2019 Intel® eXtreme Performance Users Group (IXPUG) Annual Conference

Cost-Efficiency of Large-Scale Electronic Structure Simulations with Intel Xeon Phi Processors

Hoon Ryu, Ph.D. (E: <u>elec1020@kisti.re.kr</u>)

Division of National Supercomputing R&D Korea Institute of Science and Technology Information (KISTI)

H. Ryu, Cost-Efficiency of Large-Scale Electronic Structure Simulations w/ Intel Xeon Phi Processors

Fitting Parame

Tight-binding (TB) Theory

 α = basis state

S

p

d

An empirical approach: short intro & cons/pros.

 $\mathbf{H}\Psi^{(n)} = \mathbf{E}\Psi^{(n)}$

 $\Psi^{(n)} = \sum_{i=1}^{n} c_{i\alpha}^{(n)} e^{i\alpha}$

 $H_{i\alpha,j\beta} = <$

- Finite sets of localized, orthogonal basis
- Mesh: artificial or the one representing crystalline
- s (1), sp3 (4), sp3d5s* (10),
 - \rightarrow Size doubles for considerations of S.O.
- Will it be possible to describe confined structures with a finite number of plane-wave basis?
 - \rightarrow # of basis needed to describe a non-periodic function with a (Discrete) Fourier Transform?

Cons and Pros

- Major numerical cost happens in diagonalizations \rightarrow N-dimension integrals?
- Not a first principal theory
 - \rightarrow Params fit to reproduce bandstructures known through other methods

 $\mathbf{p}_{\mathbf{z}}$

P. Vogl et al., J. of Phys. Chem. Solids 44, 5, 365-378 (1983)

G. Klimeck et al., IEEE Trans. Elec. Dev. 54, 9, 2079-2089 (2007)

Two PDE-coupled Loop: <u>Schrödinger Equation</u> and <u>Poisson Equation</u>

TB Electronic Structure Calculations

In a perspective of "numerical analysis"

Both equations involve <u>system matrices</u> (Hamiltonian and Poisson)

 \rightarrow DOFs of those matrices are proportional to the # of grids in the simulation domains

- (Stationary) Schrödinger Equations
 - \rightarrow Normal Eigenvalue Problem $H\Psi = E\Psi$
- Poisson Equations
 - → Linear System Problem $-\nabla(\epsilon \nabla V) = \rho \rightarrow Ax = b$

H. Ryu, Cost-Efficiency of Large-Scale Electronic Structure Simulations w/ Intel Xeon Phi Processors

TB Electronic Structure Calculations

In a perspective of "numerical analysis"

- Two PDE-coupled Loop: <u>Schrödinger Equation</u> and <u>Poisson Equation</u>
- Both equation involve system matrices (Hamiltonian and Poisson)
 - \rightarrow DOFs of those matrices are proportional to the # of grids in the simulation domains

- Schrödinger Equations
 - \rightarrow Normal Eigenvalue Problem
- Poisson Equations
 - \rightarrow Linear System Problem $-\nabla(\varepsilon \nabla V) = \rho \rightarrow A x = b$

 $\Psi = E\Psi$

How large are these system matrices? Why do we need to handle those?

Needs for "Large" Electronic Structures

Electron motion happens in cores, but we need more

1. Quantum Simulations of "Realizable" Nanoscale Materials and Devices

→ Needs to handle large-scale atomic systems (~ A few tens of nms)

Development Strategy: DD, Matrix Handling

System matrices for Schrödinger and Poisson equations

Schrödinger Equation• Normal Eigenvalue Problem (Electronic Structure)• Hamiltonian is always symmetric $H\Psi = E\Psi$		Poisson Equation• Linear System Problem (Electrostatics: Q-V)• Poisson matrix is always symmetric $-\nabla(\epsilon \nabla V) = \rho$
<text><list-item></list-item></text>	Adiag(0) W(0,1) Yeg W(1,0) Adiag(1) W(1,2) Yeg W(2,1) Adiag(2) W(2,3) Yeg Thread 0 -W(3,2) Adiag(3) Yeg Thread 2 -W(3,2) Adiag(3) Yeg	<section-header><section-header><list-item><list-item></list-item></list-item></section-header></section-header>

