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Motivation
• Node architecture: increasing complexity 
• Large number of (heterogeneous) processing elements (e.g., CPU cores), deep memory hierarchy, complex 

cache/NUMA topology

• Applications: ever expanding diversity
• Traditional/regular HPC simulations + 
• in-situ data analytics + 
• Big Data processing + 
• Machine Learning + 
• Workflows, etc.

• What do we need from the system software/OS?
• Performance and scalability for large scale parallel apps
• Support for Linux APIs – tools, productivity, monitoring, etc.
• Full control over HW resources
• Ability to adapt to HW changes!
• Emerging memory technologies, parallelism, power constrains 

• Performance isolation and dynamic reconfiguration
• According to workload characteristics, support for co-location, multi-tenancy
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Design and Implementation
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Approach: Lightweight Multi-kernel
• With the abundance of processing cores comes the hybrid approach: 
• Run Linux and LWK side-by-side in compute nodes!

• Partition resources (CPU cores, memory) explicitly

• Run HPC apps on LWK

• Selectively serve OS features with the help of Linux by offloading requests
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How to design such system?
Where to split OS functionalities?

How do multiple kernels interplay?
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IHK/McKernel: Architectural Overview
• Interface for Heterogeneous Kernels (IHK):

• Allows dynamic partitioning of node resources (i.e., CPU cores, physical memory, etc.)
• Enables management of multi-kernels (assign resources, load, boot, destroy, etc..)
• Provides inter-kernel communication (IKC), messaging and notification 

• McKernel:
• A lightweight kernel developed from scratch, boots from IHK

• Designed for HPC, noiseless, simple, implements only performance sensitive system calls 

• Mostly process and memory management, the rest are offloaded to Linux 
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McKernel and system calls

• System calls not listed above are offloaded to Linux

• POSIX compliance: almost the entire LTP test suite passes (on x86)! (2013 version: 100%, 2015: 99%)

Implemented Planned/In-progress

Process
Thread

arch_prctl, clone, execve, exit, exit_group, fork, futex, getpid, 
getrlimit, kill, pause, ptrace, rt_sigaction, rt_sigpending, 
rt_sigprocmask, rt_sigqueueinfo, rt_sigreturn, rt_sigsuspend, 
set_tid_address, setpgid, sigaltstack, tgkill, vfork, wait4, signalfd, 
signalfd4,

ftrace?

Memory 
management

brk, sbrk, madvise, mlock, mmap, mprotect, mremap, munlock, 
munmap, remap_file_pages, shmat, shmctl, shmdt, shmget,
mbind, set_mempolicy, get_mempolicy, mbind, move_pages

Scheduling sched_getaffinity, sched_setaffinity, getitimer, gettimeofday, 
nanosleep, sched_yield, settimeofday

Performance 
counters

direct PMC interface: pmc_init, pmc_start, pmc_stop, pmc_reset, 
perf_event_open, PAPI Interface

perf_event_open improvements

• McKernel is a lightweight (co-)kernel designed for HPC

• Linux ABI compatible

• Boots from IHK (no intention to boot it stand-alone)
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Proxy Process and System Call Offloading

• For each application process a “proxy-process” resides on Linux

• Proxy process:

• Provides execution context on behalf of the application so that offloaded calls can be directly invoked in Linux

• Enables Linux to maintain certain state information that would have to be otherwise kept track of in the LWK 

• (e.g., file descriptor table is maintained by Linux)
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Unified Address Space between Linux and LWK
• Issue: how to handle memory addresses in system call arguments?

• Consider the target buffer of a read() system call

• There is a need for the proxy process to access the application’s memory (running on McKernel) 
• Unified address space ensures proxy process can transparently see applications memory contents and reflect virtual memory operations 

• e.g., mmap(), munmap(), etc..
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Evaluation
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Oakforest PACS Overview

• 8k Intel Xeon Phi (Knights Landing) 
compute nodes
• Intel OmniPath v1 interconnect

• Peak performance: ~25 PF 

• Intel Xeon Phi CPU 7250 model:
• 68 CPU cores @ 1.40GHz

• 4 HW thread / core

• 272 logical OS CPUs altogether

• 64 CPU cores used for McKernel, 4 for Linux

• 16 GB MCDRAM high-bandwidth memory

• Hot-pluggable in BIOS

• 96 GB DRAM

• Quadrant flat mode
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Software Environment

• Linux:
• CentOS, Linux kernel 3.10.0-693.11.6
• IFS-10.7-0
• nohz_full on 256 cores
• MCDRAM as movable_node (in flat Quadrant mode)  

• Linux+corespec:
• Linux + I_MPI_PIN_PROCESSOR_EXCLUDE_LIST=0-3,68-71,136-139,204-207
• i.e., excludes OS CPU cores (same cores used as in McKernel, also set to nohz_full)

• IHK/McKernel:
• IHK: 50a13c89
• McKernel: 9f82c54b (HFI1 PicoDriver integrated)
• + ANON mmap rewrite
• + reboot script modifications (to boot from /tmp)

• Fujitsu job submission system
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Oakforest PACS: Linux vs. McKernel CPUs

