
IXPUG 2019 – Tutorial
CERN September, 27th 2019

francisco.perez@intel.com

mailto:Francisco.perez@intel.com

Programmable Solutions Group

Agenda

Introduction to FPGA Acceleration Stack

Software and board installation

• Walkthrough on bring-up test on the server

What is an Accelerator Functional Unit (AFU)

Application Development using the Acceleration Stack

AFU development using High Level Synthesis (C/C++)

• Introduction to HLS tools

• HLS Interfaces

• HLS AFU development flow

Programmable Solutions Group 4

The Big Data Problem

We are generating data at a faster rate
than our ability to analyze, understand,
transmit, secure and reconstruct in real-
time

Not enough compute power, storage or
infrastructure to compute in real time
with a reasonable TCO

This creates an immense demand for
compute architectures that can scale up
and out exponentially

Programmable Solutions Group

Simplified programming transforming Memory & storage

Intelligent InterconnectAdvanced architectures

Focused investments to accelerate HPC & AI

DAOS

SCALAR VECTOR MATRIX SPATIAL

+ Quantum & Neuromorphic

UNIFIED SINGLE SOFTWARE ABSTRACTION
AND DOMAIN-SPECIFIC LIBRARIES

RE-ARCHITECTING THE MEMORY
HIERARCHY AND FILE SYSTEMS

COMPUTE ARCHITECTURES
FOR ALL YOUR WORKLOADS INTERCONNECT BEYOND “I/O”

Intel is building the hardware, software, interconnect, memory and security
architectures needed to enable your tomorrow’s applications

ADVANCED HIGH
PERFORMANT FABRICS

OPEN
STANDARDS

OPTANE

OPEN
STANDARDS OPEN

STANDARDS

Programmable Solutions Group 9

Host
CPU

ASSP/
ASIC

DEDICATED ACCELERATORS
for maximum

compute efficiency of
specific, fixed functions

VERSATILE ACCELERATORS
for customized and
changing workloads

in networking, storage, and
compute

FPGA/
GPU

Acceleration Choices

CPUs to become more powerful and efficient
but certain applications will still require a

hardware accelerator.

Programmable Solutions Group 11

The Intel Vision

Heterogeneous Systems:

▪ Span from CPU to GPU to FPGA to dedicated devices with consistent
programming models, languages, and tools

CPUs GPUs FPGAs ASSP

FPGAs are the focus of today

Programmable Solutions Group 12

▪ Field Programmable Gate Array (FPGA)

– Millions of logic elements

– Thousands of embedded memory blocks

– Thousands of DSP blocks

– Programmable routing

– High speed transceivers

– Various built-in hardened IP

▪ Programmable interconnect

▪ Used to create Custom Hardware!

DSP Block Memory Block

Programmable

Routing Switch

Logic

Modules

What is a FPGA?

Programmable Solutions Group 13

How Do Intel® FPGAs Help to Solve the Problem?

z
Workload N

Workload 2
Workload 1

Efficient Performance:

improve performance/watt
Custom hardware tailored

Workload Optimization:

ensure Xeon cores serve their
highest value processing
FPGA focus on intensive tasks

Real-Time:

high bandwidth connectivity and
low-latency parallel processing
In-line data streaming

Milliseconds

Programmable Solutions Group 14

Multi-function HW Acceleration
with Intel® FPGA PAC

Intel® FPGA
Programmable
Acceleration
Card (PAC)

Security

NFV/
Infrastructure

Database
Access

Accelerate the application you need,
whenever you need it.

FPGA

Video
Processing

A.I.

Scientific
Computation

Financial
Computation

Data
Analytics

Edge
Processing

Any accelerator function
Anytime!

AFU

Programmable Solutions Group 15

Separation of concerns

Two groups of developers:

▪ Domain experts concerned with getting a result

– Host application developers leveraging optimized libraries

▪ Tuning experts concerned with performance

– Typical FPGA developers that create optimized libraries

Intel® Math Kernel Library a simple example of raising the level of abstraction to
the math operations

▪ Domain experts focus on formulating their problems

▪ Tuning experts focus on vectorization and parallelization

Host
CPU

HW
Accel

Programmable Solutions Group 16

Traditional FPGA Design and Use is “Difficult”

Low level hardware design requires complicated, long, time-consuming efforts

Place & Route / Timing Analysis / Timing Closure

Synthesis

Hardware Description
Languages

Behavioral Simulation

Board Simulation & Test

17

Software Developers are the New FPGA Developers

“I don’t speak FPGA!

What is the programming model,
and where are the compilers,
libraries and tools I am used to?”

New use case of FPGAs as
software-defined hardware

and the benefits as
accelerators

Opens up the usage for
a much larger developer

base

Programmable Solutions Group

Gap: Creating Full-Stack Accelerated
Applications on FPGA is

Difficult and Time Consuming

Provides standard C API to
standardized FPGA interface mangaer

FPGA IO Interfaces

FPGA Interface Manager
(Standard I/O Interfaces)

18

Acceleration Stack to the rescue

OS Driver

Low-Level FPGA Management

Open Programmable
Acceleration Engine (OPAE)

Prebuilt and provided
for specific board

Libraries

Software Frameworks

SW Application
Application FPGA Accelerator

(Loadable Workload)

Increase
Abstraction

Increase
Ease of Use

Orchestration /
Rack Management

Intel® FPGA Programmable
Accelerator Card (PAC)

* Other names and brands may be claimed as the property of others.

Pre-built
Accelerator
Solutions

(ecosystem)

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Accelerator Functions

Programmable Solutions Group 19

Components of Acceleration Stack: Overview
Intel®

CPU Application

Drivers

User, Intel, or 3rd-Party IP
Plugs into AFU Slot

(Tuning Expert)

PCIe* Drivers
Provided by Intel

Open Programmable
Acceleration Engine (OPAE)

Provided by Intel

Libraries

Developed by User
(Domain Expert)

User, Intel, and 3rd Party
(Tuning Expert)

Qualified and Validated for
volume deployment
Provided by OEMs

Intel FPGA

FPGA Interface Manager
Provided by Intel

Acceleration
Functional Unit

(AFU)

Signaling and
Management

PCIe

FPGA
Programmable

Acceleration
Card

Programmable Solutions Group

Board Design &
Qualification

Software
Development

FPGA Accelerator
Development

Intel® Investment in All These Areas
Democratizes FPGA Acceleration

20

The Challenge: Enabling the Performance &
Capabilities of FPGA for Everyone

Programmable Solutions Group 21

FPGA Acceleration Cards for datacenters

Intel® FPGA PAC
with Arria® 10 GX

Enabling high throughput
¾ length, full height, dual PCIe slot card

225W TDP

Broad deployment at low power
½ length, ½ height, 1 PCIe slot card

70W TDP

Intel® FPGA Programmable Acceleration Cards
for Application Acceleration

Intel® FPGA PAC
with Stratix® 10 GX

Programmable Solutions Group 22

Intel® FPGA Programmable Acceleration Card
with Intel® Arria® 10 GX FPGA

Low power programmable acceleration
platform with data center-grade
software stack enabling in-line

processing and memory intensive
applications.

Features

• 1.15 million logic elements

• DDR4 memory, 2 banks 4GB @2133Mbps

• 53Mbit embedded memory

• 4x10G / 1x40G QSFP

• PCIe* Gen 3 x8 (x16 mechanical)

• BMC for monitoring and control (PLDM)

• ½ length, ½ height, 1slot PCIe* card

• 70W TDP, 45W FPGA

• Acceleration Stack for Intel® Xeon® CPU with
FPGAs

* Other names and brands may be claimed as the property of others.

Programmable Solutions Group 24

Intel® FPGA Programmable Acceleration Card
with Intel® Stratix® 10 GX FPGA

High bandwidth programmable
acceleration platform with data center-

grade software stack enabling in-line
processing and memory intensive

applications.

Features

• 2.8 million logic elements

• 32 Gb DDR4 DIMM memory (4x8GB, 2133Mbps)

• 229 Mbit embedded memory

• 2x 100G (4x25Gb) QSFP

• PCIe* Gen3 x16

• BMC for monitoring and control (PLDM)

• ¾ length, full height, dual slot card

• 225W TDP, 150W FPGA

• Acceleration Stack for Intel® Xeon® CPU with
FPGAs

* Other names and brands may be claimed as the property of others.

Specifications preliminary and are subject to change

Programmable Solutions Group

FPGA Hardware + Interface Manager

FPGA Driver
(physical function – PF)

FPGA API (C) (enumeration, management, access)

Applications, Frameworks, Intel® Acceleration Libraries

Start developing for Intel FPGAs with OPAE today: http://01.org/OPAE

Bare Metal OS Virtual Machine

FPGA Driver
(virtual function - VF)

Hypervisor

FPGA Driver (common – AFU, local memory)

Consistent API across product generations and platforms
Abstraction for hardware specific FPGA resource details

Designed for minimal software overhead and latency
Lightweight user-space library (libfpga)

Open ecosystem for industry and developer community
FPGA driver being upstreamed into Linux kernel

Supports both virtual machines and bare metal platforms

Faster development and debugging of Accelerator Functions
with the included AFU Simulation Environment (ASE)

Includes guides, command-line utilities and sample code

26

Open Programmable Acceleration Engine (OPAE)

OS

Simplified FPGA Programming Model for
Application Developers

O
P

A
E

http://01.org/OPAE

Step Guide

Programmable Solutions Group

Out-of-Box User Flow for Acceleration Stack

Install PAC

Download & Install
Runtime Package

of Acceleration Stack

Deployment Flow
(Software only)

AFU Development
Flow With Quartus

Download & Install
Developer Package

of Acceleration Stack

Install
Supported OS

Download &
Install Workload

Download
& Install

Simulator

Includes
HLS &

OpenCL
(Optional)

Write Host
Application

Create & Simulate
Workload

2

3
4

Runtime package includes only OPAE drivers and sample AFU, Developer package includes Quartus + IP Lic + drivers

1

5

Select
supported

Server

Board
Bring

up

6

Programmable Solutions Group

Customers can deploy on their servers of choice following:
Intel Programmable Acceleration Card Platform Qualification Guidelines*