Development Strategy: Numerical Algorithms

Schrödinger equations

Schrödinger Eqs. w/ LANCZOS Algorithm

- → C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255
- Normal Eigenvalue Problem (Electronic Structure)
- Hamiltonian is always symmetric
- Original Matrix \rightarrow T matrix-reduction $H\Psi = E\Psi$
- Steps for Iteration: Purely Scalable Algebraic Ops.

$$\mathbf{v}_{i}: (Nx1) \text{ vectors } (i = 0, ..., \mathbf{K}); \mathbf{a}_{i} \text{ and } \mathbf{b}_{i}: \text{ scalars } (i = 1, ..., \mathbf{K})$$
$$\mathbf{v}_{0} \leftarrow \mathbf{0}, \mathbf{v}_{1} = \text{ random vector with norm } 1;$$
$$\mathbf{b}_{1} \leftarrow \mathbf{0};$$
$$\text{loop for } (j=1; j<=\mathbf{K}; j++)$$
$$\mathbf{w}_{j} \leftarrow \mathbf{Av}_{j};$$
$$\mathbf{a}_{j} \leftarrow \mathbf{w}_{j} \cdot \mathbf{v}_{j};$$
$$\mathbf{w}_{j} \leftarrow \mathbf{w}_{j} - \mathbf{a}_{j}\mathbf{v}_{j} - \mathbf{b}_{j}\mathbf{v}_{j-1};$$
$$\mathbf{b}_{j+1} \leftarrow ||\mathbf{w}_{j}||;$$
$$\mathbf{v}_{j+1} \leftarrow \mathbf{w}_{j} / \mathbf{b}_{j+1};$$
$$\text{construct T matrix};$$
$$\mathbf{m} \text{ loop}$$

Development Strategy: Numerical Algorithms

Poisson equations

Poisson Eqs. w/ CG Algorithm

• Steps for Iteration: Purely Scalable

- → Hestenes et al., J. Res. Natl. Bur. Stand. 49, 409
- Conv. Guaranteed: Symmetric & Positive Definite
- Poisson is always S & PD.

 $-\nabla(\varepsilon\nabla V) = \rho$

Algebraic Ops.

We want to solve
$$Ax = b$$
. First compute $\mathbf{r}_0 = b - Ax_0$, $\mathbf{p}_0 = \mathbf{r}_0$
loop for $(j=1; j \le K; j++)$
 $\mathbf{a}_j \in \langle \mathbf{r}_j \bullet \mathbf{r}_j \rangle / \langle A\mathbf{p}_j \bullet \mathbf{p}_j \rangle$;
 $\mathbf{x}_{j+1} \in \mathbf{x}_j + \mathbf{a}_j \mathbf{p}_j$;
 $\mathbf{r}_{j+1} \in \mathbf{r}_j - \mathbf{a}_j A\mathbf{p}_j$;
if $(||\mathbf{r}_{j+1}||/||\mathbf{r}_0|| < e)$
declare \mathbf{r}_{j+1} is the solution of $Ax = b$ and break the loop
 $\mathbf{c}_j \in \langle \mathbf{r}_{j+1} \bullet \mathbf{r}_{j+1} \rangle / \langle \mathbf{r}_j \bullet \mathbf{r}_j \rangle$;
 $\mathbf{p}_{j+1} \in \mathbf{r}_{j+1} + \mathbf{c}_j \mathbf{p}_j$;
end loop

Performance Bottleneck?

