Real-time in situ visualization
& automated digital twin construction

Krishna Kumar, The University of Texas at Austin

Paul Navratil, Andrew Solis, Greg Abrams, Sean McLean
IXPUG: Intel eXtreme Performance Users Group, April 2024 1

Why do we need ray tracing in scientific visualization?

Without Ray Tracing With Ray Tracing

Earth Interior (Kronos Group 2020)

Ray-tracing for engineering problems

Courtesy of Satori Tsuzuki Dreamworks

https://docs.google.com/file/d/1lcvZtCcm9bWopCV3lAqhz1lMowJ33go7/preview
https://docs.google.com/file/d/11n46xdQJDStXZ71izAX_Kh1KIcZteLf_/preview

Ray Tracing in ParaView (Intel OSPray-enabled): Concrete Flows

Before flow
commences

Concrete

Without Ray Tracing With Ray Tracing 4

Ray Tracing in ParaView (Intel OSPray-enabled): Concrete Flow

Injection plane

Before Flow After Flow

600 mm

) Bentonite

A o
Pipe Batch Batch 19

O Batchop

Without ray tracing

In situ visualization

— _Vp+ uViv Simulation . y
£ Dr P+ HV'Y code ParaView

Dv 24
—=-Vp+ uvV*vy In situ viz
P ” PTH |

Challenges in visualization

Viz is sequential: Input/BCs -> Simulation -> Post-hoc viz

- 1/0 is the bottleneck - Terabytes of data

- Visualization at arbitrary discrete time steps (loss of useful data)
- No live visualization / feedback

- Shared visualization is difficult

- Distributed Viz is challenging and often chunked

Material Point Method for large-deformation modeling

Initiation zone

Elevation (m)

o 100 200 300 400 500

0N

TACC Galaxy: Asynchronous ray tracing powered by OSPRay and Embree

RayList Queue

CheckMPI
[I I X

Asynchronous Task
Queve

[oemta T

i generate

secondaries
‘ ‘ + Outgoing Task
Queue

Checkoutgoing fe——(TTT_ Asynchronous

Task Queue
e — | | |
—TIm Task:Action [~ —_T11] Ray Sorter |

Outgoing Task
|-+ Queue

MPI Seralize| | 0 AR
: Outgoing Task
Queue

MPI 4t Cnl'eﬂi:::;tion

= Intel OSPRa

—— Work Thread(s) RayList Processing Thread(s) y
MPI Thread
. . . .
General MPI communications A ;ier_selnral :IITPI T(ammunimions : :’;\:‘;':::J:‘:vs Appllcatlon (e.g., ParaVleW, VlSIt)
- b Serialized Tasks
(A) sy Seridlized Tasks (B) 5 TaskObjects Q) = Teminatedrays

TaskObjects e » optional =% Locally continuing rays
++b RayList objects to neighbors

veevrnup Synchronous task objects = PixelList objects going :
! ' Intel® OpenlmageDenoise

Abrams et al (2018)

Intel® OSPRay
OpenGL, Mesa, etc. ISPC Device MPI Distributed Device

Intel® Embree Intel® OpenVKL

L
2y
| -
)
)
©
=
O
c
©
>
©
ad
ol
op)
@)
[o!
)
=

In-situ viz: Workflow integration

[’]v| Doughnut texture|

Linear

c 0.101
Flat o
Repeat
Subsurface Color
Single Image
Metallic
Specular
Roughneéss:

Sheen Tint
CE —
Clearcoat Roughness

Midlevel 0.500
0.003
Normal
Detail 40.000
Distortion 0.000
3D
Vector
Scale 1000.000
Detail 2.000
Distortion 1.000

HPC Distributed Simulations: Domain Decomposition

Master Cpu

Node Sl
1 (I e
L Eam) (=)
/
)

MPI rank (i)
o0 [N J

Some points moved
R R X

|
X) S

paidod ysaw ajoym

Original

Active nodes

LIS S)

- theoretical ® measured (s)

10000
5000

TACC Frontera
Intel 8280 “Cascade Lake”

1000

a1
o
o

=
o
o

Time for 1000 steps (s)

a
o

10 14

10 50 100 500 1000 5000 10000
of cores

TACC Galaxy: Asynchronous Ray Tracing

® HPﬂ 'Qﬂko Hﬂca“ I
% MPM ~vandc \ PM:M ' 6"*’*"‘3

x MPAATe% L poaticles I Muw\\"i

L - . e e el e

Galaxy in situ rendering of the Oso Landslide

(a) runout after 50 s (b) runout after 74 s

Fig. 5: In situ rendering of MPM simulation with Galaxy. The color gradient shows the amount of particle displacements from
their original position.

