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Why do we need ray tracing in scientific visualization?

Without Ray Tracing With Ray Tracing

Earth Interior (Kronos Group 2020)



Ray-tracing for engineering problems

Courtesy of Satori Tsuzuki Dreamworks


https://docs.google.com/file/d/1lcvZtCcm9bWopCV3lAqhz1lMowJ33go7/preview
https://docs.google.com/file/d/11n46xdQJDStXZ71izAX_Kh1KIcZteLf_/preview

Ray Tracing in ParaView (Intel OSPray-enabled): Concrete Flows
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Ray Tracing in ParaView (Intel OSPray-enabled): Concrete Flow
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In situ visualization
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Challenges in visualization

Viz is sequential: Input/BCs -> Simulation -> Post-hoc viz

- 1/0 is the bottleneck - Terabytes of data

- Visualization at arbitrary discrete time steps (loss of useful data)
- No live visualization / feedback

- Shared visualization is difficult

- Distributed Viz is challenging and often chunked



Material Point Method for large-deformation modeling
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TACC Galaxy: Asynchronous ray tracing powered by OSPRay and Embree
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In-situ viz: Workflow integration
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HPC Distributed Simulations: Domain Decomposition
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TACC Galaxy: Asynchronous Ray Tracing
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Galaxy in situ rendering of the Oso Landslide

(a) runout after 50 s (b) runout after 74 s

Fig. 5: In situ rendering of MPM simulation with Galaxy. The color gradient shows the amount of particle displacements from
their original position.




ML prediction of granular flows

Reality GNS
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How does it work?

Learned simulator,pw = 5
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https://github.com/geoelements/gns

GNS predictions in 3D

Reality GNS

2.5 hours runtime 20s
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GNS prediction of granular flows with obstacles
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A machine learning oracle for in situ viz
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https://docs.google.com/file/d/1xyxIgzs6Vu-xUZSmoLMxWiAqiGC71Spq/preview

Galaxy + MPM:

In situ workload
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Figure 5: Graph of time for each in situ step. The breakdown shows
the time spent for: Galaxy receiving data, setting up for rendering,

and the rendering time for 15k particles simulation.



LLMs and

Differentiable Digital Twins
Rendering




Simulating sensors

- LIDAR data (point clouds are easier to aggregate together to construct a single
scene from multiple sensors).

- We can simulate different camera angles and camera settings and
environmental conditions




Raytracing simulation of sensors
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Ray tracing for multi-modal sensing - Effect of lighting conditions
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YOLO v7 fails to detect objects in adverse weather conds

Obstacle Example Lower light >

& SN0y JaMOoT

SoTA CNN object detection fails in adverse weather
conditions

29



Object detection in different socio-economic backgrounds

Upscale neighborhood Low-income neighborhood
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Constructing a Digital Twin

What if | want to tell the drone to go explore the construction site?

"FFind the red ladder in the
construction site”

"Explore the inside of the structure”

"Complete a loop around the perimeter
of the construction site and build a N st -
3D digital model” Observer View= 1+ =

r i) e
. Action —— Observation ‘>{ Thought H Final Answer{\

’ ~ LLM Agent Workflow 7 ) 31



How does GPT work?

The geotechnical engineer discovered that the site with dry collapsible soil in arid Arizona

was = 76.71%

is =6.40%
has = 5.28%
had = 5.00%

was m suitable for construction

not = 24.05%

contained = 2.67%

unstable = 10.56%
highly = 8.36%
composed = 7.48%

too = 6.89%

suitable = 84.58%

stable = 7.63%
well = 1.05%
very = 0.98%

able = 0.79%

for = 99.59%

to =0.4%
as = 0.00%

foundation = 0.00%

enough = 0.00%

construction = 71.2%

project = 9.70%
building = 6.23%

structure = 5.3%

develop = 3.94%

(a) temperature =0
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How does GPT become creative?