Matrix-vector multiplier: Sparse matrices

Vector Dot-Product (VVDot)

Main Concerns for Performance

- Collective Communication
 - → May not be the main bottleneck as we only need to collect a single value from a single MPI process
- Matrix-vector Multiplier
 - → Communication happens, but would not be a critical problem as it only happens between adjacent ranks
 - \rightarrow Data locality affects vectorization efficiency

(Sparse) Matrix-vector Multiplier (MVMul)

Single-node Performance: Whole domain in MCDRAM

H. Ryu, Cost-Efficiency of Large-Scale Electronic Structure Simulations w/ Intel Xeon Phi Processors

Performance w/ Intel® KNL Processors

Speed in various computing platforms

Description of BMT Target and Test Mode

- 10 CB states in 16x43x43(nm³) [100] Si:P quantum dot
 - → Material candidates for Si Quantum Info. Processors (Nature Nanotech. 9, 430)
 - \rightarrow 15.36Mx15.36M Hamiltonian Matrix (~11GB)
- Specs of Other Platforms
 - → Xeon(V4): 24 cores of Broadwell (BW) 2.50GHz
 - → Xeon(V4)+KNC: 24 cores BW + 2 KNC 7120 cards
 - \rightarrow Xeon(V4)+P100: 24 cores BW + 2 P100 cards
 - \rightarrow KNL(HBM): the one described so far

Results

- KNL slightly beats Xeon(V4)+P100
 - \rightarrow Copy-time (CPIN): a critical bottleneck of PCI-E devices
 - → P100 shows better kernel speed, but the overall benefit reduces due to data-transfer between host and devices
 - \rightarrow CPIN would even increase if we consider periodic BCs
- Another critical figure of merit: Energy-efficiency

Average Power (x10² watts) ∞ Consumed 0.3 0.9 0.6 Elapsed time (x10³ secs) **Results:** Xeon+KNC Xeon+P100 KNL(HBM Xeon Xeon+KNC Xeon+P100 KNL(HBM) Xeon Computing Platform Computing Platform H. Ryu, Cost-Efficiency of Large-Scale Electronic Structure Simulations w/ Intel Xeon Phi Processors

Performance w/ Intel® KNL Processors

Energy consumption in various computing platform

•

When problem sizes exceed > 16GB?

Matrix-vector multiplier

```
for (unsigned int i = 0; i < nSize; i++) {</pre>
   double real sum = 0.0;
   double imaginary_sum = 0.0;
   const unsigned int nSubStart = pMatrixRow[i];
   const unsigned int nSubEnd = pMatrixRow[i + 1];
   for (unsigned int j = nSubStart; j < nSubEnd; j++) {</pre>
                                                         1. index
        const unsigned int nColIndex = pMatrixColumn[i]:
                                                          2. Matrix
        const double m real = pMatrixReal[j];
                                                            element
        const double m_imaginary = pMatrixImaginary[j];
       const double v real = pVectorReal[nColIndex];
       const double v_imaginary = pVectorImaginary[nColIndex];
        real_sum += m_real * v_real - m_imaginary * v_imaginary;
        imaginary_sum += m_real * v_imaginary + m_imaginary * v real;
   pResultReal[i] = real_sum;
   pResultImaginary[i] = imaginary_sum;
```

Data to be saved in memory

- index: column index of matrix nonzero elements (indirect index)
- matrix and vector: matrix nonzero elements and vector elements

Available options for MCDRAM utilization

- Cache mode: use MCDRAM like L3 cache
- Preferred mode: First fill MCDRAM then go to DRAM

 \rightarrow numactl -preferred=1 ...

Library memkind: use dynamic allocations in code
 → hbw malloc(), hbw free()

When problem sizes exceed > 16GB?

Which component would be most affected by the enhanced bandwidth of MCDRAM?