ML prediction of granular flows

Reality GNS

17

How does it work?

Learned simulator,pw = 5
— Moe -
) oo . B o
Encoder Decoder
X —> —> G > GAT, |—> Gl Gi_t—> GAT; > Gy —> —> Y
construct graph message passing predict dynamics
U;] . .,0 i+1 0 .

9 v x; J:”/\fc‘é‘! or”?cfcl . :;kil J ‘ ®©eo Ui
0% TTgpY got = gt I T e,
22 9 o Y e Y Po 9 ?‘\) g 90 ®

3 k 3 9 9

https://qithub.com/geoelements/ans

18

https://github.com/geoelements/gns

GNS predictions in 3D

Reality GNS

2.5 hours runtime 20s
19

GNS prediction of granular flows with obstacles

Reality GNS

. .
------#--- e
- -

20

A machine learning oracle for in situ viz

(T N

trained GNS

J
&
® Nt

& o %

O YU
_ 4

GNS

GNS

predicted dynamics

ParaView

»

o o o
N WS

2
el
muvth‘

o

=
0 OLOT RS
o™

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Predict dynamics

(™
m
L %

identify camera

configurations

Camera Parameter

Position -0.265534 0.899308

Focal Point 0.623336 0.272564
ViewUp 0.118639 0.944842
View Angle 30.00 C EyeAngle

Focal Disk ~ 1.00

S o
\ Load Save j

Predetermine
visualization parameters

MPM

Galaxy

In Situ rendering

0.010
0.008
09 || 0.006
0.8
0.7
06 0.004
05 | ;
04 i
03 | I 0.5
0.2 i ae 0.002
0.1 a8
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.000

In-situ visualization

(s/w) Aaojap

21

https://docs.google.com/file/d/1xyxIgzs6Vu-xUZSmoLMxWiAqiGC71Spq/preview

Galaxy + MPM:

In situ workload

'10_12 | |
15 T I s
Z 10t .
Q
E
[
S_. -}
oLUBL BEU EBU SEL BEU EEU WEG
1 | 1]

|
run0 runO_-1 runl run2 run3 rund4 runS

[0 Receive 1 0 Setup [1 0 Render

Figure 5: Graph of time for each in situ step. The breakdown shows
the time spent for: Galaxy receiving data, setting up for rendering,

and the rendering time for 15k particles simulation.

LLMs and

Differentiable Digital Twins
Rendering

Simulating sensors

- LIDAR data (point clouds are easier to aggregate together to construct a single
scene from multiple sensors).

- We can simulate different camera angles and camera settings and
environmental conditions

Raytracing simulation of sensors

Obstacle Example Lower light 2>

—
[e]
3
o
=
<3
[}
C
(%]

Ray tracing for multi-modal sensing - Effect of lighting conditions

= chmr 0.478
Jchulr 0.65i8
chair
= 3-9 | motorcycle 0.94
E ~ ‘q ol

chair 0.30
e Rair 059

°
w

i g

A

° “;;i-ﬁ!

A

=
.m =

'r’ ‘pottg_d_p on; 0.44

[
potted plant 0. agtted plont

0. 85%-

air 0.74

YOLO v7 fails to detect objects in adverse weather conds

Obstacle Example Lower light >

& SN0y JaMOoT

SoTA CNN object detection fails in adverse weather
conditions

29

Object detection in different socio-economic backgrounds

Upscale neighborhood Low-income neighborhood

30

Constructing a Digital Twin

What if | want to tell the drone to go explore the construction site?

"FFind the red ladder in the
construction site”

"Explore the inside of the structure”

"Complete a loop around the perimeter
of the construction site and build a N st -
3D digital model” Observer View= 1+ =

r i) e
. Action —— Observation ‘>{ Thought H Final Answer{\

’ ~ LLM Agent Workflow 7) 31

How does GPT work?

The geotechnical engineer discovered that the site with dry collapsible soil in arid Arizona

was = 76.71%

is =6.40%
has = 5.28%
had = 5.00%

was m suitable for construction

not = 24.05%

contained = 2.67%

unstable = 10.56%
highly = 8.36%
composed = 7.48%

too = 6.89%

suitable = 84.58%

stable = 7.63%
well = 1.05%
very = 0.98%

able = 0.79%

for = 99.59%

to =0.4%
as = 0.00%

foundation = 0.00%

enough = 0.00%

construction = 71.2%

project = 9.70%
building = 6.23%

structure = 5.3%

develop = 3.94%

(a) temperature =0

32

How does GPT become creative?

