
IXPUG FALL CONFERENCE 2018

IMPROVED THREADING
PERFORMANCE OF
QUANTUM ESPRESSO

erhtjhtyhy

YE LUO
Assistant Scientific Applications Engineer
Computational Science Division,
Argonne National Laboratory

Sep 26th 2018, Hillsboro, Oregon

OUTLINE

 Motivation

– What is Quantum ESPRESSO

– Why threading is important

 How to improve the threading of QE

– 3D parallel FFT

– Davidson solver

 Results

– Strong scaling

– Time to solution

2

Acknowledgments:
• This research used resources of the

Argonne Leadership Computing

Facility, which is a U.S. Department

of Energy Office of Science User

Facility operated undercontract DE-

AC02-06CH11357

• We gratefully acknowledge the

computing resources provided on

Bebop, a high-performance

computing cluster operated by the

Laboratory Computing Resource

Center at Argonne National

Laboratory.

QUANTUM ESPRESSO

 MANIFESTO: QUANTUM ESPRESSO

is an integrated suite of Open-Source

computer codes for electronic-

structure calculations and materials

modeling at the nanoscale. It is

based on density-functional theory,

plane waves, and pseudopotentials.

 The 2009 published paper gets over

11k citations.

 Widely used for high throughput

material research in US, EU, China.

www.quantum-espresso.org

3

QE package portfolio

The above figure courtesy of P. Giannozzi and F. Spiga

My targets

MAJOR KERNELS

 Constructing subspace Hamiltonian

(h_psi)

– Two FFT for XC potential

– 3D parallel FFT in FFTXlib

 Solving the generalized eigenvalue

problem in subspace

– Using Davidson iterative solver

4

Structure of a self-consistent type code

courtesy of

Stefano de Gironcoli

THREADING IS NEEDED

 MPI only based on planewave

decomposition hits a limit

– Massive amount of small

messages in parallel FFT

– Saturated strong scaling

performance

 Data not decomposed over

MPI dominates the footprint

– <psi|beta> for

pseudopotentials >50%

 Better interoperability with

accelerators

v6.2.1 release performance is not satisfactory

5

0

1000

2000

3000

4000

5000

6000

7000

1(64) 2(32) 4(16) 8(8) 16(4) 32(2) 64(1)*

W
a
llt

im
e

(s
e
c
o
n

d
s
)

OpenMP threads (MPI tasks per node)

Benchmark performance

v6.2 KNL 7230

HOW TO IMPROVE THE THREADING

THE CURRENT STATUS

 What has already been threaded?

– BLAS/ScaLAPACK especially ?gemm, part of the parallel eigensolver

– 1D batched FFTs via DFTI

– Limited places with explicit !$omp parallel do

 What is not threaded (shown by the Rice HPCToolkit trace)?

– Case 1: Data transpose in FFTXlib, mostly memory operations

– Case 2: Pseudopotential projectors

– Case 3: Fortran array section pitfall

 What is the criteria of threading necessity?

– Loop iteration increases as the number of MPI reduces.

– Distributed planewaves and real-space grid points

7

CASE 1: DATA TRANSPOSE IN FFT
Collapse threaded outer loops and leave innermost loop for SIMD

8

!$omp parallel do collapse(2) private(kdest,kfrom)
DO iproc2 = 1, nproc2
DO k = 0, nr1p_(me2)*desc%my_nr3p-1
kdest = (iproc2 - 1) * sendsize + nr2px * k
kfrom = desc%nr2p_offset(iproc2)

+ desc%nr2x *k
DO i = 1, desc%nr2p(iproc2)
f_aux (kdest + i) = f_in (kfrom + i)

ENDDO
ENDDO

ENDDO
!$omp end parallel do

offset = 0
DO iproc2 = 1, nproc2
kdest = (iproc2 - 1) * sendsize
kfrom = offset
DO k = 1, ncp_(me2)
DO i = 1, desc%nr2p(iproc2)
f_aux (kdest + i) = f_in (kfrom + i)

ENDDO
kdest = kdest + nr2px
kfrom = kfrom + desc%nr2x

ENDDO
offset = offset + desc%nr2p(iproc2)

ENDDO

Precompute offsets

4 places in xy and yz transpose

TIME SPENT IN HPSI
Nearly constant in PSIWAT benchmark, on 32 nodes of Bebop

9

BDW E5-2695v4 KNL 7230

CASE 2: PSEUDOPOTENTIAL PROJECTORS
Chunked planewaves for threading, cache blocking and vectorization

10

DO nt = 1, ntyp
DO na = 1, nat
IF (ityp (na) == nt) THEN
DO ih = 1, nh(nt)
ikb = indv_ijkb0(na) + ih
DO ig = 1, npw
ar = vkb (ig, ikb)*conjg(vkb (ig, ikb))
h_diag (ig) = h_diag (ig) + …
s_diag (ig) = s_diag (ig) + …

ENDDO
ENDDO

ENDIF
ENDDO

ENDDO

!$omp parallel do private(…)
DO iblock = 1, numblock
DO nt, na, ih
ikb = indv_ijkb0(na) + ih
DO ig = (iblock-1)*blocksize+1,

MIN(iblock*blocksize, npw)
ar = vkb (ig, ikb)*conjg(vkb (ig, ikb))
h_diag (ig) = h_diag (ig) + …
s_diag (ig) = s_diag (ig) + …

ENDDO
ENDDO

ENDDO
!$omp end parallel do

blocksize=256

CASE 3: FORTRAN ARRAY SECTION PITFALL
Simple to write but critical to performance

11

ALLOCATE(psi(npwx, npol, nvecx))
ALLOCATE(hpsi(npwx, npol, nvecx))
hpsi = (0.d0,0.d0)
psi = (0.d0,0.d0)
psi(:,:,1:nvec) = evc(:,:,1:nvec)

CALL threaded_memcpy(psi, evc,
nvec*npol*npwx*2)

 Array section can be expensive when the

array is large.

 Array section is not threaded

 !$omp workshare is not threaded with

Intel compiler

 Setting psi, hpsi to zero is a waste

 SMP full memory BW requires threading

TIME SPENT IN SCF
Significant improved performance at large thread counts

12

BDW E5-2695v4 KNL 7230

IMPROVED PERFORMANCE

STRONG SCALING
Using MPI/OpenMP is a must, particularly KNL

14

KNL 7230BDW E5-2695v4

6.3/6.2 = 1.16X

6.3 hybrid/mpi = 1.32X

6.3/6.2 = 1.09X

6.3 hybrid/mpi = 1.74X

TIME TO SOLUTION

0

1000

2000

3000

4000

5000

6000

7000

1(64) 2(32) 4(16) 8(8) 16(4) 32(2) 64(1)*
W

a
llt

im
e

(s
e
c
o

n
d

s
)

OpenMP threads (MPI tasks per node)

Benchmark performance

v6.2 v6.3

Improved both MPI and MPI/OpenMP hybrid cases

15

KNL 7230

 662 atoms, 6103 electrons

 45 Ry ecutwfc, 275 Ry ecut rho

 6 k-point with pool parallelization

 4 task groups

 96 KNL 7230 nodes, no HT

 Good performance is no more

limited to small thread counts.

 Start with 4 threads/MPI on KNL

www.anl.gov

Q&A