NUMA 0 NUMA 1 NUMA 2 NUMA 3

§ LWK runs on the 
majority of the chip

§ A few CPU cores 
are reserved for 
Linux

§ Mechanism to map 
inter-core 
communication to 
MPI process layout

Linux CPU
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Mini-apps

• GeoFEM (Univ. of Tokyo)
• AMG2013 (CORAL)
• miniFE (CORAL)
• MILC (CORAL)
• Lulesh (CORAL)
• LAMMPS (CORAL)
• Nekbone (CORAL)
• HPCG (CORAL)
• GAMERA (Univ. of Tokyo)
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Mini-apps: MPI ranks and OpenMP threads

Property/
Mini-App

Ranks/
node

Threads/
rank

I_MPI_PIN_ORDER KMP_AFFINITY KMP_HW_SUBSET

GeoFEM 16 8 compact compact 2t

AMG2013 16 16 compact compact N/A

MiniFE 16 16 compact compact N/A

MILC 32 4 compact compact 2t

Lulesh 8 16 compact compact 2t

LAMMPS 32 4 compact compact 2t

Nekbone 32 4 compact compact 2t

HPCG 32 4 compact compact 2t

GAMERA 8 8 compact compact 8c,1t
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GeoFEM – 16 ranks/node, 8 OMP threads/rank

• Weak scaled, up to 6% improvement
• Linux core specialization makes a big difference! 
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AMG2013 – 16 ranks/node, 16 OMP threads/rank

• Weak scaled
• Linux (without core-spec) on 8192 nodes failed
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MILC – 32 ranks/node, 4 OMP threads/rank

• Weak scaled
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Lulesh – 8 ranks/node, 16 OMP threads/rank

• Weak scaled
• Requires n^3 number of ranks
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miniFE – 16 ranks/node, 16 OMP threads/rank

• Large data set 1200x1200x1200 
• Strong scaled
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Nekbone – 32 ranks/node, 4 OMP threads/rank 

• Weak scaled
• Linux failed on 1k and 4k nodes…
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HPCG – 32 ranks/node, 4 OMP threads/rank 

• Weak scaled
• MPI_Init() timed out on 8k nodes run
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ThunderX2 Overview
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• 8 DDR channels
• Up to ~250 GB/s memory bandwidth

• Two sockets, 28 CPU cores / socket
• Can do 1-, 2- and 4-way SMT

• Multi-rail IB
• Up to 13GB/s unidirectional bandwidth

• McKernel now runs on ARM64 



Single node: GUPS (random access benchmark) 
~47% improvement
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• Linux:
• $ OMP_NUM_THREADS=28 OMP_PROC_BIND=close OMP_PLACES=cores numactl -C 0-27 -m 0 ./gups-atse-gcc 32 32768 8192

• $ OMP_NUM_THREADS=24 OMP_PROC_BIND=close OMP_PLACES=cores numactl -C 4-27 -m 0 ./gups-atse-gcc 32 32768 8192

McKernel (using 16GB pages on heap):

• $ OMP_NUM_THREADS=24 mcexec --extend-heap-by=16G numactl -C 0-24 -m 0 ./gups-atse-gcc 32 32768 8192
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Future Directions
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System Software in the Era of Heterogeneous Processing

• Computer manufacturing technologies are approaching their physical limits (~5nm transistors)
• Moore’s Law driven predictable performance increase is coming close to its end

• More efficient architectures and specialization in the form of heterogeneous processing elements (PE)
• GPUs, FPGAs, a lot of upcoming AI specific chips

• Operating systems (OS) traditionally provide: 
• Mechanisms to manage (e.g., to allocate or multiplex) hardware resources 
• Isolation and secure access to devices

• Up till recently heterogeneous PEs are/were:
• Special purpose devices are mainly single-user access
• Slow data connection to host (e.g., PCIe) with dedicated physical memory 
• Separate address spaces, non cache-coherent access between host and accelerator

• However, trends are changing:
• Incorporation of these devices into the memory system of the CPU
• Cache-coherent interconnect standards for accelerators 
• E.g.: CCIX, GenZ, OpenCAPI, Intel CXL

• Tighter integration of various processing elements in recent hardware platforms
• E.g.: Intel’s AgileX FPGA, Xilinx’ Adaptive Compute Acceleration Platform (ACAP), Intel’s Xe(?)

• Eventually opens up the way for PEs to be treated as first-class citizens in the OS

Intel AgileX

Xilinx ACAP
26



System Software in the Era of Heterogeneous Processing

• It will become difficult to manage these devices efficiently
• Especially by explicit user level management

• New OS approaches for scheduling computing elements and managing multiple memory resources will 
be needed

• Challenges and opportunities for the system software?
• Co-design SW interfaces with the hardware to establish standard boundaries
• Portable communication interfaces
• Message passing, notifications, interrupts

• Task dispatching
• What are the right execution model abstractions?
• E.g., non-interruptible, run-to-completion tasks

• Memory management
• Multi-level, heterogeneous devices, unified address spaces

• With new, low-latency interconnects (e.g., optical):
• Disaggregation of compute/memory resources becomes available
• Dynamic reconfiguration based on application demands
• How will these concepts work in HPC?
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Summary

• Lightweight kernels benefit HPC workloads
• Multi-kernel approach adds Linux compatibility to LWK scalability
• Runs the same Linux binary

• Building a full OS is not easy
• Lots of corner cases, especially with POSIX compatibility

• With regards to Fugaku
• If we inspired Fujitsu for some of its Linux design decisions (e.g., memory management) that’s already a 

win!

• Looking for collaborators to extend these concepts over heterogeneous PEs
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Thank you for your attention!
Questions?
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