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OUTLINE

 Motivation

– What is Quantum ESPRESSO

– Why threading is important 

 How to improve the threading of QE

– 3D parallel FFT

– Davidson solver

 Results

– Strong scaling

– Time to solution
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QUANTUM ESPRESSO

 MANIFESTO: QUANTUM ESPRESSO

is an integrated suite of Open-Source

computer codes for electronic-

structure calculations and materials 

modeling at the nanoscale. It is 

based on density-functional theory, 

plane waves, and pseudopotentials.

 The 2009 published paper gets over 

11k citations.

 Widely used for high throughput 

material research in US, EU, China.

www.quantum-espresso.org
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QE package portfolio

The above figure courtesy of P. Giannozzi and F. Spiga

My targets



MAJOR KERNELS

 Constructing subspace Hamiltonian 

(h_psi)

– Two FFT for XC potential

– 3D parallel FFT in FFTXlib

 Solving the generalized eigenvalue 

problem in subspace

– Using Davidson iterative solver
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Structure of a self-consistent type code

courtesy of

Stefano de Gironcoli



THREADING IS NEEDED

 MPI only based on planewave 

decomposition hits a limit

– Massive amount of small 

messages in parallel FFT

– Saturated strong scaling 

performance

 Data not decomposed over 

MPI dominates the footprint

– <psi|beta> for 

pseudopotentials >50%

 Better interoperability with 

accelerators

v6.2.1 release performance is not satisfactory
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HOW TO IMPROVE THE THREADING



THE CURRENT STATUS

 What has already been threaded?

– BLAS/ScaLAPACK especially ?gemm, part of the parallel eigensolver

– 1D batched FFTs via DFTI

– Limited places with explicit !$omp parallel do

 What is not threaded (shown by the Rice HPCToolkit trace)?

– Case 1: Data transpose in FFTXlib, mostly memory operations

– Case 2: Pseudopotential projectors

– Case 3: Fortran array section pitfall

 What is the criteria of threading necessity?

– Loop iteration increases as the number of MPI reduces.

– Distributed planewaves and real-space grid points
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CASE 1: DATA TRANSPOSE IN FFT
Collapse threaded outer loops and leave innermost loop for SIMD
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!$omp parallel do collapse(2) private(kdest,kfrom)
DO iproc2 = 1, nproc2
DO k = 0, nr1p_(me2)*desc%my_nr3p-1
kdest = ( iproc2 - 1 ) * sendsize + nr2px * k
kfrom = desc%nr2p_offset(iproc2)

+ desc%nr2x *k
DO i = 1, desc%nr2p( iproc2 )
f_aux ( kdest + i ) = f_in ( kfrom + i )

ENDDO
ENDDO

ENDDO
!$omp end parallel do

offset = 0
DO iproc2 = 1, nproc2
kdest = ( iproc2 - 1 ) * sendsize
kfrom = offset
DO k = 1, ncp_(me2)
DO i = 1, desc%nr2p( iproc2 )
f_aux ( kdest + i ) = f_in ( kfrom + i )

ENDDO
kdest = kdest + nr2px
kfrom = kfrom + desc%nr2x

ENDDO
offset = offset + desc%nr2p( iproc2 )

ENDDO

Precompute offsets

4 places in xy and yz transpose



TIME SPENT IN HPSI
Nearly constant in PSIWAT benchmark, on 32 nodes of Bebop
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CASE 2: PSEUDOPOTENTIAL PROJECTORS 
Chunked planewaves for threading, cache blocking and vectorization
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DO nt = 1, ntyp
DO na = 1, nat
IF (ityp (na) == nt) THEN
DO ih = 1, nh(nt)
ikb = indv_ijkb0(na) + ih
DO ig = 1, npw
ar = vkb (ig, ikb)*conjg(vkb (ig, ikb))
h_diag (ig) = h_diag (ig) + …
s_diag (ig) = s_diag (ig) + …

ENDDO
ENDDO

ENDIF
ENDDO

ENDDO

!$omp parallel do private(…)
DO iblock = 1, numblock
DO nt, na, ih
ikb = indv_ijkb0(na) + ih
DO ig = (iblock-1)*blocksize+1,

MIN(iblock*blocksize, npw)
ar = vkb (ig, ikb)*conjg(vkb (ig, ikb))
h_diag (ig) = h_diag (ig) + …
s_diag (ig) = s_diag (ig) + …

ENDDO
ENDDO

ENDDO
!$omp end parallel do

blocksize=256



CASE 3: FORTRAN ARRAY SECTION PITFALL
Simple to write but critical to performance
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ALLOCATE( psi( npwx, npol, nvecx ) )
ALLOCATE( hpsi( npwx, npol, nvecx ) )
hpsi = (0.d0,0.d0)
psi = (0.d0,0.d0)
psi(:,:,1:nvec) = evc(:,:,1:nvec)

CALL threaded_memcpy(psi, evc,
nvec*npol*npwx*2)

 Array section can be expensive when the 

array is large.

 Array section is not threaded

 !$omp workshare is not threaded with 

Intel compiler

 Setting psi, hpsi to zero is a waste

 SMP full memory BW requires threading



TIME SPENT IN SCF
Significant improved performance at large thread counts
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BDW E5-2695v4 KNL 7230



IMPROVED PERFORMANCE



STRONG SCALING
Using MPI/OpenMP is a must, particularly KNL
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KNL 7230BDW E5-2695v4

6.3/6.2 = 1.16X

6.3 hybrid/mpi = 1.32X

6.3/6.2 = 1.09X

6.3 hybrid/mpi = 1.74X



TIME TO SOLUTION
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Improved both MPI and MPI/OpenMP hybrid cases
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KNL 7230

 662 atoms, 6103 electrons

 45 Ry ecutwfc, 275 Ry ecut rho

 6 k-point with pool parallelization

 4 task groups

 96 KNL 7230 nodes, no HT

 Good performance is no more 

limited to small thread counts.

 Start with 4 threads/MPI on KNL
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