
This is hpc on intel

Numba/HPAT And Daal4py:
The Painless Route In Python To Fast And
Scalable Data-Analytics/Machine-Learning

This is hpc on intel

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

2

Performance results are based on testing as of August and September 2018 and may not reflect all publicly available security updates. See
configuration disclosure for details. No product can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Xeon, Core, VTune, and the Intel logo are trademarks of Intel Corporation in the
U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

This is hpc on intel 3

The Reality of “Data Centric Computing”

Performance
Limited

• Software is slow and single-node for many organizations
• Only sample a small portion of the data

Productivity
Limited

• More performant/scalable implementations require significantly more
development & deployment skills & time

Compute
Limited

• Performance bottleneck often in compute, not storage/memory

Software Challenges:

A typical data scientist only analyzes a small portion (probably 10%) of your data that they think has the
most potential of bringing you great insights. This means you may miss out on valuable insights in the
remaining 90% — insights that may be mission-critical for your business.

This is hpc on intel 4

Productivity with Performance via Intel® Python*

Intel® Distribution for Python*

Easy, out-of-the-box access to high performance Python
• Prebuilt accelerated solutions for data analytics, numerical computing, etc.
• Drop in replacement for your existing Python. No code changes required.

Learn More: software.intel.com/distribution-for-python

mpi4py smp

This is hpc on intel 5

Intel® Distribution for Python*
https://software.intel.com/en-us/distribution-for-python

Accelerated NumPy, SciPy
Intel® MKL
Intel® C and Fortran compilers
Linear algebra, universal functions, FFT

conda create –c intel intelpython3_full
pip install intel-numpy intel-scipy intel-scikit-learn
docker pull intelpython/intelpython3_full

Accelerated Scikit-Learn
Intel® MKL
Intel® C and Fortran compilers
Intel® Data Analytics Acceleration Library (DAAL)

via NumPy/Scipy

Solutions for efficient parallelism
TBB4py
github.com/IntelPython/smp
Intel® MPI library

Python APIs for Intel® MKL functions
github.com/IntelPython/mkl_fft
github.com/IntelPython/mkl_random
github.com/IntelPython/mkl-service [*]

Python APIs for Intel® DAAL
github.com/IntelPython/daal4py

https://software.intel.com/en-us/distribution-for-python/benchmarks

Numba with upstreamed Intel contributions
Parallel Accelerator
support for SVML
support for TBB/OpenMP threading runtimes

https://software.intel.com/en-us/distribution-for-python

This is hpc on intel 6

Data Analysis and Machine Learning

Pandas
Spark
HPAT

Scikit-learn
Spark
DL-frameworks
daal4py

more nodes, more cores, more threads, wider vectors, …

Data Input
Data

Preprocessing
Model Creation Prediction

This is hpc on intel 7

scikit-learn

Accelerating Machine Learning

Intel® Data Analytics Acceleration Library
(DAAL)

Intel® Math Kernel
Library (MKL)

Intel® Threading Building
Blocks (TBB)

 Efficient memory layout
via Numeric Tables

 Blocking for optimal cache
performance

 Computation mapped to
most efficient matrix
operations (in MKL)

 Parallelization via TBB

 Vectorization

Try it out! conda install -c intel scikit-learn

This is hpc on intel 8

Close to native code scikit-learn Performance with Intel Python 2019
Compared to Stock Python packages on Intel® Xeon processors

0%

20%

40%

60%

80%

100%

1K x 15K 1K x 15K 1M x 50 1Mx50 1M x 50 1M x 50 1M x 50 1M x 50 10K x 1K 10K x 1K

cosine dist correlation dist kmeans.fit kmeans.predict linear_reg.fit linear_reg.predict ridge_reg.fit ridge_reg.predict svm.fit
(binary)

svm.predict
(binary)

P
er

fo
rm

an
ce

 E
ff

ic
ie

n
cy

 m
ea

su
re

d
 a

ga
in

st

n
at

iv
e

co
d

e
 w

it
h

 In
te

l®
 D

A
A

L

Function & Problem Size

Stock Python Intel® Distribution for Python 2019

Configuration: Stock Python: python 3.6.6 hc3d631a_0 installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip;Intel Python: Intel Distribution for Python 2019 Gold: python 3.6.5
intel_11, numpy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl_fft 1.0.2 intel_np114py36_6,mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmlite 0.24.0 intel_py36_0, scipy 1.1.0 intel_np114py36_6, scikit-
learn 0.19.1 intel_np114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16
GB@2666MHz
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Source: Intel Corporation - performance measured in Intel labs by Intel
employees. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

