
OpenCL-enabled GPU‒FPGA Accelerated
Computing with Inter-FPGA Communication

IXPUG HPC Asia 2020 @ Fukuoka, Japan
15:20-15:40, January 17th, 2020

Ryohei Kobayashi1,2), Norihisa Fujita1),
Yoshiki Yamaguchi2,1), Ayumi Nakamichi2),

Taisuke Boku1,2)

1: Center for Computational Sciences, University of Tsukuba
2: Graduate School of Systems and Information Engineering

Accelerators in HPC

lThe most popular one: GPU
ØStrengths

ü large scale SIMD (SIMT) fabric in a chip
ü high bandwidth memory (GDDR5, HBM)

ØGPUs do not work well on applications that employ
ü partially poor parallelism
ü non-regular computation (warp divergence)
ü frequent inter-node communication

lFPGAs have been emerging in HPC
Ø true co-designing with applications (indispensable)
ØOpenCL-based FPGA development toolchains are available
Øhigh bandwidth interconnect: ~100 Gbps x 4

1

Accelerator in Switch (AiS) concept

lWhat’s this?
Ø using FPGA for not only computation offloading but also communication
Ø covering GPU non-suited computation by FPGA
Ø combining computation offloading and ultra-low latency communication
among FPGAs

Ø especially effective on communication-related small/medium computation
(such as collective communication)

Ø OpenCL-enable programming for application users

2

High-speed
interconnect

CPU Accelerator
(GPU)Accelerator
(GPU)

PCIe switch

Communication
Logic

Computation
Logic

FPGA

Network Switch

Node

Node Node Node

Why GPU-FPGA coupling is needed?

lKeyword: Multiphysics
ØSimulations with multiple interacting physical properties
ØVarious computations are included within a simulation
→ Hard to accelerate simulation speed by GPU only

3

Magnetic

ElectricalThermal

Reaction Fluid

AcousticStructural

One of Multiphysics applications

lARGOT code: Radiation transfer simulation
ØThe radiation transfer from spot light and spatially
distributed light strongly affected the birth of first object in
space

ØThese two radiation are suitable for computation on GPU
and FPGA separately
→ needs to combine both devices for high speed simulation

4

�)�	���������������
����������(
��������

�
���)

�)�	����������
��	��	����)�����
��
)�
����������(
������

�
���)

GPU

GPU

spot

GPU

spot

GPU

spot

FPGA

space

FPGA

space

FPGA

AiS: Accelerator in Switch

space

FPGA

How to use them
simultaneously?

GPU-FPGA DMA
Inter-FPGA comm.

Today’s topic

lWhat we’ve done for this presentation is...
Ø to combine GPU-FPGA DMA[1] and inter-FPGA comm.[2]

ü Both of data communication are invoked from OpenCL kernel

5

���

�������

���

�������

���

�������

…

Data communication with GPU-FPGA DMA transfer

FPGA-to-FPGA data communication

[1] Ryohei Kobayashi et al., “GPU-FPGA Heterogeneous Computing with OpenCL-enabled Direct
Memory Access”, pp.489-498, IPDPSW2019 (AsHES), May 20th, 2019.

[2] Norihisa Fujita et al., “Parallel Processing on FPGA Combining Computation and Communication in
OpenCL Programming”, pp.479-488 , IPDPSW2019 (AsHES), May 20th, 2019.

Data communication with GPU-FPGA
DMA transfer

lExample: GPU-to-FPGA data transfer

6

__kernel void fpga_dma(__global float *restrict fpga_mem,
const ulong gpu_memadr,
const uint id_and_len)

{
cldesc_t desc;
// DMA transfer GPU -> FPGA
desc.src = gpu_memadr;
desc.dst = (ulong)(&fpga_mem[0]);
desc.id_and_len = id_and_len;
write_channel_intel(fpga_dma, desc);
ulong status = read_channel_intel(dma_stat);

}

CPU

FPGA GPU

GPU-to-FPGA DMA kick

FPGA-to-FPGA data communication

lEnabling user level programming

7

__kernel void sender(__global float* restrict x, int n) {
for (int i = 0; i < n; i++) {

float v = x[i];
write_channel_intel(network_out, v);

}
}

__kernel void receiver(__global float* restrict x, int n) {
for (int i = 0; i < n; i++) {

float v = read_channel_intel(network_in);
x[i] = v;

}
}

sender code on FPGA1

receiver code on FPGA2

GPU-FPGA comm. + FPGA-FPGA comm.

lUsing of both features simultaneously
ØE.g. pingpong benchmark program with 2 comp. nodes

8

���

�������

���

�������

CPU

FPGA GPU

GPU-FPGA comm.

FPGA-FPGA comm.