- MVMul is tested with 11GB Hamiltonian matrix <u>Good for us matrix is built upon the definition of geometry!</u>
- Matrix nonzero elements drive the most remarkable performance improvement when combined w/ MCDRAM

Vectorization efficiency

Matrix-vector multiplier: Revisit

```
for (unsigned int i = 0; i < nSize; i++) {</pre>
   double real sum = 0.0;
   double imaginary_sum = 0.0;
   const unsigned int nSubStart = pMatrixRow[i];
   const unsigned int nSubEnd = pMatrixRow[i + 1];
   for (unsigned int j = nSubStart; j < nSubEnd; j++) {</pre>
        const unsigned int nColIndex = pMatrixColumn[j];
        const double m_real = pMatrixReal[j];
        const double m_imaginary = pMatrixImaginary[j];
       const double v real = pVectorReal[nColIndex];
       const double v imaginary = pVectorImaginary[nColIndex];
        real_sum += m_real * v_real - m_imaginary * v_imaginary;
        imaginary sum += m real * v imaginary + m imaginary * v real;
   }
   pResultReal[i] = real_sum;
   pResultImaginary[i] = imaginary_sum;
```


→ But "necessary" vector elements are not, and need to be gathered in vector register first!!

- Efficiency of vectorization would not be super excellent
 - → Vector elements should be "gathered" onto register before processing vectorization for matrix-vector multiplier

Vectorization efficiency

Matrix-vector multiplier: Revisit

```
for (unsigned int i = 0; i < nSize; i++) {</pre>
   double real sum = 0.0;
   double imaginary_sum = 0.0;
   const unsigned int nSubStart = pMatrixRow[i];
   const unsigned int nSubEnd = pMatrixRow[i + 1];
   for (unsigned int j = nSubStart; j < nSubEnd; j++) {</pre>
        const unsigned int nColIndex = pMatrixColumn[j];
       const double m real = pMatrixReal[i];
       const double m_imaginary = pMatrixImaginary[j];
       const double v real = pVectorReal[nColIndex];
       const double v_imaginary = pVectorImaginary[nColIndex];
        real_sum += m_real * v_real - m_imaginary * v_imaginary;
        imaginary_sum += m_real * v_imaginary + m_imaginary * v_real;
   }
   pResultReal[i] = real_sum;
   pResultImaginary[i] = imaginary_sum;
```


Assembly

Block 2: leal (%rcx,%rdi,1), %r15d vpadddy (%rll,%rl5,4), %ymmO, %ymml kxnorw %k0, %k0, %k1 vpxord %zmm9, %zmm9, %zmm9 vpxord %zmmll, %zmmll, %zmmll kxnorw %k0, %k0, %k2 vmovupsz (%rax,%r15,8), %zmm10 vmovupsz (%r10,%r15,8), %zmm12 add \$0x8, %edi vgatherdpdz (%r9,%ymm1,8), %k2, %zmm11 vgatherdpdz (%r14,%ymm1,8), %k1, %zmm9 vmulpd %zmml1, %zmm10, %zmm8 vmulpd %zmm10, %zmm9, %zmm13 vfmsub231pd %zmm12, %zmm9, %zmm8 vfmadd231pd %zmm12, %zmm11, %zmm13 vaddpd %zmm4, %zmm8, %zmm4 vaddpd %zmm2, %zmm13, %zmm2 cmp %r8d, %edi jb 0x417920 <Block 2>

- Efficiency of vectorization would not be super excellent
 - → Vector elements should be "gathered" onto register before processing vectorization for matrix-vector multiplier

Vectorization efficiency

Matrix-vector multiplier: Revisit

```
for (unsigned int i = 0; i < nSize; i++) {</pre>
   double real sum = 0.0;
   double imaginary_sum = 0.0;
   const unsigned int nSubStart = pMatrixRow[i];
   const unsigned int nSubEnd = pMatrixRow[i + 1];
   for (unsigned int j = nSubStart; j < nSubEnd; j++) {</pre>
        const unsigned int nColIndex = pMatrixColumn[j];
       const double m real = pMatrixReal[j];
       const double m_imaginary = pMatrixImaginary[j];
       const double v real = pVectorReal[nColIndex];
       const double v_imaginary = pVectorImaginary[nColIndex];
        real_sum += m_real * v_real - m_imaginary * v_imaginary;
        imaginary_sum += m_real * v_imaginary + m imaginary * v real;
   pResultReal[i] = real_sum;
   pResultImaginary[i] = imaginary_sum;
```