*Available on request

29

Select Supported Server

OEM Dell Fujitsu HPE Inspur Quanta Kontron Supermicro

Status Qualified Qualified Qualified Qualified* Qualified Ongoing Qualified*

Servers
Supported

R640
R740

R740xd
R840

R940xa

RX2540
TX2550

ProLiant
DL360
DL380

5280M5 QuantaGrid
D52BQ-1U
D52BQ-2U

QuantaVault
JG4080

Symkloud
MS2900

Sys-1029U
Sys-2029U
Sys-6019U
Sys-6029U

1

Programmable Solutions Group

Install PAC – Arria10 PAC in HPE DL360

FrontBack

Air Flow

2

Programmable Solutions Group

Install Supported OS

Acceleration Stack v1.2 validated OS

▪ RHEL kernel 3.10 (v7.4 & 7.6)

▪ CentOS kernel 3.10 (v7.4 & 7.6)

▪ Ubuntu kernel 4.4 (v16.04)

3

Programmable Solutions Group

Download Acceleration Stack
4

https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/overview.html

https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/overview.html

Programmable Solutions Group

Download Intel® Acceleration Stack
4

Programmable Solutions Group

AFU Development Software Requirements

Acceleration Stack SDK (all licenses included in development package)

– Quartus Prime Pro Software 17.1.1 for v1.2 Acceleration Stack, 18.0.1 for v2.0

– IP-PCIE/SRIOV License

– Low Latency 10Gbps Ethernet MAC(6AF7-0119) license

– Low Latency 40Gbps Ethernet MAC and PHY(6AF7-011B) license

python2-jsonschema package from the epel repository (version 2.7 or higher)

GCC – C compiler version 4.7 or greater

RTL Simulator

– Synopsys VCS-MX version 2016.06-SP2-1

– 64-bit ModelSim SE or QuestaSim version 10.5c or higher

Programmable Solutions Group

Installing the Intel® Acceleration Stack

1. Extract the archive file:

tar xvf *rte_installer.tar.gz or tar xvf *dev_installer.tar.gz

2. Change to the installation directory.

cd *rte_installer or cd *dev_installer

3. Install Extra packages for Enterprise Linux (EPEL) for RHEL 7.4 only

sudo yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

sudo subscription-manager repos --enable "rhel-*-optional-rpms“ --enable "rhel-*-extras-rpms“

4. Run setup script

./setup.sh

5. Run the initialization script from the installation directory to setup environment variables

source /home/<username>/intelrtestack/init_env.sh or source /home/<username>/inteldevstack/init_env.sh

From the Quick Start Guide4

https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html

Programmable Solutions Group

Intel® Acceleration Stack Directory Structure

FIM programming
files

Sample AFU RTL, SW
sources; GBS files

OPAE SW tools

Simulation tool

FPGA Driver

Command line
utilities

$OPAE_PLATFORM_ROOT
Acceleration Stack home directory

4

Build scripts

5

Programmable Solutions Group

Out-of-Box User Flow for Acceleration Stack

Install PAC

Download & Install
Runtime Package

of Acceleration Stack

Intel Website (Acceleration Hub)

Deployment
Flow (Software

only)

AFU
Development

Flow With
Quartus

Download & Install
Developer Package

of Acceleration Stack

Install
Supported OS

Download &
Install Workload

Download
& Install

Simulator

Includes
HLS &

OpenCL
(Optional)

Write Host
Application

Create & Simulate
Workload

2

3
4

Runtime package includes only OPAE drivers and sample AFU
Developer package includes Quartus + IP Lic + drivers

1

5

Select
supported

Server

Board
Bring up

https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx/getting-started.html

Programmable Solutions Group

Board Bring up steps

Locate PAC
in Multiple

Card
System

Finding
Serial

Number

Check
PCIe*

Speed and
Width

Check FIM
and BMC
Version

Run FPGA
Diagnostics

5.1 5.2 5.3 5.4 5.5

Programmable Solutions Group

Locating PAC in Multi-Card System: SYSFS Entry

To list all SYSFS entries in a multi-PAC system
$ ls -l /sys/class/fpga/intel-fpga-dev.?/device

lrwxrwxrwx. 1 root root 0 Oct 25 12:34 /sys/class/fpga/intel-fpga-dev.0/device -> ../../../0000:3b:00.0
lrwxrwxrwx. 1 root root 0 Oct 25 12:34 /sys/class/fpga/intel-fpga-dev.1/device -> ../../../0000:86:00.0
lrwxrwxrwx. 1 root root 0 Oct 25 12:34 /sys/class/fpga/intel-fpga-dev.2/device -> ../../../0000:87:00.0

5.1

Programmable Solutions Group

Finding Board Serial Number

To view serial number for a particular SYSFS entry

00000000 4d 41 43 3d 30 30 3a 30 62 3a 33 65 3a 30 31 3a |MAC=00:0b:3e:01:|
00000010 65 65 3a 66 38 0a 53 4e 3d 32 30 33 32 31 36 0a |ee:f8.SN=203216.|
00000020 50 43 3d 41 31 30 53 41 34 2d 30 55 2d 42 31 31 |PC=A10SA4-0U-B11|
00000030 35 58 32 45 32 51 2d 32 32 2d 49 34 30 31 34 30 |5X2E2Q-22-I40140|
00000040 54 2d 36 0a 52 45 56 3d 31 2e 31 32 2e 30 2e 30 |T-6.REV=1.12.0.0|
00000050 2e 30 0a 0a ff ff ff ff ff ff ff ff ff ff ff ff |.0..............|

00000200

$ hexdump -C /sys/class/fpga/intel-fpga-dev.2/intel-fpga-fme.2/intel-pac-hssi.?.auto/hssi_mgmt/eeprom

Find serial number on front
bottom of Arria® 10 GX PAC

55.2

Programmable Solutions Group

Check PCIe Speed and Width

05:00.0 Processing accelerators: Intel Corporation Device 09c4
Subsystem: Intel Corporation Device 0000
Physical Slot: 2
Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx+
Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx-
Latency: 0, Cache Line Size: 64 bytes
Interrupt: pin A routed to IRQ 25
Region 0: Memory at eab00000 (64-bit, prefetchable) [size=512K]
Region 2: Memory at eaa00000 (64-bit, prefetchable) [size=1M]
Capabilities: [68] MSI-X: Enable+ Count=7 Masked-

Vector table: BAR=0 offset=00009000
PBA: BAR=0 offset=0000a000

Capabilities: [78] Power Management version 3
Flags: PMEClk- DSI- D1- D2- AuxCurrent=0mA PME(D0-,D1-,D2-,D3hot-,D3cold-)
Status: D0 NoSoftRst+ PME-Enable- DSel=0 DScale=0 PME-

Capabilities: [80] Express (v2) Endpoint, MSI 00
DevCap: MaxPayload 256 bytes, PhantFunc 0, Latency L0s <64ns, L1 <1us

ExtTag+ AttnBtn- AttnInd- PwrInd- RBE+ FLReset+
DevCtl: Report errors: Correctable+ Non-Fatal+ Fatal+ Unsupported+

RlxdOrd- ExtTag+ PhantFunc- AuxPwr- NoSnoop+ FLReset-
MaxPayload 256 bytes, MaxReadReq 1024 bytes

DevSta: CorrErr- UncorrErr- FatalErr- UnsuppReq- AuxPwr- TransPend-
LnkCap: Port #0, Speed 8GT/s, Width x8, ASPM not supported, Exit Latency L0s <4us, L1 <1us

ClockPM- Surprise- LLActRep- BwNot-
LnkCtl: ASPM Disabled; RCB 64 bytes Disabled- CommClk+

ExtSynch- ClockPM- AutWidDis- BWInt- AutBWInt-
LnkSta: Speed 8GT/s, Width x8, TrErr- Train- SlotClk+ DLActive- BWMgmt- ABWMgmt-

(truncated)

$ sudo lspci –d 8086:09c4 -vvv

55.3

Programmable Solutions Group

Useful OPAE Command-line Utilities For Board
Management

Commands Description

fpgainfo
User can read the Board Telemetry data. For example temperature or
Voltages.

fpgabist
Performs self-diagnostic test: measure bandwidth between local DDR4
memory and system memory

fpgaconf
Configure Acceleration Function Unit (AFU) into FPGA;
Check compatibility with targeted FPGA and FIM

fpgaflash
Updates FPGA Interface Manager (FIM) image (.rpd file) being stored in flash;
Updates BMC firmware.

Programmable Solutions Group

Checking FIM and BMC Version

▪ Board needs active PCIe* link to check FIM version

▪ Use OPAE tool fpgainfo to check PAC’s FIM and BMC version

▪ Sample output

$ sudo fpgainfo fme

BMC Version

FIM Version

5.4

Programmable Solutions Group

Version Table

The FIM version and Acceleration Stack version have to match to be able to
load AFU

Other wrong version combinations won’t necessarily give error, but result will
be unpredictable since they are not tested

Acceleration Stack
Version

FIM Version (PR Interface ID)
OPAE

Version
BMC Version

1.2 Production 69528db6-eb31-577a-8c36-68f9faa081f6 1.1.2-1 26889

1.2 Alpha 93abeb6a-30c8-5f77-8172-d828c3a699ca 1.1.1-1 26889

1.1 Production 9926ab6d-6c92-5a68-aabc-a7d84c545738 1.0.2 26822

5.4

Programmable Solutions Group

Ensure PAC Is Visible In-System

If FIM is loaded correctly, PAC should show up as PCIe* endpoint, and can be
seen from ‘lspci’ (Linux command).

▪ OS on host CPU will discover PAC cards as PCIe device 8086:09c4

$ lspci | grep 09c4

04:00.0 Processing accelerators [1200]: Intel Corporation Device [8086:09c4]

5.4

Programmable Solutions Group

Checking OPAE Software Version

Follow Quick Start Guide to check OPAE version

▪ For example, in CentOS/RHEL, run the following to check OPAE version:

▪ Sample output

opae-tools-1.1.2-1.x86_64

opae-devel-1.1.2-1.x86_64

opae-libs-1.1.2-1.x86_64

opae-1.1.2-1.x86_64

$ rpm –qa | grep opae

5.4

Programmable Solutions Group

What is Diagnostic test

The fpgabist tool performs self-diagnostic tests on supported FPGA platforms.

