Cells

• Med. Resultion: 1.5m Cells

• High Resolution: 6m Cells

Parallelization by Partition and Halo Exchange

Split-Explicit Integration and Vectorization in Depth

level 1

level 2

level 3

level K

level 1

level 2

level 3

level K

2D barotropic

Fast propagating fields
3D baroclinic

Slow propagating fields

full ocean

vertical section

Split-Explicit Integration and Barotropic

Subcycling

Compute Time Used to Simulate 1 Timestep

3D Baroclinic

computation and

halo exchange

3D Tracer, Density,

Pressure computation

and halo exchange

2D Barotropic subcycle

computation and halo exchange

Project Focus

• NERSC systems

– Edison with Xeon Ivy Bridge (IVB) processors

– Cori with Xeon Phi Knights Landing (KNL) Processors

• Goals

– Explain performance disparity between KNL and IVB when

MPAS-Ocean runs simulations at production scale (256+ nodes)

– Find, implement, and push to production optimizations which

bring KNL performance on par with IVB

Initial Performance

IVB Nodes, 24 Cores each

Seconds used to

complete

benchmark

simulation

Initial Performance + KNL

IVB Nodes, 24 Cores each

Seconds used to

complete

benchmark

simulation

KNL Nodes, 68 Cores each

Is it load imbalance?

Measuring Load Imbalance

• Can’t just measure MPI sync time and be done

– All Halo exchanges are implemented point to point

– MPI_Isend, MPI_Irecv

– Looping through a list to check for expected messages with

MPI_Test disguises some imbalance time as compute

• A plan to approximate

– Wall time is determined by process with most compute. It makes

neighbors wait, but does the least waiting itself as messages

from it’s neighbors are ready sooner

– The difference between the minimum process wait time and the

average wait time is an approximate upper bound on

performance gain possible by improving load balance

Measured Load Imbalance

Deviation from

average process

time spent in

communication

12288 IVB processes sorted by communication time

Measured Load Imbalance

Deviation from

average process

time spent in

communication

12288 IVB processes sorted by communication time

11.5% Gain

Measured Load Imbalance

Deviation from

average process

time spent in

communication

12288 IVB processes sorted by communication time

11.5% Gain

33792 KNL processes sorted by communication time

Measured Load Imbalance

Deviation from

average process

time spent in

communication

12288 IVB processes sorted by communication time

11.5% Gain

33792 KNL processes sorted by communication time

12% Gain

It’s not load imbalance.

Looking for the bottleneck on KNL

Seconds spent in

execution phase

during complete

benchmark

simulation

All phases of full

time integration

KNL Nodes, 68 Cores each

Looking for the bottleneck on KNL

Seconds spent in

execution phase

during complete

benchmark

simulation

All phases of full

time integration

Barotropic subcyle

phase only

KNL Nodes, 68 Cores each

Looking for the bottleneck on KNL

Seconds spent in

execution phase

during complete

benchmark

simulation

Barotropic

subcycle

communication

phase only

All phases of full

time integration

Barotropic subcyle

phase only

KNL Nodes, 68 Cores each

IVB vs. KNL: Non BTR subcycle halo

Seconds spent

not in Barotropic

subcycle halo

exchange phase

during complete

benchmark

simulation

KNL Nodes, 68 Cores each

IVB Nodes, 24 Cores each

IVB vs. KNL: BTR subcycle halo only

Seconds spent in

Barotropic

subcycle halo

exchange phase

during complete

benchmark

simulation

KNL Nodes, 68 Cores each

IVB Nodes, 24 Cores each

The barotropic subcycle halo

exchange is why IVB

outperforms KNL.