This is hpc on intel 9

Accelerating K-Means

https://cloudplatform.googleblog.com/2017/11/Intel-performance-libraries-and-python-distribution-enhance-performance-and-scaling-of-Intel-Xeon-Scalable-processors-
on-GCP.html

This is hpc on intel 10

Accelerating scikit-learn through daal4py

> python -m daal4py <your-scikit-learn-script>
Monkey-patch any scikit-learn

on the command-line

import daal4py.sklearn
daal4py.sklearn.patch_sklearn()

Monkey-patch any scikit-learn
programmatically

Scikit-learn with daal4py patches applied
passes scikit-learn test-suite

This is hpc on intel 11

KNeighborsClassifier
RandomForestClassifier
RandomForestRegressor

Intel® DAAL

daal4py

Scikit-Learn
Equivalents

Scikit-Learn
API

Compatible

PCA
KMeans

LinearRegression
Ridge

SVC
pairwise_distances

logistic_regression_path

This is hpc on intel 12

Scaling Machine Learning Beyond a Single Node

scikit-learn daal4py

Try it out! conda install -c intel daal4py

Simple Python API
Powers scikit-learn

Intel®
MPI

Powered by DAAL

Scalable to multiple nodes

Intel® Data Analytics Acceleration Library
(DAAL)

Intel® Math Kernel
Library (MKL)

Intel® Threading Building
Blocks (TBB)

This is hpc on intel 13

import daal4py as d4p

daal4py accepts data as CSV files, numpy arrays or pandas dataframes
here we let daal4py load process-local data from csv files
data = "kmeans_dense.csv"

Create algob object to compute initial centers
init = d4p.kmeans_init(10, method="plusPlusDense")
compute initial centers
ires = init.compute(data)
results can have multiple attributes, we need centroids
Centroids = ires.centroids
compute initial centroids & kmeans clustering
result = d4p.kmeans(10).compute(data, centroids)

K-Means using daal4py

This is hpc on intel 14

import daal4py as d4p

initialize distributed execution environment
d4p.daalinit()

daal4py accepts data as CSV files, numpy arrays or pandas dataframes
here we let daal4py load process-local data from csv files
data = "kmeans_dense_{}.csv".format(d4p.my_procid())

compute initial centroids & kmeans clustering
init = d4p.kmeans_init(10, method="plusPlusDense", distributed=True)
centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

mpirun -n 4 python ./kmeans.py

Distributed K-Means using daal4py

This is hpc on intel 15

Strong & Weak Scaling via daal4py Hardware

Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz,
EIST/Turbo on

2 sockets, 20 Cores per socket

192 GB RAM

16 nodes connected with Infiniband

Operating
System

Oracle Linux Server release 7.4

Data Type double

On a 32-node cluster (1280 cores) daal4py computed K-Means (10
clusters) of 1.12 TB of data in 107.4 seconds and 35.76 GB of data in
4.8 seconds.

On a 32-node cluster (1280 cores) daal4py computed linear
regression of 2.15 TB of data in 1.18 seconds and 68.66 GB of data
in less than 48 milliseconds.

This is hpc on intel 16

import daal4py as d4p

Configure a Linear regression training object for streaming
train_algo = d4p.linear_regression_training(interceptFlag=True, streaming=True)

assume we have a generator returning blocks of (X,y)...
rn = read_next(infile)

on which we iterate
for chunk in rn:

algo.compute(chunk.X. chunk.y)

finalize computation
result = algo.finalize()

Streaming data (linear regression) using daal4py

This is hpc on intel

Intel® DAAL Algorithms supported by daal4py
Data Transformation and Analysis
Basic statistics for

datasets

Low order
moments

Variance-
Covariance

matrix

Correlation and
dependence

Cosine distance

Correlation
distance

Matrix factorizations

SVD

QR

Cholesky

Dimensionality
reduction

PCA

Outlier detection

Association rule
mining (Apriori)

Univariate

MultivariateQuantiles

Order
statistics

Optimization solvers
(SGD, AdaGrad, lBFGS)

Math functions
(exp, log,…)

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

17

This is hpc on intel

Intel® DAAL Algorithms supported by daal4py
Machine Learning

Supervised
learning

Regression

Linear Regression

Classification

Weak
learner*

Boosting*

(Ada, Brown, Logit)