Tests PCIe, DMA from CPU DDR to Device DDR and memory access bandwidth

Currently, fpgabist accepts the following AFs:

1. nlb_mode_3: The native loopback (NLB) test implements a loopback from TX
to RX. Use it to verify basic functionality and to measure bandwidth.

2. dma_afu: The direct memory access (DMA) AFU test transfers data from host
memory to FPGA-attached local memory.

Programmable Solutions Group

Run FPGA Diagnostics

Configure the number of system hugepages the fpgadiag utility requires

sudo sh -c "echo 20 > /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages"

Configure and run diagnostics with NLB_3 AFU Image

sudo fpgabist
$OPAE_PLATFORM_ROOT/hw/samples/nlb_mode_3/bin/nlb_mode_3.gbs

Configure and run diagnostics with DMA AFU Image

sudo fpgabist
$OPAE_PLATFORM_ROOT/hw/samples/dma_afu/bin/dma_afu.gbs

5.5

Programmable Solutions Group

FPGA

DMA_AFU

DMA AFU: Built-In Self Test (fpgabist)

PCIe

DMA DMA

Memory

Controller

DDR

System

Memory

PAC

5.5

Programmable Solutions Group

DMA Built-in Self Test Output

fpgainfo Tool output (FME, TEMP, POWER, PORT)

FME and PORT error status registers (for AFU developer and user to debug)

Partial Reconfiguration messages (loading AFU)

DMA bandwidth report

5.5

Programmable Solutions Group

DMA BIST Output 1/5

==

Beginning FPGA Built-In Self-Test

==
Device: bus = 04, device = 00, func = 0
Board Management Controller, microcontroller FW version 26889
Last Power Down Cause: POK_CORE
Last Reset Cause: None
//****** FME ******//
Object Id : 0xF300000
PCIe s:b:d:f : 0000:04:00:0
Device Id : 0x09C4
Socket Id : 0x00
Ports Num : 01
Bitstream Id : 0x121000200000161
Bitstream Version : 0x10201
Pr Interface Id : 93abeb6a-30c8-5f77-8172-d828c3a699ca
Board Management Controller, microcontroller FW version 26889
Last Power Down Cause: POK_CORE
Last Reset Cause: None
//****** PORT ******//
Object Id : 0xF200000
PCIe s:b:d:f : 0000:04:00:0
Device Id : 0x09C4
Socket Id : 0x00
Ports Num : 01
Bitstream Id : 0x121000200000161
Bitstream Version : 0x10201
Pr Interface Id : 93abeb6a-30c8-5f77-8172-d828c3a699ca
Accelerator Id : 331db30c-9885-41ea-9081-f88b8f655caa
Board Management Controller, microcontroller FW version 26889
Last Power Down Cause: POK_CORE
Last Reset Cause: None

Output of “fpgainfo fme”
command

Output of “fpgainfo port”
command

Programmable Solutions Group

//****** TEMP ******//
Object Id : 0xF300000
PCIe s:b:d:f : 0000:04:00:0
Device Id : 0x09C4
Socket Id : 0x00
Ports Num : 01
Bitstream Id : 0x121000200000161
Bitstream Version : 0x10201
Pr Interface Id : 93abeb6a-30c8-5f77-8172-d828c3a699ca
(11) FPGA Core TEMP : 73.00 °C
(12) Board TEMP : 47.00 °C
(14) QSFP TEMP : No reading (reading state unavailable)
(15) Core Supply Temp : 75.96 °C
Board Management Controller, microcontroller FW version 26889
Last Power Down Cause: POK_CORE
Last Reset Cause: None
//****** POWER ******//
Object Id : 0xF300000
PCIe s:b:d:f : 0000:04:00:0
Device Id : 0x09C4
Socket Id : 0x00
Ports Num : 01
Bitstream Id : 0x121000200000161
Bitstream Version : 0x10201
Pr Interface Id : 93abeb6a-30c8-5f77-8172-d828c3a699ca
(0) Total Input Power : 23.50 Watts
(1) PCIe 12V Current : 1.96 Amps
(2) PCIe 12V Voltage : 11.60 Volts
(3) 1.2V Voltage : 1.22 Volts
(4) 1.2V Current : 2.66 Amps
(5) 1.8V Voltage : 1.83 Volts
(6) 1.8V Current : 2.91 Amps
(7) 3.3V Mgmt Voltage : 3.36 Volts
(8) 3.3V Current : 0.72 Amps
(9) FPGA Core Voltage : 0.90 Volts
(10) FPGA Core Current : 8.02 Amps

DMA BIST Output 2/5

Output of “fpgainfo temp” command

Output of “fpgainfo power” command

Programmable Solutions Group

DMA BIST Output 3/5

//****** FME ERRORS ******//
Object Id : 0xF300000
PCIe s:b:d:f : 0000:04:00:0
Device Id : 0x09C4
Socket Id : 0x00
Ports Num : 01
Bitstream Id : 0x121000200000161
Bitstream Version : 0x7FFD00010201
Pr Interface Id : 93abeb6a-30c8-5f77-8172-d828c3a699ca
First Error : 0x0
Next Error : 0x0
Errors : 0x0
PCIe1 Errors : 0x0
Nonfatal Errors : 0x0
Inject Error : 0x0
Catfatal Errors : 0x0
PCIe0 Errors : 0x0

Output of “fpgainfo error”
command

Programmable Solutions Group

DMA BIST Output 4/5

Loading DMA AFU (FPGA partial reconfiguration)

AFU will “find slot” if AFU version matched FIM version

Running mode: dma_afu
Attempting Partial Reconfiguration:
Reading bitstream
Looking for slot
Found slot
Programming bitstream
Writing bitstream
Done

Programmable Solutions Group

Running fpga_dma_test test...

Running test in HW mode
Buffer Verification Success!
Buffer Verification Success!
Running DDR sweep test
Buffer pointer = 0x7f1b68982000, size = 0x100000000 (0x7f1b68982000 through 0x7f1c68982000)
Allocated test buffer
Fill test buffer
DDR Sweep Host to FPGA
Measured bandwidth = 6810.764668 Megabytes/sec
Clear buffer
DDR Sweep FPGA to Host
Measured bandwidth = 6917.527127 Megabytes/sec
Verifying buffer..
Buffer Verification Success!
DDR sweep with unaligned pointer and size
Buffer pointer = 0x7f1b6938303d, size = 0xffffffbe (0x7f1b6938303d through 0x7f1c69382ffb)
…
…
Buffer pointer = 0x7f1b69383000, size = 0xfffffff9 (0x7f1b69383000 through 0x7f1c69382ff9)
Allocated test buffer
Fill test buffer
DDR Sweep Host to FPGA
Measured bandwidth = 6813.543883 Megabytes/sec
Clear buffer Clear buffer
DDR Sweep FPGA to Host
Measured bandwidth = 6926.264906 Megabytes/sec
Verifying buffer..
Buffer Verification Success!
Finished Executing DMA Tests

Built-in Self-Test Completed.

DMA BIST Output 5/5

Measured bandwidth for
each direction

Programmable Solutions Group 62

FPGA Interface Manager (FIM) + AFU
Intel®

Xeon®

CPU
Application

Drivers

User, Intel, or 3rd-Party IP
Plugs into AFU Slot

(Tuning Expert)

PCIe* Drivers
Provided by Intel

Open Programmable
Acceleration Engine (OPAE)

Provided by Intel

Libraries

Developed by User
(Domain Expert)

User, Intel, and 3rd Party
(Tuning Expert)

Qualified and Validated for
volume deployment
Provided by OEMs

Intel FPGA

FPGA Interface Manager
Provided by Intel

Acceleration
Functional Unit

(AFU)

Signaling and
Management

PCIe

FPGA
Programmable

Acceleration
Card

Programmable Solutions Group

How Can FPGA Accelerators Be Created?

Self-Developed Externally-Sourced

VHDL or Verilog
C/C++ Programming

Language Ecosystem Partner

Performance OptimizedHigher Productivity Contracted EngagementIntel® Reference Designs

Intel® HLS Compiler

Intel® FPGA SDK for

OpenCL™

Programmable Solutions Group

Intel® HLS
Compiler

Accelerator Function Development

HDL Programming OpenCL Programming

HDL

SW
Compiler

exe AFU
Image

Syn.
PAR

OPAE
Software FIM

CPU FPGA

AFApplicationAFU
Simulation

Environment
(ASE)

C

ASE
from Intel

OPAE
from Intel

Intel® Quartus
Prime Pro

Kernels

exe
AFU

Image

SW
Compiler

OpenCL
Compiler

OpenCL
Emulator

OPAE
Software FIM

CPU FPGA

AFApplication

Host

Intel® FPGA SDK for OpenCL™

http://en.wikipedia.org/wiki/File:OpenCL_Logo.png

Programmable Solutions Group

FPGA INTERFACE MANAGER (FIM): Under the hood

FPGA

FPGA INTERFACE UNIT (FIU)

FPGA INTERFACE MANAGER (FIM)

PCIe Gen 3x8/x16* Hard IP Controller

CCI-P (512-bit Bidirectional Data Path)

ACCELERATOR FUNCTIONAL
UNIT SLOT

(Partial Reconfiguration region)

Standard framework and abstraction layer for AFU integration with Acceleration Stack

267/300* MHz

512-Bit

AV - MM

1067/1200* MHz

64-Bit ECC

EMIF DDR4* DIMM 3*

FPGA Manager
Engine (FME)

HSSI PHY
(PCS/PMA)

QSFP+

Resources Available:
Arria 10 Stratix10

ALMs: 92% 95%
M20KBlocks: 94% 98%
DSP Blocks: 100% 100%

* Stratix 10 PAC only

DIMM 2*

DIMM 1

DIMM 0

EMIF DDR4*

EMIF DDR4

EMIF DDR4CCI-P

AV - MM

AV – MM*

AV – MM*

AV - ST

Programmable Solutions Group

Overview of OPAE Platform for AFUs

Platform Interface Manager (PIM) defines a generic OPAE platform for which AFU
top-levels should be designed

