
Exploring a nontrivial upper bound
for pipelined double-precision FMA
instructions on Knight’s Landing

Damon McDougall (TACC)

John McCalpin (TACC)

Conclusion

You cannot exceed 85.71% of theoretical peak performance on
KNL

6/7 is approximately 85.71%

This will affect literally nobody but the curious. Why?

KNL core can only issue 2 instructions per cycle

KNL peak is 2 AVX-512 VFMADD instructions per cycle
Other instructions displace VFMADD and reduce attainable peak

Intel’s DGEMM requires just under 20% of ‘work’ that isn’t a VFMADD

Useful codes don’t *just* do FMAs. They do other stuff too.

Conclusion

You cannot exceed 85.71% of theoretical peak performance on KNL
6/7 is approximately 85.71%

This will affect literally nobody but the curious. Why?

KNL core can only issue 2 instructions per cycle

KNL peak is 2 AVX-512 VFMADD instructions per cycle
Other instructions displace VFMADD and reduce attainable peak

Intel’s DGEMM requires just under 20% of ‘work’ that isn’t a VFMADD

Useful codes don’t *just* do FMAs. They do other stuff too.

We started with VFMADDs, but the first point applies to all VPU
instructions

The story

I read a Colfax Research article benchmarking SKX
The article is here: https://colfaxresearch.com/skl-avx512

The article compares peak performance of BDW and SKX

They run a pipelined double-precision FMA code to get their results
The code doesn’t do anything useful

It merely satiates my juvenile desire to see peak FLOPs in action

I cleaned up a few things in Colfax code and ran it on KNL

I got less than the numbers I expected

I asked John about it…
…the rest, as they say, is history.

https://colfaxresearch.com/skl-avx512

Some background

KNL (7250) has 34 tiles

Each tile has 2 cores

Cores on a tile share an L2 cache

Each core has 2 VPUs

A picture helps…

Sodani, A., Gramunt, R., Corbal, J.,
Kim, H.S., Vinod, K., Chinthamani, S.,
Hutsell, S., Agarwal, R. and Liu, Y.C.,
2016. Knights landing: Second-
generation intel xeon phi product. Ieee
micro, 36(2), pp.34-46.

Notes:
• Reservation stations aren’t shared
• VPUs mostly symmetrical
• Retirement stage?

Sodani, A., Gramunt, R., Corbal, J.,
Kim, H.S., Vinod, K., Chinthamani, S.,
Hutsell, S., Agarwal, R. and Liu, Y.C.,
2016. Knights landing: Second-
generation intel xeon phi product. Ieee
micro, 36(2), pp.34-46.

What this doesn’t say:
• Each VPU can provide a steady-

state throughput of one AVX-512
instruction per cycle at the same
time

Our list of
experiments ->

There are so
many, I bet you
didn’t notice
this is upside-
down ->

Our experiments

John did at least 80% of this work – my contribution was to pester him
with questions

We (John) ran 258 experiments. Too many to talk about all of them

I’ll only mention a couple of the important/interesting ones

We pipelined AVX-512:
VFMADD – executes in VPU[01], 6 cycle latency

VPXORQ – executes in VPU[01], 2 cycle latency

VPBROADCASTQ – executes in VPU0, 3 cycle latency

VPABSQ – executes in VPU[01], 2 cycle latency

VPLZCNTQ – executes in VPU0, 2 cycle latency

These come from Agner’s instruction tables

VFMADD

Executes in either VPU

We know how many FMAs we issue
No. of loop iterations * number of FMAS per iteration

We know how many cycles the application takes
Fixed function counter read operation

Instructions are aligned

Loop overhead is subl and jnz (this should take one cycle)

We see 12 fully pipelined FMAs execute in 14 cycles (6/7)

Why?

Are we rename register limited?

Little’s law: concurrency = latency * throughput
latency * throughput = num_rename_regs * num_cycles * 2

KNL core is based off of Silvermont core which has 14 cycle pipeline

So: num_cycles is at least 6 because of VFMADD latency
But could be as high as 14 -- or higher?

num_rename_regs is at least 3 and at most 4
3 when the FMA overwrites its input register and 4 when it doesn’t

Guessing: latency * throughput = 2 * 3 * 14 = 84

There are 72 rename registers and 72/84 = 6/7

It is possible we are rename register limited

Sodani, A., Gramunt, R., Corbal, J.,
Kim, H.S., Vinod, K., Chinthamani, S.,
Hutsell, S., Agarwal, R. and Liu, Y.C.,
2016. Knights landing: Second-
generation intel xeon phi product. Ieee
micro, 36(2), pp.34-46.

Not clear how rename buffer entries
are distributed:
• 72 entries total on the core?
• 72 entries each for IEU and VPU?

So let’s use fewer rename registers

VPABSQ has 2 zmm operands

So now: latency * throughput is much smaller

We still see only 12 VPABSQ instructions retire every 14 cycles

And the extra cycle manifests itself as a rat stall (same in the
VFMADD case)

So we’re not (just) rename register limited

We’ve been using both VPUs. What if we only use one of them?

Ok, so what if we only use one VPU?

We have experiments that pipeline VPLZCNTQ

We have experiments that pipeline VPBROADCASTQ

Both experiments show throughput of 1 instruction per cycle

Both VPLZCNTQ and VPBROADCASTQ only execute in VPU0

No rat stalls

KORTESTW only executes in VPU1. No rat stalls here either

So it’s something to do with both VPUs together

Is it just the VPUs? What about the integer or memory EUs?

More on the one-cycle stall

All of our integer (ADDQ) and memory instructions experiments show a
sustained throughput of 2 instructions per cycle

So the behaviour is *only* when using VPU instructions *together*
Regardless of datatype and SIMD width

For pipelined VFMADD experiment

We introduce or own one-cycle stall: nop + jmp to next instruction

Our experiments show no more rat stalls (still retire 6 instructions every 7
cycles)

I.e., nop + jmp overlaps with the existing throughput limitation

We also introduced bubbles by creating register name dependencies
These are really hard to control (re-using input registers)
Sometimes they overlap perfectly with the existing bubble
Sometimes they don’t and we see both bubbles

Mixing instructions

We even tried mixing instruction pairs. E.g.,
VFMADD/VPABSQ
VFMADD/VPERMD

There’s not really much to add to the story here

The instructions with the shorter latency retire earlier

Until such a time when the ROB fills up

When this happens
What were RAT stalls are now ROB stalls
This is unsurprising: the retirement unit has to wait for the longer latency
instructions to finish executing

Wrap up

We checked the obvious things:
Instructions are not too long

No instruction prefixes

Perhaps retirement unit is causing a 1 cycle bubble so it can
copy stuff out of the ROB?

Perhaps it’s done to guarantee forward progress?

Does anyone in the audience know?
If so, maybe they can’t say

Thanks for listening.
Questions?

Damon McDougall – dmcdougall@tacc.utexas.edu

John McCalpin – mccalpin@tacc.utexas.edu

mailto:dmcdougall@tacc.utexas.edu
mailto:mccalpin@tacc.utexas.edu