Naïve Bayes

kNN

Support Vector Machine

Unsupervised
learning

K-Means
Clustering

EM for GMM

Collaborative
filtering

Alternating
Least Squares

Ridge Regression

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

Decision Forest

Decision Tree

GradientBoosting

*Expected with DAAL® 2020

18

This is hpc on intel 19

Daal4py
• Close to native performance through Intel® DAAL

• Efficient MPI scale-out

• Streaming
Fast & Scalable

• Known usage model

• PicklableEasy to use

• Object model separating concerns

• Plugs into scikit-learn

• Plugs into HPAT
Flexible

• Open source: https://github.com/IntelPython/daal4pyOpen

https://intelpython.github.io/daal4py/

https://github.com/IntelPython/daal4py
https://intelpython.github.io/daal4py/

This is hpc on intel 20

Data Analysis and Machine Learning

Pandas
Spark
HPAT

Scikit-learn
Spark
DL-frameworks
daal4py

more nodes, more cores, more threads, wider vectors, …

Data Input
Data

Preprocessing
Model Creation Prediction

This is hpc on intel 21

Data Analytics Performance vs Productivity

Productivity

Performance

√

This is hpc on intel

High Performance Analytics Toolkit (HPAT)

Open source project by Intel Labs

https://github.com/IntelPython/hpat

Technical Preview

In beta by end of 2019

22

https://github.com/IntelPython/hpat

This is hpc on intel

High Performance Analytics Toolkit (HPAT)
Technical Preview in open source

vucomisd %xmm0, %xmm0

setnp %dl

jp .LBB0_11

vaddsd %xmm0, %xmm2, %xmm2

.LBB0_11:

vaddsd %xmm0, %xmm3, %xmm1

vcmpunordsd %xmm0, %xmm0, %xmm0

vblendvpd %xmm0, %xmm3, %xmm1,

@hpat.jit

def get_stats():

…

df[‘latency'].sum()

df[‘latency'].mean()

…

23

Decorator
@hpat.jit

Parallel/distributed
Analysis

Compile
Efficient

MPI-binary

This is hpc on intel 24

Waves of tiny tasks

Tasking Workflow HPAT Workflow

Python code Tasking API code

Tasking Runtime
Python code

Cluster/cloud

Parallel binary (MPI)

Cluster/cloud

Rewrite by programmer

Compile by HPAT

Driver

Executor 1 …

…

Rank 0 …Rank 1 Rank N-1

Driver

Executor N-1Executor 0

Long running processes

Totoni et al. “A Case Against Tiny Tasks in Iterative Analytics”, HotOS’17

This is hpc on intel

import pandas as pd
import hpat

@hpat.jit
def read_pq():

df = pd.read_parquet('cycling_dataset.pq')
...
return result

Parallel File-Read

Currently supports CSV, Parquet and HDF5

Block-parallel read parallelizes following operations

25

This is hpc on intel

import pandas as pd
import hpat

@hpat.jit
def read_pq():

df = pd.read_parquet('cycling_dataset.pq')

df = df[df.power!=0]

df['hr'] = df['hr'] * 2
…

Data Parallel Operations

Data parallel operations (like filters, operations on individual rows) require no
communication.

26

This is hpc on intel

@hpat.jit
def read_pq():

df = pd.read_parquet('cycling_dataset.pq')

result = df.hr.mean()

...

Parallel Reduction

Reductions (like mean, avg etc) are transformed to efficient MPI code as known from
HPC.

Results from reductions get replicated on all processes

27

This is hpc on intel

@hpat.jit
def read_pq():

df = pd.read_parquet('cycling_dataset.pq')

...
grp = df.groupby('hour')
mean = grp['power'].mean()

...

Parallel Groupby+Aggregation

Potentially more complex communication than simple reductions.

Result will be block distributed (potentially with variable block sizes)

28

This is hpc on intel 29

Time Series Analytics

Time series data naturally produced from many sources (video, IoT, finance, …)

• Key underlying problem: handling parallel algorithms with fine-grained communication

• HPAT maps high-level semantics to MPI asynchronous primitives

• Example: ‘window’ functions

Communication across data partitions

df.rolling('5min’, on='time')['pid'].apply(

lambda a: pd.Series(a).nunique())

This is hpc on intel

@hpat.jit
def read_pq():

df = pd.read_parquet('cycling_dataset.pq')

...
mv_av = df.hr.rolling(4).mean()

...