Efficiency of vectorization would not be super excellent
 → Vector elements should be "gathered" onto register before proc

AVX2 (-AVX2)

Vector length 2 Normalized vectorization overhead 1.020 Vector cost : 24.5 Estimated potential speedup: 1.490

MIC-AVX512 (-xMIC-AVX512)

Vector length 8 Normalized vectorization overhead 1.104 Vector cost : 8.370 Estimated potential speedup: **3.930**

H. Ryu, Cost-Efficiency of Large-Scale Electronic Structure Simulations w/

ier

Extremely large-scale problems

In NURION computing resource

NURION System Overview

- Storage 20PB SFS@300GB/s, 10PB Archiving
 Global scratch: 20PB, 0.3TB/s (DDN ES14KX 9ea, 360 x 8TB disk each)
 Home and application directory 1PB
 NVMe Burst Buffer: 0.8PB, 0.8TB/s (IME240 40ea 19 NVMe SSD each)
- Cray TSMSF and IBM TS4500

Interconnect OPA(Omni-Path Architecture), Fat-Tree, 50% Blocking

- Intel OPA High-speed interconnect switch
 274x 48-port OPA edge switches
 8x 768-port OPA core switches
- Bandwidth: 12.3 GB/sec
- Bisectional Bandwidth : 27 TB/sec
- > 10⁻¹⁶ BER(Bit Error Rate), Adaptive routing

- 132 SKL (Xeon 6148) nodes / 8,305 KNL (Xeon Phi 7250) nodes
- Ranked at 13th in Top500.org as of 2018. Nov.
 - → Rpeak 25.7pFLOPS, Rmax, 13.9pFLOPS. https://www.top500.org/system/179421

H. Ryu, Cost-Efficiency of Large-Scale Electronic Structure Simulations w/ Intel Xeon Phi Processors

ICCC KISTI

Extremely large-scale problems

In NURION computing resource

Description of BMT Target

- Computed lowest 3 conduction sub-bands in 2715x54x54 (nm³) [100] Si:P square nanowire
 - \rightarrow contains 400 million (0.4 billion) atoms,
 - \rightarrow Hamiltonian matrix DOF = 4 billion x 4 billion

Computing Environment

- Intel® Xeon Phi 7250 (NURION)
 - → 1.4GHz/68 cores, 96GB DRAM, 16GB MCDRAM (/node) → OPA (100GB)

Other Information for Code Compile and Runs

- Intel® Parallel Studio 17.0.5
- Instruction set for vectorization: MIC-AVX512
- MCDRAM allocation: numactl –preferred=1
- OPA fabric. 4 MPI processes / 17 threads per node
- Memory Placement Policy Control

```
module purge
module load craype-network-opa
module load intel/17.0.5
module load impi/17.0.5
```

```
export NUMACTL="numactl --preferred=1"
export I_MPI_HBW_POLICY=hbw_bind,hbw_preferred,hbw_bind
export I_MPI_FABRICS=ofi
```

ulimit -s unlimited cd \$PBS_O_WORKDIR cat \$PBS_NODEFILE time mpirun \$NUMACTL ...