▪ The AFU requests the device interfaces and properties it needs from the PIM
using a platform configuration file specification (.json)

▪ Generates a shim that translates hardware platform-specific device interfaces
to the OPAE Platform’s generic device interfaces used by the AFU

▪ Shim inserted between platforms PR region and the AFU providing top level
module interface for the AFU

Programmable Solutions Group

Clocks

CCI-P

Power

Error

HSSI

Local Memory

OPAE Platform Device Classes

Programmable Solutions Group

Core Cache Interface: Overview

CCI abstracts AFU from lower level PCIe protocol

Enables AFU to access host memory and respond to

MMIO requests

Composed of 3 command and response channels

▪ Supports bidirectional 512-bit data operating at 400MHz pClk domain

▪ Host memory accesses are on 64Byte Cache Line (CL) basis

– Supports Multi-CL bursts of 2 or 4

– Supports write fence mechanism to support synchronizing shared host memory
accesses between AFU and Host SW application

FPGA
Interface

Unit
(FIU)

Accelerator
Functional

Unit
(AFU)

RX CH 1

RX CH 0

TX CH 2

TX CH 1

TX CH 0

AFU Host memory WR Responses

AFU RD Responses and
MMIO RD/WR Requests

MMIO RD Responses

AFU RD Requests

AFU Host memory WR requests

https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl-ias-ccip.pdf

https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl-ias-ccip.pdf

Programmable Solutions Group

Intel FPGA Basic Building Blocks (BBB)

Suite of RTL shims for transforming the CCI interface

Memory Properties Factory (MPF)

▪ Adds features to the base CCI memory interface

CCI Async-shim

▪ Clock crossing shim for slower-running accelerators

CCI Multiplexer

▪ Allows multiple agents to share a single CCI-P interface

$ git clone https://github.com/OPAE/intel-fpga-bbb

Programmable Solutions Group

Example Designs to Get Started

Example Description

Hello AFU Simple AFU with direct CCI connection for MMIO access

Hello Intr AFU Example use of user interrupts

Hello Mem AFU Example showing using USR Clock to auto close timing in
the AFU

DMA AFU Example DMA AFU to move data between host memory
and local FPGA memory. Uses BBB and bridges Avalon to
CCI

Streaming DMA AFU Example DMA AFU to move data between host memory
and the AFU directly as a streaming packet

Eth e2e e10 10Gb Ethernet loopback design

Eth e2e e40 40Gb Ethernet loopback design

NLB mode 0 Native LoopBack adaptor (rd/wr) with more features

NLB mode 0 stp Native LoopBack adaptor with SignalTap remote debug

NLB mode 3 Native LoopBack adaptor (rd/wr)

.

Programmable Solutions Group

AF Project Structure
Overview of hello_afu example AFU

Start with existing design and modify for your needs

▪ The ./hw directory provides an example file structure for the AFU’s
design source and build structure

▪ Host OPAE software application source in the ./sw directory

– To perform the co-simulation environment

Project directory typically contains :

▪ AFU’s Quartus settings file (./hw/afu.qsf)

▪ AFU’s RTL

▪ AFU’s Quartus PR build directory (./build) with project files and compiled
AF image (.gbs)

▪ Platform configuration file (.json)

▪ Build configuration file (.txt)

Programmable Solutions Group

AFU RTL Source
Mandatory Source Files and Hierarchical Structure

afu.sv

▪ AFU top-level RTL source file describing accelerator

▪ Can have any name, but the top-level module within must be
named “afu”

ccip_std_afu.sv

▪ Mandatory top level wrapper RTL file that instantiates the AFU
module described in afu.sv

▪ Instantiates mandatory ccip_interface_reg module described in
the mandatory ccip_interface_reg.sv source file

The .json file is the platform configuration file describing the devices
classes required by AFU

The filelist.txt file specifies the build configuration (including source
files and .json file)

Programmable Solutions Group

Platform Configuration File (.json)

Specify the AFU’s UUID

▪ uuidgen To generate

Request a top-level interfaces

▪ ccip_std_afu, ccip_std_afu_avalon_mm and optional HSSI device interfaces

Request pipelining on device interfaces

▪ Adds user defined number of pipeline register stages to cci or local memory interfaces

Request clock crossing on device interfaces

▪ Inserts clock crossing bridge to synchronize cci and local memory to a clock

Specify a requested device interface as optional

Specify AFU user clock timing

▪ Close timing using user clock frequency range defined here

Programmable Solutions Group

AFU RTL Source
ccip_std_afu.sv Source File (1/2)

ccip_std_afu Module provides the
wrapper for instantiating the AF into
the FIM framework

▪ Provides access to the FIU host
interface

▪ Provides access to the local DDR4
SDRAM banks

Programmable Solutions Group

AFU RTL Source
ccip_std_afu.sv Source File (2/2)

Your AFU goes here

Programmable Solutions Group

Hardware System

AFU Overview Flow

AF Simulation Environment (ASE) enables seamless portability to real HW

▪ Allows fast verification of OPAE software together with AF RTL without HW

– SW Application loads ASE library and connects to RTL simulation

▪ For execution on HW, application loads Runtime library and RTL is compiled
by Intel® Quartus into FPGA bitstream

AFU Simulation
Environment

Intel®
CPU

FPGA

Simulation
Compilation

AFU RTL

OPAE SW
Application

Quartus®
Compilation

Software
Compilation

Test &
Validate AFU

Generate the
AF

Programmable Solutions Group

AFU Development Flow Using OPAE SDK

AFU requests the ccip_std_afu top level interface classes

▪ $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/hello_afu.json

AFU RTL files implementing accelerated function

▪ $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/afu.sv

List all source files and platform configuration file

▪ $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/filelist.txt

In terminal window, enter these commands:

▪ cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu

▪ afu_sim_setup --source hw/rtl/filelist.txt build_sim

Specify the Platform
Configuration

Design the AFU

Specify Build
Configuration

Generate the ASE
Build Environment

Programmable Solutions Group

AFU Development Flow Using OPAE SDK

Compile AFU and platform simulation models and start simulation
server process

▪ cd build_sim

▪ make

▪ make sim

In 2nd terminal window compile the host application and start the
client process

▪ Export ASE_WORKDIR= $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/
build_sim/work

▪ cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/sw

▪ make USE_ASE=1

▪ ./hello_afu

Specify the Platform
Configuration

Design the AFU

Specify Build
Configuration

Generate the ASE
Build Environment

Verify AFU with ASE

Programmable Solutions Group

AFU Simulation Environment (ASE)

Hardware software co-simulation environment

Uses simulator Direct Programming Interface (DPI) for HW/SW connectivity

▪ Not cycle accurate (used for functional correctness)

▪ Converts SW API to CCI transactions

Provides transactional model for the Core Cache Interface (CCI-P) protocol and
memory model for the FPGA-attached local memory

Validates compliance to

▪ CCI-P protocol specification

▪ Avalon® Memory Mapped (Avalon-MM) Interface Specification

▪ Open Programmable Acceleration Engine

Programmable Solutions Group

Simulation Complete

AFU Simulator Window (server)Application SW Window (client)

Programmable Solutions Group

AFU Development Flow Using OPAE SDK

Generate the AF build environment:

▪ cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu

▪ afu_synth_setup --source hw/rtl/filelist.txt build_synth

Generate the AF

▪ cd build_synth

▪ $OPAE_PLATFORM_ROOT/bin/run.sh

Specify the Platform
Configuration

Design the AFU

Specify Build
Configuration

Generate the ASE
Build Environment

Verify AFU with ASE

Generate the AF
Build Environment

Generate the AF

Programmable Solutions Group

Using the Quartus GUI

Compiling the AFU uses a command line-driven PR compilation flow

▪ Builds PR region AF as a .gbs file to be loaded into OPAE hardware platform

Can use the Quartus GUI for the following types of work:

▪ Viewing compilation reports

▪ Interactive Timing Analysis

▪ Adding SignalTap instances and nodes

– For on-board debugging

Programmable Solutions Group

AFU Debug with Remote SignalTap
Introduction

Remote SignalTap enables in-system debug of AFUs on PAC installations with
limited physical access

Remote debug capability in OPAE supports the following in-system debug tools
included with Quartus Prime Pro:

▪ In-system sources and probes

▪ In-system memory content editor

▪ Signal Probe

▪ System Console

Programmable Solutions Group

AFU Design Using High Level Synthesis (HLS)

Leverage GNU compatible HLS compiler to produce verified RTL

Designing at a higher level of abstraction = increase productivity

▪ Debugging software is much faster than hardware

▪ Easier to specify functions in software

▪ Simulation of RTL takes thousands times longer than software

▪ Easier to modify C/C++ source than RTL

Abstraction and Productivity

RTL Software

Programmable Solutions Group

HDL IP

HLS Use Model

Standard
gcc/g++
Compiler

EXE

main

f f

t1

f11

f

t2

f

f21

f22 f23

f12 f13

C/C++ Code

HLS
Compiler

FPGA

AFU

Directives

Intel® Quartus® Ecosystem

100% Makefile
compatible

src.c

lib.h

g++ <options> a.exei++ <options>

FIM

CCIP

External Memory
Interface

PCIe

https://www.intel.com/content/www/us/en/programmable/documentation/div1537518568620.html

https://www.intel.com/content/www/us/en/programmable/documentation/div1537518568620.html

Programmable Solutions Group 93

Components of Acceleration Stack: Overview
Intel®

Xeon®

CPU
Application

Drivers

User, Intel, or 3rd-Party IP
Plugs into AFU Slot

(Tuning Expert)

PCIe* Drivers
Provided by Intel

Open Programmable
Acceleration Engine (OPAE)

Provided by Intel

Libraries

Developed by User
(Domain Expert)

User, Intel, and 3rd Party
(Tuning Expert)

Qualified and Validated for
volume deployment
Provided by OEMs

Intel FPGA

FPGA Interface Manager
Provided by Intel

Acceleration
Functional Unit

(AFU)