Parallel Rolling (Windows)
Requires neighbor communication only

30

This is hpc on intel 31

Machine Learning with daal4py

import daal4py as d4p
import daal4py.hpat
import pandas as pd

get inertia for various numbers of clusters
@hpat.jit
def find_clusters():

X = pd.read_parquet(…).values
distorsions = []
for k in range(2, 20):

kmi = d4p.kmeans_init(k)
icenters = kmi.compute(X).centroids
result = d4p.kmeans(k, 300).compute(X, icenters)
distorsions.append(result.goalFunction[0][0])

return distorsions

This is hpc on intel

HPAT’s Scope of Functionality

Operations

• Python/Numpy/Pandas basics

• Statistical operations (mean, std, var, …)

• Relational operations (filter, join, groupby)

• Custom Python functions (apply, map)

Data

• Missing values

• Time series, dates

• Strings, unicode

• Dictionaries

Interoperability
• I/O integration (CSV, Parquet, HDF5)

• Daal4py

Extend Numba to support

32

This is hpc on intel 33

HPAT Limitation: type stability

Input code to HPAT should be statically compilable (type stable)

• Dynamically typed code examples (rare in analytics):

Untypable variable: Unresolvable function: Nonstatic dataframe schema:

if flag1:

a = 2

else:

a = np.ones(n)

if isinstance(a, np.ndarray):

doWork(a)

if flag2:

f = np.zeros

else:

f = np.ones

b = f(m)

if flag2:

df = pd.DataFrame({‘A’: [1,2,3]})

else:

df = pd.DataFrame({‘A’: ['a', ‘b'. ‘c']})

b = f(m)

This is hpc on intel 34

Pandas Example (data parallel)

@hpat.jit

def func():

table = pd.read_parquet('data.parquet')

data = table[table[‘A’].str.contains(‘ABC*', regex=True)]

stats = data[‘B'].describe()

print(stats)

Mean, std, min, max, 25/50/75% quantiles, count

115x speedup
on 4 nodes*

*100M samples, 2U Intel(R) Xeon(R) Platinum 8180 nodes

$ mpirun -n 112 python ./process_times.py

This is hpc on intel 35

Pandas Example (loop parallel)
@hpat.jit(locals={'s_open': hpat.float64[:], …})

def intraday_mean_revert():

f = h5py.File("stock_data.hdf5", "r"); …

for i in prange(nsyms):

symbol = sym_list[i]

s_open = f[symbol+'/Open'][:]; …

df = pd.DataFrame({'Open': s_open, …})

df['Stdev'] = df['Close'].rolling(window=90).std()

df['Moving Average'] = df['Close'].rolling(window=20).mean()

df['Criteria1'] = (df['Open'] - df['Low'].shift(1)) < -df['Stdev']

df['Criteria2'] = df['Open'] > df['Moving Average']

df['BUY'] = df['Criteria1'] & df['Criteria2']

df['Pct Change'] = (df['Close'] - df['Open']) / df['Open']

df['Rets'] = df['Pct Change'][df['BUY'] == True]

n_days = len(df['Rets'])

res = np.zeros(max_num_days)

if n_days:

res[-n_days:] = df['Rets'].fillna(0)

all_res += res

100x speedup on 36
cores

Explicit loop parallelism

Intel Xeon E5-2699 v3 nodes

This is hpc on intel 36

Early Results

Challenge: scale to massive time
series data which need

“window” computation.

Requires fine-grained comms
not available in in Spark

Financial Exchange Autonomous Cars Finance ISV Telco

Challenge: Ability to track
several transaction statistics in

real time

Challenge: User-defined compute
kernels in Python

Spark can’t improve user-defined
code & infrastructure too

complex for the target
environment

97,5

13,13
(7.4x)

0,63
(155x) 0,27

(361x)

0,1

1

10

100

Python (1 core) HPAT (1 core) HPAT (1 node,
36 cores)

HPAT (4 nodes,
144 cores)

640,1

6,44
(99x)

0,121
(5300x)

0,045
(14200x)

0,01

0,1

1

10

100

1000

Python HPAT (1 core) HPAT (1 node,
56 cores)

HPAT (4
nodes, 224

cores)

64,9
26,6

(2.5x)

1,84
(35x)

0,1

1

10

100

Python (1 core) HPAT (1 core) HPAT (56 cores)

Ex
ec

u
ti

o
n

 t
im

e
(s

)

689

422

217

109

0

100

200

300

400

500

600

700

800

1 (56) 2 (112) 4 (224) 8 (448)

Nodes (cores)

Challenge: user-defined functions
for manipulating complex

date/time data structures, not
available in Spark

Intel(R) Xeon(R) Platinum 8180 nodes Intel(R) Xeon(R) Platinum 8180 nodes Intel(R) Xeon(R) Platinum 8180 nodesIntel Xeon E5-2699 v3 nodes

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components,

software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the

performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Source: Intel Corporation - performance measured in Intel labs by Intel employees. Optimization Notice: Intel’s

compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel

does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain

optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice

revision #20110804.