Snapshot of a PBS script

- > export I_MPI_HBW_POLICY = hbw_bind, hbw_preferred, hbw_bind
 - (HBW memory for RMA operations and for Intel® MPI Library first. If HBW memory is not available, use local DDR)
 - RMA: Remote Memory Access (for MPI communications)

Extremely large-scale problems

In NURION computing resource

Summary

KISTI Intel® Parallel Computing Center

- Introduction to Code Functionality
- Main Numerical Problems and Strategy of Development
- Performance (speed and energy consumption) in a single KNL node
 → Benefits against the case of CPU + 2xP100 GPU devices
- Performance in extremely huge computing environment
 - \rightarrow Strong scalability up to 2,500 KNL nodes in NURION system
- (Appendix) Strategy of Performance Improvement towards PCI-E devices
- (Appendix) Applications: Perovskite Optoelectronics

Thanks for your attention!!

Strategy for offload-computing

Asynchronous Offload (for Xeon(V4) + KNC, Xeon(V4) + GPU)

The real bottleneck of computing: Overcome with asynchronous offload <u>H. Ryu et al., Comp. Phys. Commun. (2016)</u> (http://dx.doi.org/10.1016/j.cpc.2016.08.015)

- Vector dot-product is not expensive: All-reduce, but small communication loads
- Vector communication is not a big deal: only communicates between adjacent layers
- Sparse-matrix-vector multiplication is a big deal: Host and PCI-E device shares computing load

Strategy for offload-computing

Data-transfer and Kernel Functions for GPU Computing

Data-transfer between host and GPU Devices

- 3x increased bandwidth with pinned memory
- Overlap of computation and data-transfer with • asynchronous streams

Speed-up of GPU Kernel Function (MVMul)

Treating several rows at one time with WARPs

Elapsed Time Host (H) Matrix-Vector Multiplier (CPU) Memcpy Memcpy via PCI-E (H to D)Memcpy Memcpy via PCI-E (D to H) Matrix-Vector Multiplier (GPU) **GPU Device (D)**

[Asynchronous Data Transfer with Pinned Memory]

[Synchronous Data Transfer with Pageable Memory]

H. Ryu, Cost-Efficiency of Large-Scale Electronic Structure Simulations w/ Intel Xeon Phi Processors

H. Ryu et al., J. Comp. Elec. (2018)

(http://dx.doi.org/10.1007/s10825-018-1138-4)

H. Ryu, Cost-Efficiency of Large-Scale Electronic Structure Simulations w/ Intel Xeon Phi Processors

Applications: MHP Optoelectronics

Metal Halide Perovskites (MHPs)

В

- **Any materials** with the same type of crystal structure as calcium titanium oxide (CaTiO₃)
 - \rightarrow ABX₃ structure (general chemical formula)
- **CH₃NH₃PbX₃** (Methylammonium Lead Halides)
 - \rightarrow Highly efficient photovoltaic devices (X=lodide)))
 - → Cost-efficient / **Bandgap-tunability** for visible lights
 - **CsPbX**₃ (Cesium Lead Halides)
 - \rightarrow All-inorganic material: enhanced stability
 - \rightarrow **Bandgap-tunability** is as good as MAPbX₃

15.8%

- Halide-controlled bandgap ٠
 - \rightarrow Iodide (I), Bromide (Br), and Chloride (CI)
 - \rightarrow Attractive for Light-emitting diode designs

Issue: Phase Separation in Mixed Halides

A problem in getting lights of stable emission wavelengths

Approach of Simulations

- A 8-band (sp³ w/ S.O.) tight-binding model
- Parameters are fitted to reproduce DFT-known bulk band gap energies w/ offsets
- 4 types of supercell geometries
 - \rightarrow Cube and Sphere Quantum Dots (QDs)
 - \rightarrow Square Nanowires (NWs)
 - \rightarrow Nano-platelets (Quantum Wells ,QWs)

Questions to be answered with TB simulations

- Why does a phase separation drive a red-shift?
- How to reduce the effects of a photoirradiation (red-shift)?
 - \rightarrow In viewpoints of structural / compositional engineering

Band Gap Details

IPCC KISTI

MHPs with binary halide mixtures