The geotechnical engineer discovered that the site with dry collapsible soil in arid Arizona

was " highly EEITTEED) m
was = 77.67% not = 23.92% compress = 31.96 % with = 53.4 % water = 77.03%

is =6.40% unstable = 10.58% saturated = 22.10 % and =31.39 % groundwater = 17%
has = 5.10% unstable = 12.32 % <end> = 14.46% moisture = 4.36%
had = 4.88% compose = 7.48% perme = 9.56 % , =0.43% ground = 0.63 %
contained = 2.63% too = 6.93% compact = 6.22 % due = 0.14% clay =0.19 %

(b) temperature = 1

33

LLM Agents

e LLMis framed as the decision maker (agent) given some parameters

O

Planning: agent breaks down large tasks into smaller subtasks, can also
refine tasks as it observes issues

Memory: agent recalls previous information to make better decisions

Tool use: agent can be given access and information about external
tools

LLM Agent Example - Calculator (No Agent)

+! GPT-4

what is (4.5¥21)%2.2?

Let's break down the calculation step by step:
First, multiply 4.5 and 2.1:
45x21=945
Next, raise the result to the power of 2.2:
9.45%2

To compute this, it's a bit more complex and requires more precision than manual
calculations would typically allow. Most would use a calculator or software to determine this

value. Let's estimate the value:
Using a calculator, 9.45%2 = 104.3123 (rounded to four decimal places).

So, (4.5 x 2.1)%? is approximately 104.3123.

LLM Agent Example - Calculator (Agent

from langchain import OpenAT

11m = OpenAI(
LLM openai_api_key="0PENAI_API_KEY',
‘3ﬁ,",.'ﬂfo';;‘," ::::if::::ff:;,t_mim_m. [1m> Entering new AgentExecutor chain... [Om
) [32;1m [1;3m I need to calculate this expression

Action: Calculator
Action Input: (4.5%2.1)"2.2 [Om

Observation: [36;1m [1;3mAnswer: 139.94261298333066

[Om
zero_shot_agent("what is (4.5%2.1)%2.27") LLM Agent Thought: [32;1m [1;3m I now know the final answer
Final Answer: 139.94261298333066 [Om

from langchain.agents import initialize agent

zero_shot_agent = initialize_agent([1m> Finished chain. [Om
T agent="zero-shot-react-description”,
tools=tools,
1lm=11m,
verbose=True,
LLM Math Chain max_iterations=3 ('input’': ‘what is (4.5%2.1)%2.27', ‘output': '139.94261298333066"'})
)
Math Tool
(Calculator)
from langchain.chains import LLMMathChain ‘@‘

from langchain.agents import Tool
11m_math = LLMMathChain(1lm=11m)

initialize the math tool
math_tool = Tool(
name='Calculator’',
func=11m_math.rcun,
description='Useful for when you need to answer questions about math.'
!
when giving tools to LLM, we must pass as list of tools
tools = [math_tool]

Autonomous System Experiments

e Simulated experiments using 3D computer graphics scene
o Using Mitsuba 3: computer graphics library that simulates light realistically

e 3D construction scene for experimentation, this will simulate the complex
environment

Autonomous Drone Exploration

e Features/requirements of Autonomous System:
o Vision System - understand 2D
o LiDAR System - understand 3D
o Localization & Mapping - understand location and world
o Motion Planning - decide where to move

o Interface with humans to take new directions (LLM Agent)

Vision System

e Render images from the drone camera view at fixed intervals
e This generates live video view when enough intervals are rendered

e Movement of camera view / drone object provides exploration capabilities

Image

Camera 8 Light Source

SISt Ht Shadow Ray

Scene Object

LIDAR System

e Simulate LiDAR data through rendering process

e Rendering our scene from a specific camera location
allows us to record all the intersections of light
vectors (ray tracing) sent out from the camera
location with objects in the scene on first hit

e Remove roughly 90% of the points for computational
efficiency

Localization & Mapping: PlaneSLAM

e 3D LiDAR SLAM algorithm which extracts planar features from point clouds to
achieve lightweight, real-time localization and mapping

- —————————

: i %Y Previous
Font ™ Meshing : planes Map [t—
cloud |)
| 4 ! l Aligned l
| i Planes planes
| Clustering | | » Registration » Merging
! 1
| " E Transformation and
. | Extraction b=t pose estimate
y !