Signaling and
Management

PCIe

FPGA
Programmable

Acceleration
Card

Programmable Solutions Group 94

Co-Design for HW and SW

HDL Programming OpenCL™ Programming

HDL

SW
Compiler

exe AFU
Image

Syn.
PAR

OPAE
Software FIM

CPU FPGA

AFUAFU
Simulation

Environment
(ASE)

C

ASE
from Intel

OPAE
from Intel

Kernels

exe
AFU

Image

SW
Compiler

OpenCL
Compiler

OpenCL
Emulator

OPAE
Software FIM

CPU FPGA

AFUApplication

Host

Application

http://en.wikipedia.org/wiki/File:OpenCL_Logo.png

Programmable Solutions Group

FPGA Hardware + Interface Manager

FPGA Driver
(physical function – PF)

FPGA API (C) (enumeration, management, access)

Applications, Frameworks, Intel® Acceleration Libraries

Start developing for Intel FPGAs with OPAE today: http://01.org/OPAE

Bare Metal OS Virtual Machine

FPGA Driver
(virtual function - VF)

Hypervisor

FPGA Driver (common – AFU, local memory)

Consistent API across product generations and platforms
• Abstraction for hardware specific FPGA resource details

Designed for minimal software overhead and latency
• Lightweight user-space library (libfpga)

Open ecosystem for industry and developer community
• License: FPGA API (BSD), FPGA driver (GPLv2)

FPGA driver being upstreamed into Linux kernel

Supports both virtual machines and bare metal platforms

Faster development and debugging of Accelerator Functions
with the included AFU Simulation Environment (ASE)

Includes guides, command-line utilities and sample code

95

Open Programmable Acceleration Engine (OPAE)

OS

Simplified FPGA Programming Model
for Application Developers

O
P

A
E

http://01.org/OPAE

Programmable Solutions Group 98

The OPAE Library at a Glance

Enumerate, access, and manage FPGA
resources through API objects

A common interface across different FPGA
form factors

C API designed for extensibility

AFU Simulation Environment (ASE) allows
developing and debugging accelerator
functions and software applications without an
FPGA

Tools for partial reconfiguration, FPGA
hardware information, error reporting, etc.

Core Library
AFU Simulation

Environment
(ASE)

Tools
Documents

and Samples

Header files
(C API)

Runtime
Libraries

(*.so)

ASE
Libraries

(*.so)

fpgaconf

fpgainfo

fpgad

fpgadiag

Programmable Solutions Group

Useful OPAE Command-line Utilities For Board
Management

Commands Description

fpgainfo
User can read the Board Telemetry data. For example temperature or
Voltages.

fpgabist
Performs self-diagnostic test: measure bandwidth between local DDR4
memory and system memory

fpgaconf
Configure Acceleration Function Unit (AFU) into FPGA;
Check compatibility with targeted FPGA and FIM

fpgaflash
Updates FPGA Interface Manager (FIM) image (.rpd file) being stored in flash;
Updates BMC firmware.

fpgad
A daemon to monitor FPGA drivers’ error status; report errors as events to
OPAE

Programmable Solutions Group 100

Application Development with OPAE

User application
myapp.c

links against

includes OPAE C API

fpga.h

access.h

buffer.h

enum.h

event.h

utils.h

manage.h

mmio.h

properties.h

types.h

umsg.h

OPAE C library
(or, ASE OPAE C library)

implements

OPAE Intel FPGA driver
(or, RTL simulator)

interacts with

Programmable Solutions Group

Object model

101

The OPAE Library Programming Model

Discover /
search resource

Acquire
ownership of

resource

Map AFU
registers to user

space

Allocate /
define shared
memory space

Start / stop
computation on

AFU and wait
for result

Deallocate
shared memory

Relinquish
ownershipReconfigure

AFU

Properties
Object

Token
Object

Handle
Object

Unmap MMIO

Programmable Solutions Group

<empty>
objtype: FPGA_ACCELERATOR
guid: 0xabcdef

103

Enumeration and Discovery

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

fpga_properties prop;

fpga_token token;

fpga_guid myguid; /* 0xabcdef */

fpgaGetProperties(NULL, &prop);

fpgaPropertiesSetObjectType(prop, FPGA_ACCELERATOR);

fpgaPropertiesSetGUID(prop, myguid);

fpgaEnumerate(&prop, 1, &token, 1, &n);

fpgaDestroyProperties(&prop);

link
fpga_properties prop fpga_token token

<internal reference to accelerator
resource>

fpgaEnumerate()

Programmable Solutions Group

fpga_handle handle

<internal reference to accelerator
resource>

fpgaOpen()

104

Acquire and Release Accelerator Resource

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

fpga_token token;

// ... enumeration ...

fpga_handle handle;

fpgaOpen(token, &handle, 0);

.

.(operations...)

.(operations...)

.

.

.

fpgaClose(handle);

link
fpga_token token

<internal reference to accelerator
resource>

Programmable Solutions Group 107

Software Developer Needs AFU Specification

Memory mapped register space

▪ Software uses to discover, control
and communicate with FPGA
accelerator

– Report status flags

– Configure AFU settings

– Start/Stop control of
acceleration workload

063

MMIO address

0x0020

words (CCI-P)bytes (OPAE)

0x080

CSRs (read/write)

scratch_reg

GUID

AFU ID_L

AFU ID_H

NEXT_DFH

Reserved

0x0000

0x0002

0x0004

0x0006

0x0008

0x0000

0x0008

0x0010

0x0018

0x0020

AFU header (read-only)

AFU ID (low 64 bits)

AFU ID (high 64 bits)

Pointer to next DFH

Reserved space

Global Unique ID

Test Register used in
hello_FPGA Example

D
e

v
ic

e
 F

e
a

tu
re

 H
e

a
d

e
r

Programmable Solutions Group 108

Management and Reconfiguration

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

link

Storage

GBS file
xyz.gbs

SW application
(with admin privilege)

FPGA_ACCELERATOR

AFU_ID: 0xbe11e5

fpgaReconfigureSlot(…, buf,

len, 0)

load

GBS metadata
interface_id

afu_id

…

libopae-c

Partial configuration

Programmable Solutions Group 110

A Code Example - Put Everything Together

The hello_afu.c code in the $OPAE_PLATFORM_ROOT/hw/samples directory of the
OPAE library

– Demonstrates all OPAE API functions discussed in this presentation

– Write and read configuration registers from the host to the FPGA to show basic
configuration accesses are done

– The same flow can be used to access and exercise any other AFUs

To compile source code run appropriate gcc/make commands

Programmable Solutions Group 111

Include OPAE header files

Define constants that will be used
when communicating with FPGA
accelerator

Deeper Look into hello_fpga.c

Programmable Solutions Group 112

Error handling macro evaluates
fpga_result object, res

Error printing function

Deeper Look into hello_fpga.c

Programmable Solutions Group 113

Create variables and objects that will be
used when communicating with FPGA
accelerator

Create an empty FPGA properties object

Populate the opaque FPGA properties
object with desired search parameters

Search for matching FPGA resources using
fpga_Enumerate() which returns the list of
matches to the fpga_token, afc_token

– Error and destroy object if none are found

Deeper Look into hello_fpga.c

Programmable Solutions Group 114

Acquire ownership of resource pointed to
by afc_token using fpga_Open() receiving
the fpga_handle, afc_handle

Map accelerator register space to user
space

Reset the Accelerator Function using the
fpgaReset API

Read the Device Feature Header registers
from the AFU and print them to screen

Deeper Look into hello_fpga.c

Programmable Solutions Group 115

Read the initial value of
the scratch register

Write a new value to the
scratch register and read
back verify

Write configuration
register to 0 and read
back verify

Deeper Look into hello_fpga.c

Programmable Solutions Group 116

Unmap Register space

Release the accelerator for others to use

Destroy the token

Destroy the property object

If any errors occur during configuration
register access, increase error count and
print failure

Deeper Look into hello_fpga.c

118

Programmable Solutions Group

AFU development using HLS - Agenda

▪ Introduction to High Level Synthesis

▪ HLS interfaces

▪ HLS AFU development flow

119

Programmable Solutions Group

Introduction to HLS - Agenda

▪ Introduction

▪ x86 Emulation

▪ Cosimulation

▪ Intel® Quartus® Software Integration

121

Programmable Solutions Group 122

High Level Synthesis

Synthesize a C/C++ function into an RTL implementation

▪ Develop the component in a software environment

▪ Verify the functionality of the component within a software environment

▪ Integrate it seamlessly with hardware simulation environment

▪ Optimize design using software-centric tools and reports

▪ Integrate generated IP easily within traditional FPGA design tools

Programmable Solutions Group 123

Traditional FPGA Design Process

Potentially Time-Consuming Effort

Place & Route / Timing Analysis / Timing Closure

Synthesis
HDL

Behavioral Simulation

Programmable Solutions Group 124

Why HLS?