Trying to reduce halo exchanges

• Try deeper halos

• Doubling the depth of the halo exchange enables two full

timesteps per single halo exchange

• Framework allows easy configuration of halo depth (but globally)

• Drawbacks

– Some compute at the edges of partitions is duplicated between

neighbor processes (but we have plenty of compute to spare)

– Sending more than twice as much data; more message packing

and larger messages over MPI

– Barotropic subcycle easy to adapt, but a full implementation

would require significant labor to convert the rest of the Ocean

Core

Normal halo vs. deep: Gains

Seconds spent in

Barotropic

subcycle halo

exchange phase

during complete

benchmark

simulation

Initial Halo Depth

(3)

Doubled Halo

Depth (6)

KNL Nodes, 68 Cores each

Normal halo vs. deep: Losses

Seconds spent

outside

Barotropic

subcycle halo

exchange phase

during complete

benchmark

simulation

Initial Halo Depth

(3)

Doubled Halo

Depth (6)

KNL Nodes, 68 Cores each

Normal halo vs. deep: It’s a wash.

Seconds spent in

execution phase

during complete

benchmark

simulation

Initial Halo Depth

(3)

Doubled Halo

Depth (6)

KNL Nodes, 68 Cores each

Looking for waste in the

framework

Threading directives on inner loops

commListPtr => exchangeGroup % sendList

do while (associated(commListPtr))

fieldCursor => field

do while (associated(fieldCursor))

exchListPtr => fieldCursor % sendList % halos(haloLayer) % exchList

do while (associated(exchListPtr))

if (exchListPtr % endPointID == commListPtr % procID) then

!$omp do schedule(runtime) private(iBuffer)

do iExch = 1, exchListPtr % nList

! Work to pack communications buffers

end do

!$omp end do

end if

exchListPtr => exchListPtr % next

end do

fieldCursor => fieldCursor % next

end do

!$omp master

! work to track iBuffer position progress during this iteration

!$omp end master

call mpas_threading_barrier()

commListPtr => commListPtr % next

end do

Threading directives on inner loops

commListPtr => exchangeGroup % sendList

do while (associated(commListPtr))

fieldCursor => field

do while (associated(fieldCursor))

exchListPtr => fieldCursor % sendList % halos(haloLayer) % exchList

do while (associated(exchListPtr))

if (exchListPtr % endPointID == commListPtr % procID) then

!$omp do schedule(runtime) private(iBuffer)

do iExch = 1, exchListPtr % nList

! Work to pack communications buffers

end do

!$omp end do Hundreds of implied OMP barriers here

end if

exchListPtr => exchListPtr % next

end do

fieldCursor => fieldCursor % next

end do

!$omp master

! work to track iBuffer position progress during this iteration

!$omp end master

call mpas_threading_barrier()

commListPtr => commListPtr % next

end do

Pull OMP directive to outer loop

commListPtr => exchangeGroup % sendList

commListSize = commListPtr % commListSize

!$omp do private(commListPtr, ...)

do listItem = 1, commListSize

commListPtr => exchangeGroup % sendList

do listPosition = 2, listItem

commListPtr => commListPtr % next

end do

bufferOffset = commListPtr % bufferOffset

fieldCursor => field

! Same inner loop over fieldCursor

! Same inner loop over exchList

! Same loop over iExch, but no OMP directive

! New Inner loop over memoized size of buffer section to be copied

! work to track buffer position progress for this message

commListPtr => commListPtr % next

end do

!$omp end do

Anatomy of a halo exchange

subroutine mpas_dmpar_exch_group_full_halo_exch(domain, groupName, iErr)

...

call mpas_dmpar_exch_group_build_buffers(domain % allFields, exchGroupPtr)

call mpas_dmpar_exch_group_start_recv(domain % dminfo, exchGroupPtr)

call mpas_dmpar_exch_group_pack_buffers(domain % allFields, exchGroupPtr)

call mpas_dmpar_exch_group_start_send(domain % dminfo, exchGroupPtr)

call mpas_dmpar_exch_group_local_exch_fields(domain % allFields, exchGroupPtr)

call mpas_dmpar_exch_group_unpack_buffers(domain % allFields, exchGroupPtr)

call mpas_dmpar_exch_group_destroy_buffers(exchGroupPtr)

...

