
Experiences with a Lightweight Multi-Kernel
Operating System for Extreme Scale Computing

Balazs Gerofi <bgerofi@riken.jp>
System Software R&D Team
RIKEN Center for Computational Science

Intel eXtreme Performance Users Group (IXPUG), held together with HPCAsia’20 2020/Jan/17, Fukuoka, Japan

Outline

• Motivation
• Lightweight Multi-kernels
• McKernel Design and Implementation
• Oakforest–PACS Evaluation
• Preliminary Results on ARM ThunderX2
• Future Perspectives
• Summary

IXPUG @ HPCAsia'20

Motivation
• Node architecture: increasing complexity
• Large number of (heterogeneous) processing elements (e.g., CPU cores), deep memory hierarchy, complex

cache/NUMA topology

• Applications: ever expanding diversity
• Traditional/regular HPC simulations +
• in-situ data analytics +
• Big Data processing +
• Machine Learning +
• Workflows, etc.

• What do we need from the system software/OS?
• Performance and scalability for large scale parallel apps
• Support for Linux APIs – tools, productivity, monitoring, etc.
• Full control over HW resources
• Ability to adapt to HW changes!
• Emerging memory technologies, parallelism, power constrains

• Performance isolation and dynamic reconfiguration
• According to workload characteristics, support for co-location, multi-tenancy

IXPUG @ HPCAsia'20

Design and Implementation

IXPUG @ HPCAsia'20

Approach: Lightweight Multi-kernel
• With the abundance of processing cores comes the hybrid approach:
• Run Linux and LWK side-by-side in compute nodes!

• Partition resources (CPU cores, memory) explicitly

• Run HPC apps on LWK

• Selectively serve OS features with the help of Linux by offloading requests

Memory

CPU CPUCPU CPU… …
Lightweight Kernel

Linux

HPC Application

System
daemon

Kernel
daemon

Interrupt

System call

Partition Partition

,
,

,
,

CPU CPU

?

How to design such system?
Where to split OS functionalities?

How do multiple kernels interplay?

IXPUG @ HPCAsia'20

IHK/McKernel: Architectural Overview
• Interface for Heterogeneous Kernels (IHK):

• Allows dynamic partitioning of node resources (i.e., CPU cores, physical memory, etc.)
• Enables management of multi-kernels (assign resources, load, boot, destroy, etc..)
• Provides inter-kernel communication (IKC), messaging and notification

• McKernel:
• A lightweight kernel developed from scratch, boots from IHK

• Designed for HPC, noiseless, simple, implements only performance sensitive system calls

• Mostly process and memory management, the rest are offloaded to Linux

Memory

IHK co-kernelIHK Linux

Delegator
module

Proxy process

CPU CPUCPU CPU… …
McKernel

Linux

HPC Application

System
daemon

Kernel
daemon

Interrupt

System call

System
call

Partition Partition

,
,

,
,

CPU CPU

IXPUG @ HPCAsia'20

McKernel and system calls

• System calls not listed above are offloaded to Linux

• POSIX compliance: almost the entire LTP test suite passes (on x86)! (2013 version: 100%, 2015: 99%)

Implemented Planned/In-progress

Process
Thread

arch_prctl, clone, execve, exit, exit_group, fork, futex, getpid,
getrlimit, kill, pause, ptrace, rt_sigaction, rt_sigpending,
rt_sigprocmask, rt_sigqueueinfo, rt_sigreturn, rt_sigsuspend,
set_tid_address, setpgid, sigaltstack, tgkill, vfork, wait4, signalfd,
signalfd4,

ftrace?

Memory
management

brk, sbrk, madvise, mlock, mmap, mprotect, mremap, munlock,
munmap, remap_file_pages, shmat, shmctl, shmdt, shmget,
mbind, set_mempolicy, get_mempolicy, mbind, move_pages

Scheduling sched_getaffinity, sched_setaffinity, getitimer, gettimeofday,
nanosleep, sched_yield, settimeofday

Performance
counters

direct PMC interface: pmc_init, pmc_start, pmc_stop, pmc_reset,
perf_event_open, PAPI Interface

perf_event_open improvements

• McKernel is a lightweight (co-)kernel designed for HPC

• Linux ABI compatible

• Boots from IHK (no intention to boot it stand-alone)

