
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly 

owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-

0003525. SAND2018-10786 C

SPARTA Heterogeneous Full Trinity 
Runs: Successes and Challenges

Stan Moore and Michael Gallis

IXPUG Annual Fall Conference 2018



Outline

 SPARTA DSMC code

 Trinity supercomputer

 Heterogeneous full Trinity runs

 Challenges

 Lessons learned, towards resilience

 Path forward

2



Direct Simulation Monte Carlo (DSMC)
 Fluids are typically modeled by assuming 

continuum flow and solving Navier-Stokes
equations (i.e. CFD)

 Non-equilibrium, non-continuum conditions 
cannot be simulated with traditional CFD or 
reproduced experimentally

 DSMC typically used to simulate low density 
(rarefied) fluid flows such as hypersonic reentry 
at high altitudes

 Computational particles move, reflect off 
boundaries, and collide like real molecules

 Computational and algorithmic advances are 

now bringing hydrodynamic flows within reach:

 Instabilities

 Turbulence

3

move collide



SPARTA

(Stochastic PArallel Rarefied-gas Time-accurate Analyzer)

 Direct Simulation Monte Carlo (DSMC) code

 Core developers are Steve Plimpton and Michael Gallis (Sandia 
National Labs)

 Open-source, http://sparta.sandia.gov

4

Spacecraft TurbulenceInstabilitiesRe-entry Porous Media

http://sparta.sandia.gov/


SPARTA Features

 Structured grids with complex surfaces via cut and split cells

 Hierarchal grids with adaptive mesh refinement

 MPI parallelism using highly scalable domain decomposition
5



SPARTA Features (cont.)

 Load balancing (static and dynamic)

 Gas-phase collisions and chemistry

 Surface collisions and chemistry

 Grid cell weighting of particles

 3D, 2D, and 2D axisymmetric geometries 6



SPARTA Features (cont.)

 Diagnostics
 global boundary statistics

 per grid cell statistics

 per surface element statistics

 time-averaging of global, grid, surface statistics

 In-Situ Visualization

 And more
7

DSMC Experiment

Navier-Stokes



Kokkos Library

 Modern HPC hardware is complicated and ever changing

 The Kokkos library is an abstraction layer between the programmer and 
these platforms: write C++ code once using Kokkos abstractions

 Kokkos:

1. Parallel dispatch—threaded kernels are launched and mapped onto backend 
languages such as CUDA, OpenMP, or Pthreads

2. Kokkos views—multidimensional arrays with polymorphic memory layouts 
that can be optimized for a specific hardware (such as C-style layout right vs 
Fortran-style layout left)

 Used on top of existing MPI parallelization (MPI + X)

 Goal is performance portability

 Open-source, can be downloaded from https://github.com/kokkos/kokkos

 Kokkos version of SPARTA is implemented as an optional add-on package 

8

https://github.com/kokkos/kokkos


 Domain decomposition: each processor owns a portion of the 
simulation domain and particles therein

MPI Parallelization Approach

9

MPI #1 MPI #2

MPI #3 MPI #4



Kokkos Threaded Move

 One thread pushes particles for a timestep or micro-iteration

 Intermediate grid crossings are found

 Statistical accumulators (i.e. number of moves, number of 
surface collisions, etc.) use either a parallel reduction or an 
atomic reduction on a global variable

10

MPI rank 1

Thread 1

Thread 2

Thread 3



Kokkos Threaded Sort

 Threads loop over particles to sort by grid cell

 2D array of grid cells vs particle IDs is created, along with 1D array 
of counts of particles in each cell

 Requires thread atomics to avoid write conflicts

 If 2D array is too small, increase second dimension, realloc, and try 
again

 Periodically reordering particle list by cell id can improve 
performance

11

Cell ID Part. ID Part. ID

1

2

3

4

5

6

MPI rank 1
Thread 1

Thread 2

Thread 3

…



Kokkos Threaded Collide

 Each thread processes all the collisions in a grid cell

 Nearest neighbor algorithm also supported

12

MPI rank 1

Thread 1

Thread 2

Thread 3



Performance Portability: Sphere Benchmark

 Benchmark: particles flowing around a sphere

 1 CPU node or 1 GPU

 Best performance using either Kokkos or MPI-only

 Large cache effect for small problem sizes

13



 Fluid flow around the Mir space station

 The plane shows the temperature 
profile, with the surface colored 
according to the heat flux