The geotechnical engineer discovered that the site with dry collapsible soil in arid Arizona

was " highly EEITTEED) m
was = 77.67% not = 23.92% compress = 31.96 % with = 53.4 % water = 77.03%

is =6.40% unstable = 10.58% saturated = 22.10 % and =31.39 % groundwater = 17%
has = 5.10% unstable = 12.32 % <end> = 14.46% moisture = 4.36%
had = 4.88% compose = 7.48% perme = 9.56 % , =0.43% ground = 0.63 %
contained = 2.63% too = 6.93% compact = 6.22 % due = 0.14% clay =0.19 %

(b) temperature = 1
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LLM Agents

e LLMis framed as the decision maker (agent) given some parameters

O

Planning: agent breaks down large tasks into smaller subtasks, can also
refine tasks as it observes issues

Memory: agent recalls previous information to make better decisions

Tool use: agent can be given access and information about external
tools



LLM Agent Example - Calculator (No Agent)

+! GPT-4

what is (4.5¥21)%2.2?

Let's break down the calculation step by step:
First, multiply 4.5 and 2.1:
45x21=945
Next, raise the result to the power of 2.2:
9.45%2

To compute this, it's a bit more complex and requires more precision than manual
calculations would typically allow. Most would use a calculator or software to determine this

value. Let's estimate the value:
Using a calculator, 9.45%2 = 104.3123 (rounded to four decimal places).

So, (4.5 x 2.1)%? is approximately 104.3123.




LLM Agent Example - Calculator (Agent

from langchain import OpenAT

11m = OpenAI(
LLM openai_api_key="0PENAI_API_KEY',
‘3ﬁ,",.'ﬂfo';;‘," ::::if::::ff:;,t_mim_m. [1m> Entering new AgentExecutor chain... [Om
) [32;1m [1;3m I need to calculate this expression

Action: Calculator
Action Input: (4.5%2.1)"2.2 [Om

Observation: [36;1m [1;3mAnswer: 139.94261298333066

[Om
zero_shot_agent("what is (4.5%2.1)%2.27") LLM Agent Thought: [32;1m [1;3m I now know the final answer
Final Answer: 139.94261298333066 [Om

from langchain.agents import initialize agent

zero_shot_agent = initialize_agent( [1m> Finished chain. [Om
T agent="zero-shot-react-description”,
tools=tools,
1lm=11m,
verbose=True,
LLM Math Chain max_iterations=3 ('input’': ‘what is (4.5%2.1)%2.27', ‘output': '139.94261298333066"'})
)
Math Tool
(Calculator)
from langchain.chains import LLMMathChain ‘@‘

from langchain.agents import Tool
11m_math = LLMMathChain(1lm=11m)

# initialize the math tool
math_tool = Tool(
name='Calculator’',
func=11m_math.rcun,
description='Useful for when you need to answer questions about math.'
!
# when giving tools to LLM, we must pass as list of tools
tools = [math_tool]




Autonomous System Experiments

e Simulated experiments using 3D computer graphics scene
o Using Mitsuba 3: computer graphics library that simulates light realistically

e 3D construction scene for experimentation, this will simulate the complex
environment




Autonomous Drone Exploration

e Features/requirements of Autonomous System:
o Vision System - understand 2D
o LiDAR System - understand 3D
o Localization & Mapping - understand location and world
o Motion Planning - decide where to move

o Interface with humans to take new directions (LLM Agent)



Vision System

e Render images from the drone camera view at fixed intervals
e This generates live video view when enough intervals are rendered

e Movement of camera view / drone object provides exploration capabilities

Image

Camera 8 Light Source

SISt Ht Shadow Ray

Scene Object




LIDAR System

e Simulate LiDAR data through rendering process

e Rendering our scene from a specific camera location
allows us to record all the intersections of light
vectors (ray tracing) sent out from the camera
location with objects in the scene on first hit

e Remove roughly 90% of the points for computational
efficiency




Localization & Mapping: PlaneSLAM

e 3D LiDAR SLAM algorithm which extracts planar features from point clouds to
achieve lightweight, real-time localization and mapping

- —————————

: i %Y Previous
Font ™ Meshing : planes Map [ t—
cloud | )
| 4 ! l Aligned l
| i Planes planes
| Clustering | | » Registration »  Merging
! 1
| " E Transformation and
. | Extraction b=t pose estimate
y !