IXPUG @ HPCAsia'20

Proxy Process and System Call Offloading

• For each application process a “proxy-process” resides on Linux

• Proxy process:

• Provides execution context on behalf of the application so that offloaded calls can be directly invoked in Linux

• Enables Linux to maintain certain state information that would have to be otherwise kept track of in the LWK

• (e.g., file descriptor table is maintained by Linux)

Memory

IHK Linux

Delegator
module

CPU CPUCPU CPU… …
McKernel

Linux

System
daemon

Kernel
daemon

Proxy process

IHK Co-kernel

HPC Application

Interrupt

System
call

System
call

Partition Partition

,
,

,
,

① Application

makes a system call

�McKernel sends

IKC message to Linux

�
Delegator

wakes up

proxy

process

�
Proxy

makes

syscall in

Linux

� Linux

executes

syscall

and

returns

� Proxy request

delegator to

forward result

� IKC from Linux to

McKernel

�McKernel returns

to userspace

https://github.com/RIKEN-SysSoft/mckernel

Unified Address Space between Linux and LWK
• Issue: how to handle memory addresses in system call arguments?

• Consider the target buffer of a read() system call

• There is a need for the proxy process to access the application’s memory (running on McKernel)
• Unified address space ensures proxy process can transparently see applications memory contents and reflect virtual memory operations

• e.g., mmap(), munmap(), etc..

Physical
Memory

Kernel space
(Linux)

Kernel space
(McKernel)

App text

App data/BSS

App heap

App stack

proxy process heap

proxy process stack

proxy process data/BSS

proxy process text

proxy process’
virtual range excluded from

McKernel’s user-space

Proxy process
unified address-
space mapping
(initially empty)

0xFFFFFFFF80000000

0x00

Virtual address space (Linux) Virtual address space (McKernel)

Faulted page

Proxy process
is position

independent and
mapped right

below kernel space

Virtual
range not
available

in
McKernel

Implemented as a
pseudo file
mapping.

Page fault handler
consults LWK’s PTE
to map to the same

physical address

Address space operations (e.g., munmap(),
mprotect()) need to be synchronized!

https://github.com/RIKEN-SysSoft/mckernel

Evaluation

IXPUG @ HPCAsia'20

Oakforest PACS Overview

• 8k Intel Xeon Phi (Knights Landing)
compute nodes
• Intel OmniPath v1 interconnect

• Peak performance: ~25 PF

• Intel Xeon Phi CPU 7250 model:
• 68 CPU cores @ 1.40GHz

• 4 HW thread / core

• 272 logical OS CPUs altogether

• 64 CPU cores used for McKernel, 4 for Linux

• 16 GB MCDRAM high-bandwidth memory

• Hot-pluggable in BIOS

• 96 GB DRAM

• Quadrant flat mode

IXPUG @ HPCAsia'20

Software Environment

• Linux:
• CentOS, Linux kernel 3.10.0-693.11.6
• IFS-10.7-0
• nohz_full on 256 cores
• MCDRAM as movable_node (in flat Quadrant mode)

• Linux+corespec:
• Linux + I_MPI_PIN_PROCESSOR_EXCLUDE_LIST=0-3,68-71,136-139,204-207
• i.e., excludes OS CPU cores (same cores used as in McKernel, also set to nohz_full)

• IHK/McKernel:
• IHK: 50a13c89
• McKernel: 9f82c54b (HFI1 PicoDriver integrated)
• + ANON mmap rewrite
• + reboot script modifications (to boot from /tmp)

• Fujitsu job submission system

IXPUG @ HPCAsia'20

Oakforest PACS: Linux vs. McKernel CPUs

NUMA 0 NUMA 1 NUMA 2 NUMA 3

§ LWK runs on the
majority of the chip

§ A few CPU cores
are reserved for
Linux

§ Mechanism to map
inter-core
communication to
MPI process layout

Linux CPU

McKernel CPUIXPUG @ HPCAsia'20

Mini-apps

• GeoFEM (Univ. of Tokyo)
• AMG2013 (CORAL)
• miniFE (CORAL)
• MILC (CORAL)
• Lulesh (CORAL)
• LAMMPS (CORAL)
• Nekbone (CORAL)
• HPCG (CORAL)
• GAMERA (Univ. of Tokyo)