 3D simulation of Apollo capsule re-entry

 Grid refined to 5 levels

Typical Problems

14



Cupid’s Arrow Test Case

15

 Mission concept: smallsat that could sample Venus’ upper 
atmosphere

 Axisymmetric simulation

 Grid refined to 13 levels to capture mean free path! (highest 
density inside nozzle)

Gas collected and 

analyzed

Nozzle
[1] https://www.jpl.nasa.gov/news/news.php?feature=6791

[2] https://trs.jpl.nasa.gov/bitstream/handle/2014/45775/15-4602_A1b.pdf?sequence=1



Ideal Scaling

Large Scale Simulations

16

• DSMC algorithm scales well and is a good candidate for 
exascale computing

• SPARTA runs on 1.57 million BG/Q cores (Sequoia), largest 
simulation = 1 trillion grid cells



Why DSMC?

 Exascale computing, despite its 50x leap over current 
petascale computing capabilities, does not guarantee that 
using larger and more refined CFD simulations will produce 
a corresponding leap in the accuracy of simulations

 Traditional CFD is only as accurate as the underlying 
equations being solved

 May be shortcomings in those equations, and including 
additional physics found at the molecular level could 
improve the accuracy of CFD simulations

 Examine difficult problems on a smaller, more 
fundamental scale using DSMC

17



Turbulence: The Greatest Unsolved 
Problem

18

Leonardo da Vinci

Importance and intractability

of understanding turbulence

was recognized early on!

“Turbulence is the most important unsolved problem of 

classical physics.” (Nobel Prize, quantum electrodynamics)

Richard Feynman

“When I meet God, I’m going to ask him two questions: why 

relativity? And why turbulence? I really believe he’ll have an 

answer for the first.”

--attributed to physicist Werner Heisenberg (though probably 

apocryphal)



Problem Run: Taylor-Green Flow

 DSMC applied to simulate nearly incompressible 
turbulent energy evolution for Reynolds numbers 
450-500

 In the incompressible limit, the DSMC simulations 
agree with corresponding Navier-Stokes Direct 
Numerical Simulation (DNS) results

 Need really big simulations to simulate turbulence 
at the molecular level!

 3D grid with 8 billion grid cells (2000 x 2000 x 2000), 
~45 particles/cell = 360 billion particles

 Work done by Michael Gallis (Sandia)

19

Turbulence



Trinity

 Cray XC40 product located at Los Alamos National Lab

 Over 19,000 nodes (9200+ Haswell and 9900+ KNL)

 Haswell = 32 physical cores x 2 hardware threads, AVX2 
vector extensions

 KNL = 68 physical cores x 4 hardware threads, AVX-512 vector 
extensions, MCDRAM high-bandwidth memory

20



Why Heterogeneous?

 Trinity has 9200+ Haswell and 9900+ KNL nodes

 Can use more memory and compute
 Can run bigger problems

 Boost throughput of production runs

 System hardening and resilience: large runs expose 
weaknesses in hardware and software
 Just takes 1 node failure to kill the job

 Some issues only manifest in large simulations

 Large-scale computing initiative: use the machine as it was 
designed

21

“I know how to make 4 horses pull a cart -- I don't know how to 

make 1024 chickens do it.” [or 19,000 mice, or 1.2 million ants…]

-- Enrico Clementi



Heterogeneous Job Launch

 Mike Davis (Cray) previously ran HPL and HPCG benchmarks 
heterogeneously across both partitions of Trinity. No science 
code had every run at full scale though.