Designing at a higher level of abstraction = increase productivity

▪ Debugging software is much faster than hardware

▪ Easier to specify functions in software

▪ Simulation of RTL takes thousands times longer than software

Abstraction and Productivity

RTL Software

Programmable Solutions Group

HDL IP

125

HLS Use Model

Standard
gcc/g++
Compiler

EXE

main

f f

t1

f11

f

t2

f

f21

f22 f23

f12 f13

C/C++ Code

HLS
Compiler

FPGA

IP

IP

Directives

Intel® Quartus®
Software Ecosystem

100% Makefile
compatible

src.c

lib.h

g++ <options> a.exei++ <options>

Programmable Solutions Group 126

Intel® HLS Compiler

▪ Targets Intel® FPGAs

▪ Command-line executable: i++

▪ Builds an IP block

– To be integrated into a traditional FPGA design using FPGA tools

▪ Leverages standard C/C++ development environment

▪ Goal: Same performance as hand-coded RTL with 10-15% more resources

IP
HLS

Compiler
C/C++
Source

Platform
Designer

Programmable Solutions Group 127

HLS Procedure

Intel® HLS
Compiler

HDL IP

C/C++ Source

Functional
Iterations

Architectural
Iterations

Create Component and Testbench in C/C++

Functional Verification with g++ or i++
• Use -march=x86-64
• Both compilers compatible with GDB

Compile with i++ -march=<FPGA fam> for HLS
• Generates IP
• Examine compiler generated reports
• Verify design in simulation

Run Intel® Quartus® Prime Software Compile on Generated IP
• Generate QoR metrics

Integrate IP with rest of your FPGA system

Programmable Solutions Group 128

Intel® HLS Compiler Usage and Output

src.c

lib.h

i++ -march=x86-64 src.c a.exe|out

Develop with C/C++:

Run Compiler for HLS:

a.prj/components/func/

src.c

lib.h

i++ -march=<fpga fam> -–component
func src.c

a.exe|out

a.prj/reports/

a.prj/verification/

a.prj/quartus/

GDB-Compatible Executable

Executable which will run calls to
func in simulation of synthesized IP

All the files necessary to
include IP in an Intel Quartus®
Software project. (i.e. .qsys, .ip,
.v etc)

Component hardware
implementation reports

Simulation testbench

Quartus project to compile all IP

a is the default output name, -o option can be used to specify a non-default output name

Programmable Solutions Group

Introduction to HLS Agenda

▪ Introduction

▪ x86 Emulation

▪ Cosimulation

▪ Intel® Quartus® Software Integration

129

Programmable Solutions Group 130

HLS Procedure: x86 Emulation

Intel® HLS
Compiler

HDL IP

C/C++ Source

Functional
Iterations

Architectural
Iterations

Create Component and Testbench in C/C++

Functional Verification with g++ or i++
• Use -march=x86-64
• Both compilers compatible with GDB

Compile with i++ -march=<FPGA fam> for HLS
• Generates IP
• Examine compiler generated reports
• Verify design in simulation

Run Intel® Quartus® Prime Software Compile on Generated IP
• Generate QoR metrics

Integrate IP with rest of your FPGA system

Programmable Solutions Group

g++ Compatibility

Intel® HLS Compiler is command line compatible with g++

▪ Similar command-line flags, x86 behavior, and compilation flow

▪ Changing “g++” to “i++” should just work

– g++ <flags> <src>

– i++ <flags> <src>

▪ x86 behavior should match g++

▪ No source modifications required (for x86 mode)

▪ Support for GNU Makefiles

132

Programmable Solutions Group

x86 Debugging Tools

▪ printf/cout
▪ gdb
▪ Valgrind

src.c

lib.h

i++ -march=x86-64 src.c a.exe|out

Develop with C/C++:
GDB-Compatible Executable

133

Programmable Solutions Group

Using printf()

▪ Requires “HLS/stdio.h”

– Maps to <stdio.h> when appropriate

▪ Can be included in the testbench or the component

– Used with no limitations in the x86 emulation flow

▪ printf statements inside the component ignored for HDL generation

– Ignored in the cosimulation flow with an HDL simulator

134

Programmable Solutions Group

$ i++ test.cpp

$./a.out

Hello from the testbench

Hello from the component

$

// test.cpp

#include "HLS/stdio.h"

void say_hello() {

printf("Hello from the component\n");

}

int main() {

printf("Hello from the testbench\n");

say_hello();

return 0;

}

Example Program Terminal Commands and output

Using printf(): Example

$ i++ test.cpp –march=Arria10 \

--component say_hello

$./a.out

Hello from the testbench

$

135

Programmable Solutions Group

Debugging Using gdb

▪ i++ integrates well with GNU gdb

– Debug data is generated by default

– Unlike g++, -g enabled by default, use -g0 to turn off debug data

▪ -march=x86-64 flow:

– Can step through any part of the code (including the component)

▪ -march=<fpga family> flow:

– Can step through testbench code

– gdb does not see the component side execution (that runs in an HDL
simulator)

136

Programmable Solutions Group

Debugging with Valgrind

The Valgrind tool suite provides a number of debugging and profiling tools that
help you make your programs faster and more correct

Valgrind tools can detect:

– Memory leaks

– Invalid pointer uses

– Use of uninitialized values

– Mismatched use of malloc/new vs free/delete

– Doubly freed memory

▪ Use to debug component and testbench in the x86 emulation flow

137

http://www.valgrind.org/

http://www.valgrind.org/

Programmable Solutions Group

Introduction to HLS Agenda

▪ Introduction

▪ x86 Emulation

▪ Cosimulation

▪ Intel® Quartus® Software Integration

138

Programmable Solutions Group 139

HLS Procedure: Cosimulation

Intel® HLS
Compiler

HDL IP

C/C++ Source

Functional
Iterations

Architectural
Iterations

Create Component and Testbench in C/C++

Functional Verification with g++ or i++
• Use -march=x86-64
• Both compilers compatible with GDB

Compile with i++ -march=<FPGA fam> for HLS
• Generates IP
• Examine compiler generated reports
• Verify design in simulation

Run Intel® Quartus® Prime Software Compile on Generated IP
• Generate QoR metrics

Integrate IP with rest of your FPGA system

Programmable Solutions Group

#include "HLS/hls.h"
#include "assert.h"
#include "HLS/stdio.h"
#include "stdlib.h"

component int accelerate(int a, int b) {
return a+b;

}

int main() {
srand(0);
for (int i=0; i<10; ++i) {

int x=rand() % 10;
int y=rand() % 10;
int z=accelerate(x, y);
printf("%d + %d = %d\n", x, y, z);
assert(z == x + y);

}
return 0;

}

Example Component/Testbench Source

main() becomes testbench for
component accelerate()

i++ -march=<fpga family> --component accelerate mysource.cpp

accelerate() becomes an FPGA
component

– Use --component i++ argument or
component attribute in source

140

Programmable Solutions Group

Translation from C function API to HDL module

▪ All component functions are synthesized to HDL

– Each synthesized component is an independent HDL module

▪ Component functions can be declared:

– Using component keyword in source

– Specifying “--component <component_name>” in the command-line

141

Programmable Solutions Group

Cosimulation

Cosimulation: combines x86 testbench with RTL simulation

▪ HDL code for the component runs in an RTL Simulator

– Verilog

– RTL testbench automatically created from software

▪ main() and everything else called from main runs on x86 as the testbench

▪ Communication using SystemVerilog Direct Programming Interface (DPI)

– Allows C/C++ to interface SystemVerilog

– Inter-process communication (IPC) library used to pass testbench input
data to RTL simulator, and returns the data back to the x86 testbench

142

Programmable Solutions Group 143

Cosimulation Verifying HLS IP

The Intel® HLS compiler automatically compiles and links C++ testbench with an
instance of the component running in an RTL simulator

▪ To verify RTL behavior of IP, just run the executable generated by the HLS
compiler targeting the FPGA architecture

– Any calls to the component function becomes calls the simulator through
DPI

src.c

lib.h

i++ -march=<fpga family> src.c

a.exe|out

a.prj/verification/

Data

IP Function Call

Programmable Solutions Group 144

Viewing Component Waveforms

▪ Compile design with i++ -ghdl flag

– Enable full visibility and logging of all HDL signals in simulation

▪ After cosimulation execution, waveform available at
a.prj/verification/vsim.wlf

▪ Examine with the ModelSim* Simulator GUI:

– vsim a.prj/verification/vsim.wlf

Programmable Solutions Group 145

Viewing Waveforms in the Modelsim* Simulator

Locate
Component

Add Signals
to Waveform

Programmable Solutions Group 146

Need for Cosimulation

▪ x86-emulation sufficient to functionally debug vast majority of issues

▪ Cosimulation used to test latency and performance of component

▪ Cosimulation used to catch hardware generation issues

– Improper use of HLS compiler directives

– e.g. #pragmas

– Improper use of HLS compiler attributes

– Improper use of HLS-specific constructs

– Test component reset behavior

▪ Cosimulation should be done before integrating component with FPGA

Programmable Solutions Group 147

C/C++ Functions to Dataflow Circuits

Each component function is converted into custom dataflow hardware

▪ Gain the benefits of Intel® FPGAs without the length design process

▪ Implement C/C++ operators as circuits

– HDL code located in <HLS Installation>\ip

– Load Store units to read/write memory

– Arithmetic units to perform calculations

– Flow control units

– Connect circuits according to data flow in the function

Programmable Solutions Group 148

Compilation Example

Software compiled into dataflow circuit with flow control

▪ Include branch and merge units For Entry

For End

void my_component(int *a,

int *b,

int *c,

int N)

{

int i;

for (i = 0; i < N; i++)

c[i] = a[i] + b[i];

}

i++

Load a[i] Load b[i]

a[i] + b[i]

Store c[i]

Programmable Solutions Group 149

Main HTML Report

The Intel® HLS Compiler automatically generates HTML report that analyzes
various aspects of your function including area, loop structure, memory usage,
and system data flow

▪ Located at a.prj/reports/report.html

Many Types of Reports

Programmable Solutions Group 150

HTML Report: Summary

Overall compile statics

▪ FPGA Resource Utilization

▪ Compile Warnings

▪ Intel® Quartus® Software fitter
results

– Available after compilation

▪ etc.

Programmable Solutions Group 151

HTML Report: Loops

Serial loop execution hinders function dataflow circuit performance

▪ Use Loop Analysis report to see if and how each loop is optimized

– Helps identify component pipeline bottlenecks
Loop

Unrolled?

Pipelined?

Automatically unrolled?
Fully unrolled?

Partially unrolled?
#pragma unroll implemented?

What’s the Initiation Interval (launch
frequency of new iteration)?

Are there dependency preventing optimal II?

Yes

Yes

No

No

Reason for serial execution?

Programmable Solutions Group 154

HTML Report: Loop Analysis

Loop analysis shows how loops are implemented

– Ability to correlate with source code

Compiler-added loop, not in the code,
implicit infinitely loop allowing the
component to run continuously in
pipelined fashion

Pipelined loop, II=1

Pipelined loop, II=2 due to memory dependency

Fully unrolled loop, due to user #pragma
unroll

Programmable Solutions Group 155

HTML Report: Area Analysis

View detailed estimated resource consumption by system or source line

▪ Analyze data control overhead

▪ View memory implementation

▪ Shows resource usage

– ALUTs

– FFs

– RAMs

– DSPs

▪ Identifies inefficient uses

Programmable Solutions Group 156

HTML Report: Component Viewer

Displays abstracted netlist of the HW implementation

▪ View data flow pipeline

– See loads and stores

– Interfaces including stream reads and writes

– Memory structure

– Loop structure

– Possible performance bottlenecks

– Unpipelined loops are colored light red

– Stallable points are red
Mouse over node to see tooltip and details.
Correlates with source code.