IXPUG @ HPCAsia'20

Mini-apps: MPI ranks and OpenMP threads

Property/
Mini-App

Ranks/
node

Threads/
rank

I_MPI_PIN_ORDER KMP_AFFINITY KMP_HW_SUBSET

GeoFEM 16 8 compact compact 2t

AMG2013 16 16 compact compact N/A

MiniFE 16 16 compact compact N/A

MILC 32 4 compact compact 2t

Lulesh 8 16 compact compact 2t

LAMMPS 32 4 compact compact 2t

Nekbone 32 4 compact compact 2t

HPCG 32 4 compact compact 2t

GAMERA 8 8 compact compact 8c,1t

IXPUG @ HPCAsia'20

GeoFEM – 16 ranks/node, 8 OMP threads/rank

• Weak scaled, up to 6% improvement
• Linux core specialization makes a big difference!

0	

2	

4	

6	

8	

10	

12	

14	

16	

8	 16	 32	 64	 128	 256	 512	 1024	2048	4096	8192	

Fi
gu
re
	o
f	M

er
it	

Number	of	nodes	

Linux	 Linux	+	corespec	 IHK/McKernel	

IXPUG @ HPCAsia'20

AMG2013 – 16 ranks/node, 16 OMP threads/rank

• Weak scaled
• Linux (without core-spec) on 8192 nodes failed

0	
2.5E+10	
5E+10	

7.5E+10	
1E+11	

1.25E+11	
1.5E+11	

1.75E+11	
2E+11	

2.25E+11	

8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	

Fi
gu
re
	o
f	M

er
it	

Number	of	nodes	

Linux	
Linux	+	corespec	
IHK/McKernel	

19%	

IXPUG @ HPCAsia'20

MILC – 32 ranks/node, 4 OMP threads/rank

• Weak scaled

0.0E+00	
2.5E+07	
5.0E+07	
7.5E+07	
1.0E+08	
1.3E+08	
1.5E+08	
1.8E+08	
2.0E+08	
2.3E+08	
2.5E+08	

8	 16	 32	 64	 128	 256	 512	 1024	2048	4096	

Fi
gu
re
	o
f	M

er
it	

Number	of	nodes	

Linux	
Linux	+	corespec	
IHK/McKernel	

21%	

IXPUG @ HPCAsia'20

Lulesh – 8 ranks/node, 16 OMP threads/rank

• Weak scaled
• Requires n^3 number of ranks

0.0E+00	
2.0E+07	
4.0E+07	
6.0E+07	
8.0E+07	
1.0E+08	
1.2E+08	
1.4E+08	
1.6E+08	
1.8E+08	

8	 27
	

64
	

12
5	

21
6	

34
3	

51
2	

72
9	

10
00
	

13
31
	

17
28
	

21
97
	

27
44
	

33
75
	

40
96
	

49
13
	

58
32
	

68
59
	

80
00
	

Fi
gu
re
	o
f	M

er
it	

Number	of	nodes	

Linux	

Linux	+	corespec	

IHK/McKernel	

~2X	

IXPUG @ HPCAsia'20

miniFE – 16 ranks/node, 16 OMP threads/rank

• Large data set 1200x1200x1200
• Strong scaled

0	

10000000	

20000000	

30000000	

40000000	

50000000	

60000000	

32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	

Fi
gu
re
	o
f	M

er
it	

Number	of	nodes	

Linux	
Linux	+	corespec	
IHK/McKernel	

2.8X	

IXPUG @ HPCAsia'20

Nekbone – 32 ranks/node, 4 OMP threads/rank

• Weak scaled
• Linux failed on 1k and 4k nodes…

1.E+06	

1.E+07	

1.E+08	

1.E+09	

16	 32	 64	 128	 256	 512	 1024	 2048	 4096	

Fi
gu
re
	o
f	M

er
it	
[lo

g	
sc
al
e]
	