Pose graph p=——=b! Trajectory estimate

Motion Planning: Rapidly exploring random tree (RRT)

e RRT is an algorithm designed to efficiently search nonconvex,
high-dimensional spaces by randomly building a space-filling tree

Raw Point Cloud (Generated Point Cloud converted to RRT Algorithm generates
from Drone location) Lightweight Plane Objects random paths from starting
point to destination

Final path is chosen

PlaneSLAM & Motion Planning Integration

e As we can see, the localization and mapping works with motion
planning and execution, but how can we expose this system to a user
in an intuitive way?

o Both the starting location and the target location were given to RRT

(. Y, 2)
o One solution is to utilize the vision system

Vision System & Grounding DINO

e As auser interacting with an autonomous system, | want an easy way to tell
the drone where to go and what to do

e Grounding DINO

o Object detection model

o Combined model that has deep
understanding of text and visual content and can relate the two

o Grounding DINO excels at detecting objects even when they are not part of the predefined
set of classes in the training data

o Referring Expression Comprehension (REC) - Identifying and localizing a specific object
or region within an image is possible by giving a textual description

Image

Annotated Image

W Grounding DINO

Text Prompt

Grounding DINO

"red box above the door”

Grounding DINO

"wine glass on the far left”

Grounding DINO Prompt Engineering

5
&3
X

"man with sunglasses”

"man with sunglasses in blue shirt”

2D to 3D: Make-It-3D

e We can use Grounding DINO to establish object locations within an
image in 2D, however, we need to find the 3D location with respect to
the current location

e Solution:
o Use Make-It-3D to convert
image toa 3D meshtodo a
similarity search

https://docs.google.com/file/d/1EnQDbm3mREPigvK_LV-v48KREyAJ2sNz/preview
https://docs.google.com/file/d/1EnQDbm3mREPigvK_LV-v48KREyAJ2sNz/preview

2D to 3D: Similarity Search

e We can use DBSCAN to perform clustering on generated LiDAR and then create bounding
boxes around the unique clusters

e Then, we can do similarity comparison between our target object and the
established bounding boxes

i F
. \d I
o o e N
P o -> s
e ey
BNt
|

"red ladder on the right” 3D Model

Differentiable rendering using mesh rendering

100

150

200

250

Starting position

Reference silhouette

0.004

0.003

Loss

0.002

0001

100

150

200

250

Parameter error plot

0000 1,

0

10 20 30 40 50
iteration

50

Differentiable rendering with raytracing depth and texture (3D bounding box)

Parameter error plot

Initial Image

0 10 20 30 40 50
iteration

Optimized image Reference Image

~
51

Two-stage loss: Image + Distance

30 225 225
— Image Loss ~ Distance Loss —— Total Loss
200 4 200 4
25
175 1 175 1
204 150 150 +
125 A 125 4
%15
S
100 4 100 4
10 75 1 75
50 4 50 4
s 4
254 25 4
0 T T 0 T T 00— T T T
10 20 30 10 20 30 0 10 20 30
iteration reration teration

Initial Image Optimized Image

Image Comparison

Reference Image

ent Autonomous

Drone System Architecture

LLM
(OpenAl's gpt-3.5-
turbo-0613)
”"Move to the red ladder on the right” } > LLM Agent
LLM Agent Chain
A
2D Object P o
Detection Tool Motion Planning‘ SLAM Tool 3D Clustering ssZaerg:l':'i;:!I, 2D to 3D Tool
(Grounding Tool (RRT) (PlaneSLAM) Tool (DBScan) (TBD) (Make-It-3D)
DINO)
Vision System LiDAR System

> Video (GIF)

> Entering new AgentExecutor chain...

PYTHON LOG:
PYTHON LOG:

Observation:
Thought:

PYTHON LOG:
Bbox of the
PYTHON LOG:

Observation:
Thought:

PYTHON LOG:

Observation:
Thought:

Scan object
PYTHON LOG:
PYTHON LOG:
335, 507, 5

Observation:
Thought:

Running object detection on image using Grounding DINO model...
Red Ladder Detected!

Computing 3D location from 2D bounding box and other data...
object
3D Location of Red Ladder Detected!

Finding planes through Lidar...

Found target!
The path is: [e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
99, 628, 748, 1094, 1897, 1419, 1626, 1654, 1664, 2237, 2548, 2636, 2673, 2774,

LLM Agent Autonomous Drone System Demo

54

Controlling Robots/Drones with LLMs

https://docs.google.com/file/d/1r0DjSUA1BPAc4YNDUMcwxL_uNFqlN9zf/preview

]
i
B
&
i
M
f
i
"