This is hpc on intel 37

$ mpirun -n 4 python ./process_times.py

Accelerating Pandas using HPAT

import pandas as pd
import hpat

@hpat.jit
def process_times():

df = pq.read_table(‘data.parquet’).to_pandas();
df[‘event_time’] = pd.DatetimeIndex(df[‘event_time’])
df[‘hr’] = df.event_time.map(lambda x: x.hour)
df[‘minute’] = df.event_time.map(lambda x: x.minute)
df[‘second’] = df.event_time.map(lambda x: x.second)
df[‘minute_day’] = df.apply(lambda row: row.hr*60 + row.minute, axis = 1)
df[‘event_date’] = df.event_time.map(lambda x: x.date())
df[‘indicator_cleaned’] = df.indicator.map(lambda x: -1 if x == ‘na’ else int(x))

This is hpc on intel 38

HPAT’s Scope of Functionalities (Technical Preview)

Operations

• Python/Numpy basics

• Statistical operations (mean, std, var, …)

• Relational operations (filter, join, groupby)

• Custom Python functions (apply, map)

Data

• Missing values

• Time series, dates

• Strings, unicode

• Dictionaries

• Pandas

Interoperability
• I/O integration (CSV, Parquet, HDF5, Xenon)

• Daal4py integration

Now in numba

This is hpc on intel 39

Scalable Python Solutions in Incubation

HPAT daal4py

• Statically compiles analytics code to binary

• Simply annotate with @hpat.jit

• Built on Anaconda Numba compiler

Drop-in acceleration of Python analytics
(Pandas, Numpy & select custom Python)

Ease-of-use of scikit-learn
+ Performance of DAAL

Automatically scales to multi-node with MPI

• High-level Python API for DAAL

• 10x fewer LOC wrt DAAL for single node,

100x fewer LOC wrt DAAL for multi-node

https://github.com/IntelPython/hpat https://intelpython.github.io/daal4py

This is hpc on intel 40

Questions?

Intel® Distribution for Python*
https://anaconda.org/intel
https://software.intel.com/en-us/distribution-for-python
https://intelpython.github.io/daal4py
https://github.com/IntelPython/hpat

Tutorial: https://github.com/IntelPython/hpat/tree/tut2/tutorial

Docker container: intelpython/hpattut-test:cern

https://software.intel.com/en-us/distribution-for-python
https://github.com/IntelPython/hpat/tree/tut2/tutorial

This is hpc on intel 41

Performance of Python

Python Interpreter
GIL

C

100x-1000x performance gap

Optimizing compiler
OpenMP*/TBB/pthreads

This is hpc on intel

Performance of Python

4
2

Python + Numba*

C

LLVM-based compiler
Multiple threading runtimes

Optimizing compiler
OpenMP*/TBB/pthreads

Small %% performance gap

https://www.anaconda.com/blog/developer-blog/parallel-python-with-numba-and-parallelaccelerator/

http://numba.pydata.org/

This is hpc on intel 43

High Performance Python

Python

C

more nodes,
more cores,
more threads,
wider vectors, …

Intel® Performance Libraries

(generations of processors)

Libraries Thin layer in Python or Cython

Native highly optimized libraries
(Intel MKL, Intel DAAL, Intel IPP)

This is hpc on intel 44

Close to native code Umath Performance with Intel Python 2019
Compared to Stock Python packages on Intel® Xeon processors

0%

20%

40%

60%

80%

100%

array*array array*scalar array+array array+scalar array-array array-scalar erf exp invsqrt log10

Problem Size = 2.5M

P
er

fo
rm

an
ce

 E
ff

ic
ie

n
cy

 m
ea

su
re

d
 a

ga
in

st
 n

at
iv

e
co

d
e

w
it

h
 In

te
l®

 M
K

L

Stock Python Intel® Distribution for Python 2019

Configuration: Stock Python: python 3.6.6 hc3d631a_0 installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip;Intel Python: Intel Distribution for Python 2019 Gold: python 3.6.5
intel_11, numpy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl_fft 1.0.2 intel_np114py36_6,mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmlite 0.24.0 intel_py36_0, scipy 1.1.0 intel_np114py36_6, scikit-
learn 0.19.1 intel_np114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16
GB@2666MHz
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Source: Intel Corporation - performance measured in Intel labs by Intel
employees. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

87%
native efficiency on a

full Black-Scholes code
with Intel numpy + numba.

This is hpc on intel 45

Software Architecture

ParallelAccelerator

HPAT

Numba

LLVM

Distributed-memory parallelism, Data I/O, Data frames

Loop parallelism (Numpy, explicit), shared-memory

Compile sequential Python/Numpy

Binary code generation

Now in
Numba

MPI parallel runtime