 Used a driver program written by Mike Davis to stitch the two 
executables together

 Build one executable for Haswell: use Kokkos Serial backend 
(no OpenMP), AVX2

 Build one executable for KNL: use Kokkos OpenMP backend, 
AVX-512

 Driver program determines the node type and then launches 
either the HSW or KNL executable, based on node type

 Must use special “any” partition that is a union of KNL and 
Haswell partitions 22



Heterogeneous Job Launch

 Currently can’t launch more than one srun command. Must 
use same sbatch and srun options for each node type. I.e. 
must use the same --cpu_bind” and “-c” values. Must either 
use same number of MPI on each node, or use a wrapper to 
“bench” (i.e. send to MPI finalize) extra MPI ranks and create 
a sub communicator that excludes benched ranks

 Use 64 MPI on each node type, plus 4 OpenMP threads on 
KNL (uses hyperthreading), KNL in quad, cache mode

 MPI calls must match up exactly between executables or 
program may hang

 Kokkos gives flexibility by allowing Serial or OpenMP
threading

23



Load Balancing for Heterogeneous Runs

 Static recursive bisectioning (RCB): manually shift work 
between KNL and Haswell partitions using a constant factor

 Dynamic RCB: timer based, iteratively shifts work between 
KNL and Haswell partitions over time

24



Cray DataWarp Burst Buffers

25

 Cray XC40 DataWarp™ (DW) burst buffer utilizes Intel p3608 solid-
state drives (SSDs)

 Can substantially increase I/O bandwidth for some applications

 Trinity: 576 burst buffer nodes each with 6.4 TB capacity and a peak 
sequential read and write bandwidth of ~5.7 GB/s, Total = 3.6 PB 
and 3.2 TB/s

 SPARTA supports writing N MPI ranks M files (with M <= N), e.g. 
29 TB checkpoint broken into 16,000 files

 Use persistent DW allocation to eliminate stage-in overhead and 
dependencies

 Stage out checkpoint files from DW to Lustre after every job (later 
show a better way)



Resilience

 Periodically write out checkpoint files to DataWarp (each 
checkpoint = ~29 TB)

 Toggle between two filenames to save space

 Submit multiple jobs to the queue

 When a job dies for any reason, the next job restarts using 
the latest checkpoint file

 If a checkpoint file is corrupted (e.g. job dies while writing out 
last file) switch to backup file

 Fairly robust (but not bulletproof)

26



Results

 3 full Trinity heterogeneous runs so far

 SPARTA ran on entire Trinity supercomputer using over 
19,000 nodes and 1.2 million MPI ranks (9200+ Haswell CPU 
nodes and 9900+ KNL Xeon Phi nodes) for several hours with 
good performance

 Tried to learn from each full heterogeneous run and make 
workflow more robust to failure modes discovered (but new 
failure modes also appeared)

 Goal: submit job and walk away

27



March 2018: First Heterogeneous Trinity Run

SPARTA ran for several hours producing useful results, but 
several challenges were encountered:

 SPARTA hung when reading in checkpoint files, fixed during 
allocation

 SPARTA hung when using dynamic load balancing, so no load 
balancing used

 At first, SPARTA ran very slow but still made forward progress, 
found 2 slow Haswell nodes and excluded them from the 
allocation

 6 hardware errors that killed the job: 3 SIGBUS errors and 3 
node failures

 Subtle checkpoint corruption, had to manually switch to 
backup file 28



Performance

First full heterogeneous run:

 SPARTA performance on full Trinity = 8 
timesteps/s

 1/3 Sequoia = 2.3 timesteps/s  full 
Sequoia = 6.9 timesteps/s (neglecting 
MPI scaling overhead)

 Without checkpoint file I/O: 1/3 
Sequoia = 2.6 timesteps/s  full 
Sequoia = 7.8 timesteps/s

 Dynamic load balancing not turned on

29

Energy and energy dissipation for a 

Re=500, Ma=0.3 Taylor-Green Argon 

flow.