Number	of	nodes	

Linux	

Linux	+	corespec	

IHK/McKernel	

IXPUG @ HPCAsia'20

HPCG – 32 ranks/node, 4 OMP threads/rank

• Weak scaled
• MPI_Init() timed out on 8k nodes run

0	

50000	

100000	

150000	

200000	

250000	

300000	

8	 16	 32	 64	 128	 256	 512	 1024	2048	4096	8192	

Fi
gu
re
	o
f	M

er
it	

Number	of	nodes	

Linux	
Linux	+	corespec	
IHK/McKernel	

IXPUG @ HPCAsia'20

ThunderX2 Overview

IXPUG @ HPCAsia'20

• 8 DDR channels
• Up to ~250 GB/s memory bandwidth

• Two sockets, 28 CPU cores / socket
• Can do 1-, 2- and 4-way SMT

• Multi-rail IB
• Up to 13GB/s unidirectional bandwidth

• McKernel now runs on ARM64

Single node: GUPS (random access benchmark)
~47% improvement

IXPUG @ HPCAsia'20

0

0.05

0.1

0.15

0.2

0.25

0.3

rGups

FO
M

 (
U

p
d

a
te

s?
)

Random Updates

Linux (28c) Linux (24c) McKernel (24c, 16GB pages)

• Linux:
• $ OMP_NUM_THREADS=28 OMP_PROC_BIND=close OMP_PLACES=cores numactl -C 0-27 -m 0 ./gups-atse-gcc 32 32768 8192

• $ OMP_NUM_THREADS=24 OMP_PROC_BIND=close OMP_PLACES=cores numactl -C 4-27 -m 0 ./gups-atse-gcc 32 32768 8192

McKernel (using 16GB pages on heap):

• $ OMP_NUM_THREADS=24 mcexec --extend-heap-by=16G numactl -C 0-24 -m 0 ./gups-atse-gcc 32 32768 8192

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

sGups

FO
M

 (
U

p
d

a
te

s?
)

Sequential Updates

Linux (28c) Linux (24c) McKernel (24c, 16GB pages)

Future Directions

IXPUG @ HPCAsia'20

System Software in the Era of Heterogeneous Processing

• Computer manufacturing technologies are approaching their physical limits (~5nm transistors)
• Moore’s Law driven predictable performance increase is coming close to its end

• More efficient architectures and specialization in the form of heterogeneous processing elements (PE)
• GPUs, FPGAs, a lot of upcoming AI specific chips

• Operating systems (OS) traditionally provide:
• Mechanisms to manage (e.g., to allocate or multiplex) hardware resources
• Isolation and secure access to devices

• Up till recently heterogeneous PEs are/were:
• Special purpose devices are mainly single-user access
• Slow data connection to host (e.g., PCIe) with dedicated physical memory
• Separate address spaces, non cache-coherent access between host and accelerator

• However, trends are changing:
• Incorporation of these devices into the memory system of the CPU
• Cache-coherent interconnect standards for accelerators
• E.g.: CCIX, GenZ, OpenCAPI, Intel CXL

• Tighter integration of various processing elements in recent hardware platforms
• E.g.: Intel’s AgileX FPGA, Xilinx’ Adaptive Compute Acceleration Platform (ACAP), Intel’s Xe(?)

• Eventually opens up the way for PEs to be treated as first-class citizens in the OS

Intel AgileX

Xilinx ACAP
26

System Software in the Era of Heterogeneous Processing

• It will become difficult to manage these devices efficiently
• Especially by explicit user level management

• New OS approaches for scheduling computing elements and managing multiple memory resources will
be needed

• Challenges and opportunities for the system software?
• Co-design SW interfaces with the hardware to establish standard boundaries
• Portable communication interfaces
• Message passing, notifications, interrupts

• Task dispatching
• What are the right execution model abstractions?
• E.g., non-interruptible, run-to-completion tasks

• Memory management
• Multi-level, heterogeneous devices, unified address spaces

• With new, low-latency interconnects (e.g., optical):
• Disaggregation of compute/memory resources becomes available
• Dynamic reconfiguration based on application demands
• How will these concepts work in HPC?

27

Summary

• Lightweight kernels benefit HPC workloads
• Multi-kernel approach adds Linux compatibility to LWK scalability
• Runs the same Linux binary

• Building a full OS is not easy
• Lots of corner cases, especially with POSIX compatibility

• With regards to Fugaku
• If we inspired Fujitsu for some of its Linux design decisions (e.g., memory management) that’s already a

win!

• Looking for collaborators to extend these concepts over heterogeneous PEs

IXPUG @ HPCAsia'20

Thank you for your attention!
Questions?

IXPUG @ HPCAsia'20

