
Mixed-Language Programming 
with Fortran and Data Parallel 
C++

Christoph Bauinger (Technical Consulting Engineer Intern)

James Tullos (Technical Consulting Engineer)



2

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.

Your costs and results may vary.

Intel does not control or audit third -party data. You should consult other sources to evaluate accuracy.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. 
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any 
optimization on microprocessors not manufactured by Intel. Microprocessor -dependent optimizations in this product are intended f or use with Intel microprocessors. Certain 
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more 
information regarding the specific instruction sets covered by this notice. Notice Revision #20110804. https://software.intel.com/en -us/articles/optimization -notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmarkand MobileMark, are measured using specific computer systems, components, software, operations and functions.Any change to any of 
those factors may cause the results to vary.You should consult other information and performance tests to assist you in fully e valuating your contemplated purchases, 
including the performance of that product when combined with other products. See backup for configuration details. For more c omplete information about performance and 
benchmark results, visit www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.See configuration disclosure for details. No 
product or component can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, 
as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property 
of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks


3

Goals

ÁOffload computationally intensive tasks in existing Fortran code 

using DPC++

ÁUse as much of the existing Fortran code as possible and use DPC++ 

only for offload

ÁMinimize changes to the code

ÁEstablish BKMs, patterns and designs useful for DPC++ code 

migration

ÁQuantify and compare performance (DPC++, OMP)



4

Code Analysis ÝThe Driver

Driver Ýin Fortran

Bottleneck ĄOffload

Kernel Parameters: 2- and 3-
dimensional arrays



5

Code Analysis ÝKernel c_sw

ÁKernel consists of function calls 
and nested loops

Á~800 lines of c_swkernel 
Fortran code

Piece of the kernel code



6

Code Flow Chart

Serial

Driver c_sw
calls

đĮĮįĲ ĥĮı Ī À ;# , # npz

Loop1 Loop2 Loop3



7

Code Flow Chart

OMP parallel

Driver

c_sw, k=1

c_sw, k=2

c_sw, k=npz-1

c_sw, k=npz

c_sw, k=é

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3



8

Possible Offload - ĆįįıĮĠĢħ ŒđĮĮįœ

OMP parallel
Driver

c_sw, k=1

c_sw, k=npz

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Fortran DPC++ Host DPC++ Device/Host



9

Possible Offload - ĆįįıĮĠĢħ ŒĔĴĳĤıœ

Driver

c_sw, k=1

c_sw, k=2

c_sw, k=npz-1

c_sw, k=npz

c_sw, k=é

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

c_sw_dpcpp

Fortran DPC++ Host DPC++ Device



10

Design Challenges
ÁNon-zero start of Fortran arrays

ÁNon-zero start of loops

ÁFortran column-major vs C++row-
major

ÁAccess operator in Fortran differs from 
C++

ÁNo memory allocations in device code

ÁMany arrays as parameters

ÁSolution: Two step migration to C++ 
Ġĭģ ĳħĤĭ ĉĕĈ½½# ĴĲĤ ĆįįıĮĠĢħ ŒĔĴĳĤıœ



11

Design Challenges
ÁNon-zero start of Fortran arrays

ÁNon-zero start of loops

ÁFortran column-major vs C++ row-
major

ÁAccess operator in Fortran differs from 
C++

ÁNo memory allocations in device code

ÁMany arrays as parameters

ÁSolution: Two step migration to C++ 
Ġĭģ ĳħĤĭ ĉĕĈ½½# ĴĲĤ ĆįįıĮĠĢħ ŒĔĴĳĤıœ

c_sw code



12

Design Challenges
ÁNon-zero start of Fortran arrays

ÁNon-zero start of loops

ÁFortran column-major vs C++ row-
major

ÁAccess operator in Fortran differs from 
C++

ÁNo memory allocations in device code

ÁMany arrays as parameters

ÁSolution: Two step migration to C++ 
Ġĭģ ĳħĤĭ ĉĕĈ½½# ĴĲĤ ĆįįıĮĠĢħ ŒĔĴĳĤıœ



13

Design Challenges
ÁNon-zero start of Fortran arrays

ÁNon-zero start of loops

ÁFortran column-major vs C++ row-
major

ÁAccess operator in Fortran differs from 
C++

ÁNo memory allocations in device code

ÁMany arrays as parameters

ÁSolution: Two step migration to C++ 
Ġĭģ ĳħĤĭ ĉĕĈ½½# ĴĲĤ ĆįįıĮĠĢħ ŒĔĴĳĤıœ



14

Design Challenges
ÁNon-zero start of Fortran arrays

ÁNon-zero start of loops

ÁFortran column-major vs C++ row-
major

ÁAccess operator in Fortran differs from 
C++

ÁNo memory allocations in device code

ÁMany arrays as parameters

ÁSolution: Two step migration to C++ 
Ġĭģ ĳħĤĭ ĉĕĈ½½# ĴĲĤ ĆįįıĮĠĢħ ŒĔĴĳĤıœ



15

Design Challenges
ÁNon-zero start of Fortran arrays

ÁNon-zero start of loops

ÁFortran column-major vs C++row-
major

ÁAccess operator in Fortran differs from 
C++

ÁNo memory allocations in device code

ÁMany arrays as parameters

ÁSolution: Two step migration to C++ 
Ġĭģ ĳħĤĭ ĉĕĈ½½# ĴĲĤ ĆįįıĮĠĢħ ŒĔĴĳĤıœ



16

Design Challenges
ÁNon-zero start of Fortran arrays

ÁNon-zero start of loops

ÁFortran column-major vs C++row-
major

ÁAccess operator in Fortran differs from 
C++

ÁNo memory allocations in device code

ÁMany arrays as parameters

ÁSolution: Two step migration to C++ 
Ġĭģ ĳħĤĭ ĉĕĈ½½# ĴĲĤ ĆįįıĮĠĢħ ŒĔĴĳĤıœ

Fortran

C++

DPC++



17

Challenges Fortran - C++

ÁMain Issue: Array Indexing

ÅUnit stride is inner index in Fortran vs outer in C++

ÅNon-zero indexing in Fortran possible (and used in code)

ÁSolution: Class OffsetArray (1D, 2D, 3D) wrapping 
dynamic array emulating Fortran style arrays (see 
Figure)



18

Fortran - C++ Code Comparison

Fortran C++



19

Challenges C++ - DPC++

ÁMain Issues:

ÅOffsetArray class cannot be used in device code (as it is)

ÅDPC++ parallel_for ĨĭģĨĢĤĲ ĲĳĠıĳ Ġĳ : ßŒīĮĮį ĨĭģĤķĨĭĦ ĲĳĠıĳĨĭĦ Ġĳ :œà

ÁSolutions:

ÅNaively: Simple offsets based on loop and array start index

ÅBetter: Adjusting the OffsetArrayĢīĠĲĲ Ġĭģ ĴĲĤ ĆįįıĮĠĢħ ŒĔĴĳĤıœ



20

C++ - DPC++ Code Comparison: Naively

C++ DPC++

Offsets due to array and loop

For loop range

DPC++ Accessors



21

C++ - DPC++ Code Comparison: Naively

ÁTedious migration

ÁHard-to-read code

ÁNeed to rewrite everything 
carefully 

ÁDebugging is a horror

ÁċĮĢĴĲ Įĭ ĆįįıĮĠĢħ ŒĔĴĳĤıœ