Disection of a halo exchange

subroutine mpas_dmpar_exch_group_full_halo_exch(domain, groupName, iErr)

...

call mpas_dmpar_exch_group_build_buffers(domain % allFields, exchGroupPtr)

call mpas_dmpar_exch_group_start_recv(domain % dminfo, exchGroupPtr)

call mpas_dmpar_exch_group_pack_buffers(domain % allFields, exchGroupPtr)

call mpas_dmpar_exch_group_start_send(domain % dminfo, exchGroupPtr)

call mpas_dmpar_exch_group_local_exch_fields(domain % allFields, exchGroupPtr)

call mpas_dmpar_exch_group_unpack_buffers(domain % allFields, exchGroupPtr)

call mpas_dmpar_exch_group_destroy_buffers(exchGroupPtr)

...

Replacement of a halo exchange

function ocn_forward_mode_init(domain, startTimeStamp) result(ierr)

...

call mpas_dmpar_exch_group_create(domain, 'subcycleFields')

call mpas_dmpar_exch_group_add_field(domain, 'subcycleFields', 'sshSubcycle')

call mpas_dmpar_exch_group_add_field(domain, 'subcycleFields', 'normalBarotropicVelocitySubcycle')

call mpas_dmpar_exch_group_build_reusable_buffers(domain, 'subcycleFields')

subroutine mpas_dmpar_exch_group_reuse_halo_exch(domain, groupName, timeLevel, haloLayers, iErr)

...

call mpas_dmpar_exch_group_start_recv(domain % dminfo, exchGroupPtr)

call mpas_dmpar_exch_group_pack_buffers(domain % allFields, exchGroupPtr)

call mpas_dmpar_exch_group_start_send(domain % dminfo, exchGroupPtr)

call mpas_dmpar_exch_group_local_exch_fields(domain % allFields, exchGroupPtr)

call mpas_dmpar_exch_group_unpack_buffers(domain % allFields, exchGroupPtr)

...

function ocn_forward_mode_finalize(domain) result(iErr)

call mpas_dmpar_exch_group_destroy_reusable_buffers(domain, 'subcycleFields')

...

Results

KNL initial vs. modified: sub halo

only

KNL Nodes, 68 Cores each, initial codebase

Seconds used

during Barotropic

subcycle halo

exchange phase

when running

benchmark

simulation

KNL Nodes, 68 Cores each, modified codebase

KNL modified vs. initial

KNL Nodes, 68 Cores each, initial codebase

Seconds used to

complete

benchmark

simulation

KNL Nodes, 68 Cores each, modified codebase

KNL modified vs. IVB

KNL Nodes, 68 Cores each, initial codebase

Seconds used to

complete

benchmark

simulation

IVB Nodes, 24 Cores each, initial codebase

KNL Nodes, 68 Cores each, modified codebase

Conclusions

Outcome of goals

• Performance goal: Failed

– Needed 2x speedup on KNL to match IVB performance

– Only achieved 1.15x speedup

– E3SM only runs 3% faster

– IVB best configuration doesn’t use threading so no gain there

• Explain why it is slower on KNL.

– Need much better threading.

• 210 serial thread sections in framework code

– KNL needs more processes per node, which inflates total

message packing for halo exchanges, which overwhelms memory

system

If I had a million FTEs I would…

• Extend framework to address negative halo layers, use to overlap

compute and communication

• Build a mapping and add some extra loops to pack halo exchange

messages during compute

• Every framework data structure should not be a linked list

• Follow up on potential from deeper halo exchanges:

– Modify configurations to support different halo sizes for different

fields -OR-

– Adapt entire ocean core (and the others) to support deeper halo

exchanges

Credit to:

• Mark Peterson – Los Alamos National Lab

• Philip Jones – Los Alamos National Lab

• Sam Williams – Lawrence Berkeley National Lab

• Leonid Oliker – Lawrence Berkeley National Lab

• Noel Keen – Lawrence Berkeley National Lab

• Brian Friesen – NERSC

• Helen He - NERSC

• The NESAP program at NERSC

Thank You