May 2018: Second Heterogeneous Trinity Run

SPARTA ran for several hours producing useful results, dynamic 
load balancing worked, but several challenges were 
encountered:

 Started with a healthy allocation of nodes, but after 4 hours 
into the job, a Haswell node started running 5x slower than 
normal (during the night) and severely degraded job 
performance until we discovered the issue in the morning

 3 node failures that killed the job each time

 3 bus errors that killed the job each time (could have been 
prevented, workaround wasn’t implemented correctly)

 After DAT, DW had a solid-state drive (SSD) failure and all of 
the checkpoint data was lost 

30



June 2018: Third Heterogeneous Trinity Run

Produced useful results (230,000 timesteps worth of data), but 
there were also some issues:

1. Slow KNL node was found and excluded at the beginning of 
the DAT

2. Three node uncorrectable errors that killed the job

3. Two sbcast failures that crashed the job on re-start

4. Multiple DataWarp stage-outs happening at the same time

5. DataWarp filesystem became partially read-only which led to 
data loss, and corrupted both checkpoint files

6. Had to start simulation over 

31



Challenges

1. Bugs in SPARTA code (now fixed)

2. SIGBUS errors (now fixed, at least for SPARTA)

3. Node uncorrectable errors

4. Slow nodes

5. Data loss leading to checkpoint file corruption and other 
issues when using Cray DataWarp burst buffers

32



1. SPARTA Issues

 Code hung when reading in checkpoint files at full scale. 
Cause: bit shift too large, needed to use “1L” literal and 64 bit 
integer. Undefined behavior, didn’t show up on Sequoia at 
same scale. Fixed during first DAT

 Code hung when using dynamic load balancing. Issue didn’t 
show up on small testbed for small problems. Kokkos hash 
table lookup failed. Fixed after first DAT

 Lesson learned: just because a code runs fine on a few nodes 
doesn’t mean it will run fine on 1.2 million MPI ranks!

33



2. SIGBUS Errors

 Job killed due to “SIGBUS error” or “bus error” after a few 
hours

 Kills the srun command but does not cause the node to go 
down

 Workaround: statically link executable and place in /tmp
directory on compute nodes

 Cause: bug in Lustre, paged out text part of executable and 
then tried to read from it

 Permanent Solution: SU28 patch, now fixed on Trinity, at least 
for SPARTA 

34



3. Node Uncorrectable Errors

 Job killed due to “node failure” 

 Kills the srun command AND causes the node to go into 
“down” state

 Cause: hardware failure such as CATERR (BANK 255), ROB 
timeout (Bank 0 Bus), Bank 2 Bus/L2, BANK 4 FEC, etc.

 Mostly on KNL nodes

 SPARTA has a much higher node failure rate than average—
SPARTA algorithms seems to stress KNL hardware (recent 24 
hour, 5000 KNL node jobs had 80% failure rate)

35Image from: https://www.top500.org/news/intel-dumps-knights-hill-future-of-xeon-phi-product-line-uncertain/



Workaround for Node Uncorrectable Errors

Good:

 Submit multiple jobs to queue

 When a job dies due to node failure, the next job restarts using the latest 
checkpoint file

 But lose allocation and must wait through queue again  overhead

Better:

 Request a few (i.e. 3) extra nodes more than are used in srun command

 Put srun command in a loop, use the “#SBATCH --no-kill” option: when a 
node drops out, restart using latest checkpoint file and one of the backup 
nodes

 Avoids allocation loss and overhead of requeuing

 But fails (hangs) with current Slurm version on Trinity, supposed to be 
fixed in Slurm 17.11.6 or later with the "slurmsmwd" daemon running

 Could also strip down SPARTA code to find which kernel is stressing out 
the KNL hardware, but would require expending huge amount of 
computing resources and time 36



4. Slow Nodes

 Nodes running 4x to 20x slower than normal

 Almost always on Haswell nodes

 Cause: memory DIMM encountering a high rate of correctable 
errors (i.e. bursting DIMM)

 If even only one node is running slow, the entire simulation 
will run slow due to MPI barriers or other synchronization 
points in the program

 During second full run, started with all healthy nodes, but a 
few hours into the run, a node became slow

37
By The original uploader was Grendelkhan at English Wikipedia. [GFDL 

(http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-

sa/3.0/)], via Wikimedia Commons



Workaround for Slow Nodes

 At the beginning of each run, check for slow nodes using 
simple standalone MPI program: each MPI rank calculates PI
constant using a series expansion

 Program touches a lot of memory, which is key for finding 
nodes with memory DIMM issues

 Finds hostname of slower-than-average nodes

 Slow nodes are excluded from srun command before job runs

 SPARTA also periodically checks for slow nodes in load 
balance routine, kills job if slow node is found, next job 
excludes slow node