Programmable Solutions Group 157

HTML Report: Memory Viewer

Displays local memory
implementation and accesses

▪ Visualize memory architecture

– Banks, widths, replication,
etc

▪ Visualize load-store units (LSUs)

– Stall-free?

– Arbitration

– Red indicates stalled
Mouse over node to see tooltip and details.
Correlates with source code.

Programmable Solutions Group 158

HTML Report: Verification Statistics

Reports execution statics from testbench execution, available after component
is simulated (testbench executable ran)

▪ Number and type of component invocation

▪ Latency of component

▪ Dynamic Initiation interval of Component

▪ Data rates of streams

Measurements based on
latest execution of
testbench

Programmable Solutions Group

Introduction to HLS Agenda

▪ Introduction

▪ x86 emulation

▪ Cosimulation

▪ Intel® Quartus® Software Integration

159159

Programmable Solutions Group 160

HLS Procedure: Integration

Intel® HLS
Compiler

HDL IP

C/C++ Source

Functional
Iterations

Architectural
Iterations

Create Component and Testbench in C/C++

Functional Verification with g++ or i++
• Use -march=x86-64
• Both compilers compatible with GDB

Compile with i++ -march=<FPGA fam> for HLS
• Generates IP
• Examine compiler generated reports
• Verify design in simulation

Run Intel® Quartus® Prime Software Compile on Generated IP
• Generate QoR metrics

Integrate IP with rest of your FPGA system

Programmable Solutions Group 161

Intel Quartus® Software QoR Metrics for IP

Use Intel® Quartus® Prime software to generate quality-of-result reports

▪ i++ creates the Quartus project in a.prj/quartus

▪ To generate QoR data (final resource utilization, fmax)

– Run quartus_sh --flow compile quartus_compile

– Or use i++ --quartus-compile option

▪ Report part of the HTML report

– a.prj/reports/report.html

– Summary page

Programmable Solutions Group 162

Intel® Quartus® Software Integration

▪ a.prj/components directory contains all the files to integrate

– One subdirectory for each component

– Portable, can be moved to a different location if desire

▪ 2 use scenarios

1. Instantiate in HDL

2. Adding IP to a Platform Designer system

Programmable Solutions Group 163

HDL Instantiation

▪ Add Components to Intel® Quartus® Software
Project

– <component>.qsys to Standard Edition

– <component>.ip to Pro Edition

▪ Instantiate component module in your
design

– Use template

a.prj/components/<component>/<component>_inst.v

Programmable Solutions Group

Platform Designer System Integration Tool

164

Accelerate
development

HDL

IP 1
Custom 1

IP 2
IP 3
Custom 2

Connect custom IP
and systems

Simplify integration

Catalog of
available IP

◼ Interface protocols
◼ Memory
◼ DSP
◼ Embedded
◼ Bridges
◼ PLL
◼ Custom Components
◼ Custom Systems

Automate integration tasks

How to integrate your component with the rest of the system

Programmable Solutions Group

HLS Interfaces Section - Agenda

▪ Avalon® Interfaces

▪ Default HLS Interfaces

▪ Memory Master Interfaces

▪ Explicit Streaming Interfaces

▪ Register Interfaces

▪ Memory Slave Interfaces

166

Programmable Solutions Group 167

Avalon® Interfaces

Easily connects components in an Intel® FPGA to simplify system design

▪ Standard interfaces design for interoperability

▪ HLS compiler generates Avalon® interfaces around HLS components

▪ Avalon Streaming Interface (Avalon-ST)

– Unidirectional flow of data, simple flexible interface

▪ Avalon Memory Mapped Interface (Avalon-MM)

– Address-based read/write interface typical of master-slave connections

▪ Other Interfaces

– Conduit, Tri-State Conduit, Interrupt, Clock, Reset

Programmable Solutions Group 168

Avalon®-ST Interfaces

▪ Standard, flexible, and modular protocol for transfer of data

– Unidirectional

– Point-to-point connections

– Fully synchronous

– Supports simple and complex interface requirements

Data
source

Data
sink

Data

ready
valid

startofpacket
endofpacket

Programmable Solutions Group 169

Avalon®-MM Interfaces

▪ Address-based (memory-mapped) protocol that
allows components to communicate using
read/write requests

▪ Master interface

– Initiates read/write transfers targeting specific
address

▪ Slave interface

– Accepts and responds to transfer requests

▪ Interconnect handles decoding of master address
request to actual slave interface, backpressure,
clocking differences, etc.

Example master/slave
connections

P
la

tf
o

rm

D
e

si
g

n
e

r
in

te
rc

o
n

n
e

ct

C
P

U
 /

 D
M

A

M
a

st
e

r
In

te
rf

a
ce

S
la

v
e

 i
n

te
rf

a
ce

address

control

readdata

address

control

readdata

writedat
a

writedat
a

Programmable Solutions Group 170

Avalon® Interface Specification

▪ Defines the entire Avalon interface standard,
including all variations

▪ Provides reference information on additional
transfer types

– Use cases

– Waveform diagrams

▪ https://www.intel.com/content/dam/www/programmable/us/en/pdfs/lit
erature/manual/mnl_avalon_spec.pdf

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf

Programmable Solutions Group 171

Default Interfaces for Scalars

▪ Scalar arguments results in an input
conduit associated with start and
busy signals

add

start

busy

a[31:0]

b[31:0]

done

stall

returndata[31:0]

clock

component int add(int a, int b){

return a+b;

}

Programmable Solutions Group 172

Pointers: Implicit Memory-Mapped Interface

▪ All pointer or reference arguments
becomes address input associated
with start and busy signals

▪ Memory-mapped master interface
automatically created

▪ Default 64bit address space

dut

start

busy

a[31:0]

b[63:0]

i[31:0]

done

stall

returndata[31:0]

Avalon-MM interface

clock

component int dut(int a,

int *b,

int i) {

return a*b[i]; }

Programmable Solutions Group 173

Pointers – Waveform component int dut(int a,

int *b,

int i) {

return a*b[i];

}

Programmable Solutions Group 174

Explicit MM Master Interface

▪ Explicitly declare Avalon-MM Master
interfaces using mm_master<> class

– Greater control over interface

– Specify attributes through parameters
dut

start

busy

a[9:0]

b[9:0]

i[31:0]

done

stall

returndata[31:0]

clock

component int dut(ihc::mm_master<int, ihc::aspace<2>, ihc::latency<0>,

ihc::awidth<10>, ihc::dwidth<32> > &a,

ihc::mm_master<int, ihc::aspace<2>, ihc::latency<0>,

ihc::awidth<10>, ihc::dwidth<32> > &b,

int i) {

return a[i]*b[i];

}

Master interface

Programmable Solutions Group 175

ihc::mm_master Class Parameters

Feature Valid Values Default Description

ihc::dwidth 8,16,32,…1024 64 Width of data bus

ihc::awidth 1-64 64 Width of address bus (byte addressing)

ihc::aspace >0 1 Address space #, masters with the same
address space are arbitrated

ihc::align >default type Byte alignment of pointer address

ihc::latency >=0 1 Guaranteed latency from read to valid data,
0=variable latency

ihc::maxburst 1-1024 1 Max transfers associated with a read/write.
For fixed latency interfaces, value must be 1

Other attributes including readwrite_mode, and waitrequest described in the HLS Compiler Reference Manual

Usage: ihc::mm_master<datatype, /*template arguments*/>

Programmable Solutions Group 176

MM Master Address Spaces

▪ Having multiple address spaces
creates multiple MM Masters

– Allows simultaneous multi-
mastering over Platform
Designer interconnect

component int dut(ihc::mm_master<int, ihc::aspace<1>, ihc::latency<3>,

ihc::awidth<10>, ihc::dwidth<32> > &a,

ihc::mm_master<int, ihc::aspace<2>, ihc::latency<3>,

ihc::awidth<10>, ihc::dwidth<32> > &b,

int i) {

return a*b[i];

}

dut

start

busy

a[9:0]

b[9:0]

i[31:0]

done

stall

returndata[31:0]

clock

Master interfaces

Programmable Solutions Group 177

Streaming Interfaces

▪ Scalar function arguments become pipelined input ports on the HDL module

– Avalon Streaming interface associated with start and busy inputs

– Implicit

▪ Explicit Streaming Interfaces

– Use ihc::stream_in<> and ihc::stream_out<> template classes

– Pass by reference

– Creates Avalon Streaming interface with valid and ready signals

– Explicit control over interface

Programmable Solutions Group 178

Explicit Streaming Interface Example

a_data[7:0]

iord

iowr

busy

start

done

stall

a_valid

a_ready

b_data[7:0]

b_valid

b_ready

component

void dut(ihc::stream_in<unsigned char> &a,

ihc::stream_out <unsigned char> &b)

{

for (int i = 0; i < N; i++) {

unsigned char input = a.read();

input = 255 - input;

b.write(input);

}

}

Programmable Solutions Group 180

Explicit Streaming Interface Customizations

Feature Valid Values Description

ihc::buffer Positive int FIFO buffer capacity in words (for inputs)

ihc::usesPackets true or false Exposes startofpacket and endofpacket signals

ihc::usesValid true or false Whether a valid signal is present (for inputs)

ihc::usesReady true or false Whether a ready signal is present (for outputs)

Other attributes including bitsPerSymbol and readylatency described in the HLS Compiler Reference Manual

Usage: ihc::stream_in<datatype, /*template arguments*/>

Programmable Solutions Group 182

Slaves Interfaces

▪ Component control and status register

– In lieu of start/busy/done/stall signals

▪ Slave data registers

– Ideal for smaller inputs

▪ Slave memories

– For larger arrays

Programmable Solutions Group 183

MM Slave Component

▪ Component can have 1 CSR slave interface for function call and return

– Shared with slave arguments

– Address map described in generated <component_name>_csr.h

▪ irq_done signifies component is finished

▪ Used in place of default streaming calls and returns

a[31:0] b[31:0]