Pose graph p=——=b! Trajectory estimate




Motion Planning: Rapidly exploring random tree (RRT)

e RRT is an algorithm designed to efficiently search nonconvex,
high-dimensional spaces by randomly building a space-filling tree

Raw Point Cloud (Generated Point Cloud converted to RRT Algorithm generates
from Drone location) Lightweight Plane Objects random paths from starting
point to destination

Final path is chosen



PlaneSLAM & Motion Planning Integration

e As we can see, the localization and mapping works with motion
planning and execution, but how can we expose this system to a user
in an intuitive way?

o Both the starting location and the target location were given to RRT

(. Y, 2)
o One solution is to utilize the vision system



Vision System & Grounding DINO

e As auser interacting with an autonomous system, | want an easy way to tell
the drone where to go and what to do

e Grounding DINO

o Object detection model

o Combined model that has deep
understanding of text and visual content and can relate the two

o Grounding DINO excels at detecting objects even when they are not part of the predefined
set of classes in the training data

o Referring Expression Comprehension (REC) - Identifying and localizing a specific object
or region within an image is possible by giving a textual description

Image

Annotated Image

W Grounding DINO

Text Prompt




Grounding DINO

"red box above the door”



Grounding DINO

"wine glass on the far left”



Grounding DINO Prompt Engineering
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"man with sunglasses”

"man with sunglasses in blue shirt”




2D to 3D: Make-It-3D

e We can use Grounding DINO to establish object locations within an
image in 2D, however, we need to find the 3D location with respect to
the current location

e Solution:
o Use Make-It-3D to convert
image toa 3D meshtodo a
similarity search



https://docs.google.com/file/d/1EnQDbm3mREPigvK_LV-v48KREyAJ2sNz/preview
https://docs.google.com/file/d/1EnQDbm3mREPigvK_LV-v48KREyAJ2sNz/preview

2D to 3D: Similarity Search

e We can use DBSCAN to perform clustering on generated LiDAR and then create bounding
boxes around the unique clusters

e Then, we can do similarity comparison between our target object and the
established bounding boxes
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Differentiable rendering using mesh rendering
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Differentiable rendering with raytracing depth and texture (3D bounding box)

Parameter error plot
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Two-stage loss: Image + Distance
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ent Autonomous

Drone System Architecture

LLM
(OpenAl's gpt-3.5-
turbo-0613)
”"Move to the red ladder on the right” } > LLM Agent
LLM Agent Chain
A
2D Object P o
Detection Tool Motion Planning‘ SLAM Tool 3D Clustering ssZaerg:l':'i;:!I, 2D to 3D Tool
(Grounding Tool (RRT) (PlaneSLAM) Tool (DBScan) (TBD) (Make-It-3D)
DINO)
Vision System LiDAR System

>  Video (GIF)

> Entering new AgentExecutor chain...

PYTHON LOG:
PYTHON LOG:

Observation:
Thought:

PYTHON LOG:
Bbox of the
PYTHON LOG:

Observation:
Thought:

PYTHON LOG:

Observation:
Thought:

Scan object
PYTHON LOG:
PYTHON LOG:
335, 507, 5

Observation:
Thought:

Running object detection on image using Grounding DINO model...
Red Ladder Detected!

Computing 3D location from 2D bounding box and other data...
object
3D Location of Red Ladder Detected!

Finding planes through Lidar...

Found target!
The path is: [e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
99, 628, 748, 1094, 1897, 1419, 1626, 1654, 1664, 2237, 2548, 2636, 2673, 2774,



LLM Agent Autonomous Drone System Demo
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Controlling Robots/Drones with LLMs



https://docs.google.com/file/d/1r0DjSUA1BPAc4YNDUMcwxL_uNFqlN9zf/preview
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