38



5. DataWarp issues

 Sometimes writes to DW fail, leading to data loss and 
checkpoint file corruption
 Sometimes returns errno and sometimes silent

 Sometimes massive data loss and sometimes very subtle

 Sometimes hardware cause identified, sometimes no apparent cause

 During third full run, some DW nodes became read-only, 
leading to catastrophic checkpoint file corruption

 Trying to read in corrupted files causes segfault or SPARTA 
error. Very difficult to detect subtle corruption outside of 
SPARTA (file size and file count in first full run looked fine)

 Count bytes SPARTA “thought” it wrote out vs file size on DW; 
if these don’t match data loss occurred and files are corrupt

39



Other DataWarp issues

 Slow stage-in and stage-out to/from Lustre when using 
thousands of files, stage-in can time out and job won’t ever 
run

 Using #DW directives and staging out at end of job + two jobs 
failing in a short time = multiple stage-outs of the same data 
to the same Lustre directory

40



DW Painful Lessons Learned

 Solid-state drives (SSDs) used for DW can and do fail. Don’t 
just leave data on DW, stage out from persistent DW to Lustre
at least every 24 hours!

 For high profile runs, stage out to Lustre every few hours and 
don’t overwrite all the valid checkpoint files with corrupted 
ones! (otherwise can’t continue simulation)

 Good to stage out to unique Lustre directories, at least on a 
per-job basis

 Sometimes DW goes into bad state and data loss occurs, 
which corrupts checkpoint files

 When DW fails, need to fall back to Lustre

41



Current Work

 Originally used #DW directives in batch script, can only stage 
out to end of job

 Now using libdatawarp API instead of #DW directives to allow 
immediate stage out of checkpoint files from DW to Lustre
(thanks to Giovanni Cone from LANL)

 Stage out to unique Lustre directories for each job, avoids 
total loss of checkpoint files

 Need to fall back to Lustre when data loss is detected with 
DW

 Waiting to test robust recovery: e.g. request a few extra 
nodes, put srun in a loop, and restart using the latest 
checkpoint file

42



Benefits of Resilience

 Running production simulations on Trinity through queue: 
5000 KNL node jobs with a walltime limit of 24 hours

 Submitted several jobs to the queue and then walked away 
(actually flew to Hawaii for vacation for a week and a half)

 5 jobs ran while I was gone: 1 job ran for 24 hours and timed 
out, other 4 jobs died due to node hardware uncorrectable 
errors before 24 hours elapsed

 Despite job failures, still made significant forward progress

 Caveat: did not use DataWarp…still need to harden DW 
workflow against total checkpoint file corruption

43



Looking Forward

 Slurm is adding advanced features for heterogeneous runs, 
see https://slurm.schedmd.com/heterogeneous_jobs.html

 Can stitch two separate srun commands together into a single 
MPI_COMM_WORLD (no special driver program needed)

 Can fine-tune srun commands for each partition, i.e. can use 
different # of MPI, core specialization, different affinity, etc.

 Don’t need a special “any” partition, can use two separate 
accounts

 Easy to run heterogeneous production runs outside of DATs!

 Doesn’t work with Cray MPI yet , hopefully fixed in Slurm 18

44

https://slurm.schedmd.com/heterogeneous_jobs.html


Conclusions

 Heterogeneous (Haswell + KNL) runs on 19,000+ nodes with 
up to 1.2 million MPI ranks are possible

 Full system heterogeneous runs stress out the system and are 
very challenging (have to deal with weaknesses of both 
partitions)
 KNL = die due to uncorrectable hardware errors

 Haswell = slow due to bursting memory DIMM

 Workflow hardening is very beneficial and necessary (wish it 
was less necessary)

 Running a short sanity check on each node and scanning for 
slow or bad nodes before production runs is highly 
recommended (recently found 3 slow Haswell nodes during 
early-user testing)

45



Questions?

Discussion/Suggestions?

46

Thanks to Mike Davis (Cray), and Joel Stevenson, Ben 

Santos, and other Trinity HPC support personnel (LANL and 

SNL)