AVL-MM Slave

iord

iowr

0

done

returndata
[31:0]

irq_done

start

hls_avalon_slave_component

component int dut(…) {

return result;

}

Programmable Solutions Group 184

MM Slave Register Argument

▪ Can be used independent of slave component

▪ Used in lieu of default conduit argument

▪ Ideal for smaller inputs a[31:0]

AVL-MM Slave
iord

b

iowr

0

done

returndata
[31:0]

irq_done

start

hls_avalon_slave_component component

int dut(int a,

hls_avalon_slave_register_argument int b) {

return a * b;

}

Programmable Solutions Group 185

Slave Component and Register Address Map

<component>_csr.h contains
• Address Map
• Macros created for register byte

addresses and bit masks

Programmable Solutions Group

Platform Designer Interconnect

186

Streaming HLS Component in a System

HLS
Component

Downstream
Component

HLS
Component

Stream
Out

Stream
In

valid

data

ready

done start

stall busy
Function

Call
Function
Return

Function
Call

Scalar
Argument

Function
Return

Return
Data

Upstream
Component start

busy

data data

done

stall

Programmable Solutions Group 187

Memory-Mapped HLS Component in a System

UART Timer

System
Memory

Platform Designer Interconnect

HLS
Component

Component
Slave

Interface

Memory-
Mapped
Master

Slave
Memory

Processor

Data
Master SlaveI/O

Programmable Solutions Group 188

MM HLS Component with Streaming Interfaces

HLS
Component

Downstream
Component

HLS
Component

Stream
Out

Stream
In

valid

data

ready

Stream
In

Stream
Out

Upstream
Component

valid

data

ready

valid

data

ready

Platform Designer Interconnect

Processor

Data
Master

Slave
CSR

Slave
CSR

Programmable Solutions Group 189

Interface Synthesis Tutorials

Located in <hls_install_folder>/examples/tutorials/interfaces

▪ explicit_streams_buffer

▪ explicit_streams_packets_ready_valid

▪ mm_master_testbench_operators

▪ mm_slaves

▪ multiple_stream_call_sites

▪ pointer_mm_master

▪ stable_arguments

Programmable Solutions Group 191

HLS development flow

Intel® High Level Synthesis Accelerator Functional Unit Design Example User
Guide

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-hls-afu.pdf

The Intel High Level Synthesis (HLS) Accelerator Functional Unit (AFU) design example
shows how to create AFUs for the Intel® Acceleration Stack for Intel Xeon® CPU with
FPGAs with with the Intel HLS.

The package includes all the source code, scripts and makefile needed.

You can use this code as a model to create your own HLS AFUs if your AFUs use the same
interfaces as the example design. Also, you might be able to convert your HLS application
into an AFU by adding the required interfaces to the hardware design.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-hls-afu.pdf

Programmable Solutions Group

HLS on Acceleration Stack

192

HLS component to develop

AFU Container

Programmable Solutions Group

HLS AFU Container block diagram

194

Programmable Solutions Group

HLS on Acceleration Stack (basic vector reduce)
1. component

2. float floatingPointVectorReduce_basic(float *masterRead,

3. float *masterWrite,

4. int size)

5. {

6. float sum = 0.0f;

7. for (int idx = 0; idx < size; idx++)

8. {

9. float readVal = masterRead[idx];

10. sum += readVal;

11.

12. masterWrite[idx] = readVal + 1.0f;

13. }

14.

15. return sum;

16.}

195

Programmable Solutions Group

HLS on Acceleration Stack (HLS Signature)
1. typedef ihc::mm_master<float, ihc::dwidth<512>,

2. ihc::awidth<48>, ihc::latency<0>,

3. ihc::aspace<1>, ihc::readwrite_mode<readonly>,

4. ihc::waitrequest<true>, ihc::align<64>,

5. ihc::maxburst<4> > MasterReadFloat;

6.

7. typedef ihc::mm_master<float, ihc::dwidth<512>,

8. ihc::awidth<48>, ihc::latency<0>,

9. ihc::aspace<2>, ihc::readwrite_mode<writeonly>,

10. ihc::waitrequest<true>, ihc::align<64>,

11. ihc::maxburst<4> > MasterWriteFloat;

12.

13. component

14. hls_avalon_slave_component

15. float floatingPointVectorReduce_float (

16. hls_avalon_slave_register_argument MasterReadFloat &masterRead,

17. hls_avalon_slave_register_argument MasterWriteFloat &masterWrite,

18. hls_avalon_slave_register_argument uint64_t size)

19.
Avalon-MM

Master (Write)
Avalon-MM

Master (Read)
Control/Status
Register Slave

196

Programmable Solutions Group

HLS on Acceleration Stack (Code Body)

20. {

21. float sum = 0.0f;

22. int iterations = 1 + ((size - 1) / UNROLL_FACTOR);

23. for (int loop_idx = 0; loop_idx < iterations; loop_idx++)

24. {

25. float readSum = 0.0f;

26. #pragma unroll UNROLL_FACTOR

27. for (int itr = 0; itr < UNROLL_FACTOR; itr++)

28. {

29. int idx = itr + (loop_idx * UNROLL_FACTOR);

30. if (idx < size)

31. {

32. float readVal = masterRead[idx];

33. readSum += readVal;

34. masterWrite[idx] = readVal + 1.0f;

35. }

36. }

37. sum += readSum;

38. }

39. return sum;

40. }

197

#define UNROLL_FACTOR 16
// 16 32-bit floats in 1 512-bit dword
#define FLOAT_BITS 32
// 32 bits in one float

We can transfer up to 16x 32bit float in one 512
data bus cycle
We unroll to make it in parallel

Programmable Solutions Group

HLS AFU Flow Overview

1. Build/Verify HLS code

3. Build with Acceleration Stack tools

– Either ASE, or AF Bitstream

4. Build and run host

FPGA Interface Unit (FIU)

C
CI

-P

Memory Properties Factory (MPF) BBB

C
CI

-P

irq

HLS AFU Container (Platform Designer System)

MS M

CCI-P to Avalon
Host Adapter

(Write)

S

CCI-P to Avalon
Host Adapter

(Read)

S

CCIP to Avalon
MMIO Adapter

M

198

Programmable Solutions Group 199

Compiling and Simulating the HLS Component
with the i++ Command
▪ We compile this example design using the included makefile

▪ Build and emulate the design using x86 instructions run these commands:
$ make test-x86-64

$./test-x86-64

▪ Generate RTL and simulate generated RTL with the ModelSim simulator:
$ make test-fpga

$./test-fpga

Confirm that the outputs from the test-x86-64 the test-fpga command match.
The test-x86-64 command runs C++ code on the processor, while the test-fpga
command compiles the C++ source to Verilog RTL and then simulates the
generate RTL using the testbench defined in the code.

Programmable Solutions Group 200

Viewing waves in simulator (opcional)

As we have built the component using -ghdl the ModelSim testbench
generated will log all HDL signals in a wlf file

$ vsim fpga_ghdl.prj/verification/vsim.wlf

Add the desired signals to waveform viewer in the selected simulator

Programmable Solutions Group 201

Generating a Platform Designer container for the
HLS component
Use Platform Designer to integrate the HLS component into an AFU with the
predesigned hardware interfaces available in the Acceleration Stack, and verify
that all sources are linked correctly.

$ qsys-edit hls_afu_container.qsys

Programmable Solutions Group 202

Cosimulation using ASE testbench

After integrating the HLS component into an AFU, you might want to cosimulate
the AFU in the Intel AFU Simulation Environment (ASE), to quickly confirm the
functionality of your HLS component within the AFU.

To simulate using ASE, navigate to the root of your project (the hls_afu
directory) and run:

$ afu_sim_setup --source hw/rtl/filelist.txt build_ase_dir/

$ make

$ make sim

Programmable Solutions Group 203

Cosimulation using ASE testbench

Open a new terminal window to compile the host application

Export the ASE_WORKDIR environment variable using the export command
from the output of the make sim command in the ASE terminal window.

$ export ASE_WORKDIR=<path to work folder>

Build the host application with simulation support and run

$ make USE_ASE=1

$./hls_afu_host

Programmable Solutions Group 204

Cosimulation using ASE testbench

Host terminal window with all transactions

Programmable Solutions Group 205

Cosimulation using ASE testbench

The waveform, CCI-P transactions, and simulation log files are stored in the
simulation work directory. To view the waveform database, type:

$ make wave

Programmable Solutions Group 206

Synthesizing the AFU

Generate the AF build environment and create the AF (.gbs) image.

$ afu_synth_setup --source hw/rtl/filelist.txt build_synth

$ cd build_synth

$ $OPAE_PLATFORM_ROOT/bin/run.sh

When the AFU is created successfully, you get the following message:

Programmable Solutions Group 207

Synthesizing the AFU

The run.sh script indicates the status of timing closure – make sure the
generated AF has no hardware timing violations.

Optional:

Open the dcp.qpf Quartus

project file in the

Quartus Prime Pro GUI

with the synthesis build

project’s afu_fit revision

to view the details of the

timing report and perform

interactive timing analysis.

Programmable Solutions Group 208

Running the AFU

To run the bitstream, ensure that your host system contains an Intel FPGA PAC
and that you have Acceleration Stack (including OPAE) installed and configured.

Load the AF into the FPGA

$ fpgaconf hls_afu.gbs

Navigate to the hls_afu/sw directory. Build and run the host application (do not
specify USE_ASE=1)

$ make

$./hls_afu_host

Programmable Solutions Group 209

Running the AFU

Programmable Solutions Group 210

Summary

What is the Acceleration Stack for Intel® Xeon® CPU with FPGAs

▪ Robust collection of software, firmware, and tools

▪ Makes it easy to develop and deploy Intel FPGAs in the data center

▪ Supports both RTL and HLS development flows

▪ Intel FPGA Acceleration Hub for more information

How to develop an AFU using HLS

▪ Introduction to HLS

▪ Integration of HLS component, simulation & synthesis flows

▪ Developing a host application and run your accelerator

https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/overview.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html