Pingpong benchmark
between two GPUs over different node

9

__kernel void ping(
__global float* restrict data,
int n

) {
uchar request = 1; // GPU-to-FPGA mode
write_channel_intel(dma_req, request);
for (int i = 0; i < n; i++) {

float v = read_channel_intel(ping_data);
write_channel_intel(send, v);

}
}

__kernel void gpu_fpga_dma(
__global volatile float* restrict recv_data,
int n,
const ulong gpu_memadr
) {

uchar request = read_channel_intel(dma_req);
if (request == 0) { // FPGA-to-GPU mode

~ FPGA-to-GPU DMA procedure ~

} else if (request == 1) { // GPU-to-FPGA mode
ulong ret = dma_gpu_to_fpga(gpu_memadr, recv_data, n*sizeof(float));
for (int i = 0; i < n; i++) {

write_channel_intel(ping_data, recv_data[i]);
}

}
}

���

�������

���

�������

Procedure of Ping comm.

Send DMA request

GPU-to-FPGA DMA kick

Inter-FPGA comm.

Return ping-data

Experimental Settings

10

CPU:
Intel Xeon
E5-2660 v4 x2 GPU:

NVIDIA P100 x2

FPGA:
BittWare A10PL4

HCA:
Mellanox IB/EDR

QSFP+: 40Gbps x2

IB/EDR: 100Gbps
comp. node 0

Ethernet Switch (Mellanox MSN2100-CB2R)

IB (InfiniBand) Switch (Mellanox MSB7790-ES2F)

CPU:
Intel Xeon
E5-2660 v4 x2 GPU:

NVIDIA P100 x2

FPGA:
BittWare A10PL4

HCA:
Mellanox IB/EDR

QSFP+: 40Gbps x2

IB/EDR: 100Gbps
comp. node 1

Hardware specification
CPU Intel Xeon E5-2660 v4 x2
Host Memory DDR4-2400 16GB x4
GPU NVIDIA Tesla P100 x2 (PCIe Gen3 x16)
FPGA Intel Arria 10 GX (BittWare A10PL4)

(PCIe Gen3 x8)

Software specification
OS CentOS 7.3
Host Compiler gcc 4.8.5, g++ 4.8.5
MPI OpenMPI 3.0.1
GPU Compiler CUDA 9.1.85
FPGA Compiler Intel Quartus Prime Pro 17.1.2.304

Send init data

Ping comm.Pong comm.

Communication latency result between
GPUs over different nodes

lCommunication latency for 4-byte transferring
ØThe “ideal” latency is based on [1, 2]
ØPerformance degradation is because of non-optimized impl.

11

0

1

2

3

4

5

6

Ideal Measured

La
te

nc
y

[μ
s]

FPGA → GPU
FPGA-to-FPGA

GPU → FPGA

[1] Ryohei Kobayashi et al., “GPU-FPGA Heterogeneous Computing with OpenCL-enabled Direct
Memory Access”, pp.489-498, IPDPSW2019 (AsHES), May 20th, 2019.

[2] Norihisa Fujita et al., “Parallel Processing on FPGA Combining Computation and Communication in
OpenCL Programming”, pp.479-488 , IPDPSW2019 (AsHES), May 20th, 2019.

The most important finding in this
evaluation is that...

lWe have confirmed our proposed method enables
GPUs and FPGAs to work together over different
nodes
ØThe latency value has no meaning

ü For JUST performing GPU-to-GPU comm., GPUDirect is
better than Ideal latency of our proposed method

ØWe would like to make FPGA not only communication but
also computation, and this experiment shows that it is
possible

ØAccelerator-centric (GPU+FPGA) application can be
implemented without requiring deep FPGA knowledge and
significant engineering effort because there is no HDL

12

Conclusion

lProposal
ØAn approach for GPU‒FPGA accelerated computing with
the OpenCL programming framework

lWhat we did is...
Ø to confirm that our proposed method makes it possible for
GPUs and FPGAs in different nodes to work together

üData communication with GPU-FPGA DMA transfer
ü FPGA-to-FPGA data communication

lContribution
ØApplication developers can implement CPU-non-
intervention application code running on multiple GPUs and
FPGAs without writing any HDL code

13

Future work

lHow FPGA knows GPU computation completion?
ØA sophisticated synchronization mechanism is needed

lWe do not want to write multiple code!!
(CUDA, OpenCL, etc)
Øneeds a comprehensive programming framework

ü Currently, we are developing such framework with OpenACC

lTargeting real applications
ü Currently, we are focusing on astrophysics application

14

Cygnus:
A Next-gen supercomputer at CCS

lAn AiS proof-of-concept
system
ØOperation started in April 2019
Ø2x Intel Xeon CPUs, 4x NVIDIA
V100 GPUs, 2x Intel Stratix10
FPGAs

ØDeneb: 48 nodes
ü CPU + GPU

ØAlbireo: 32 nodes
ü CPU + GPU + FPGA
ü 2D torus network for FPGAs

• 100Gbps per link

15
https://www.nallatech.com/store/fpga-accelerated-
computing/pcie-accelerator-cards/nallatech-520-
compute-acceleration-card-stratix-10-fpga/

Promotion video is
available on Youtube!!
https://www.youtube.co
m/watch?v=Vrlq5Q-
3f0o&t=190s

https://www.nallatech.com/store/fpga-accelerated-computing/pcie-accelerator-cards/nallatech-520-compute-acceleration-card-stratix-10-fpga/
https://www.youtube.com/watch%3Fv=Vrlq5Q-3f0o&t=190s

