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Experimental Particle Physics -
the Journey
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Particle Collisions Physics Discoveries

Large Scale
Computing



Large Scale Computing
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Analysis in CMS
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Central Hundreds of physicists analyze 
the data with different goals 
at the same time
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Analysis: A multi-step Process
• Minimize Time to Insight

• Analysis is a conversation with data - Interactivity is 
key

• Many different physics topics concurrently 
under investigation
• Different slices of data are relevant for each analysis

• Programmatically same analysis steps
• Skimming (dropping events in a disk-to-disk copy)

• Slimming (dropping branches in a disk-to-disk copy)

• Filtering (selectively reading events into memory)

• Pruning (selectively reading branches into memory)

5



Big Data

• New toolkits and systems collectively called “Big Data” technologies have 
emerged to support the analysis of PB and EB datasets in industry.

• Our goals in applying these 
technologies to the HEP analysis 
challenge:
• Reduce Time to Insight
• Educate our graduate students and 

post docs to use industry-based technologies
• Improves chances on the job market outside 

academia
• Increases the attractiveness of our field

• Be part of an even larger community
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Bridging the Gap
• Physics Analysis is typically done with the ROOT Framework which uses 

physics data that are saved in ROOT format files. At CERN these files are 

stored within the EOS Storage Service.

EOS Storage Service

1. access data 2. read format 3. visualize



CMS Data Reduction and Analysis

Facility
• CERN openlab / Intel project

• Demonstrate reduction 
capabilities producing analysis 
ntuples using Apache Spark

• Demonstrator’s goal: reduce 1 
PB input in 5 hours



Milestones and Achievements
• We solved two important data engineering challenges:

1. Read files in ROOT Format using Spark

2. Access files stored in EOS directly from Hadoop/Spark

• This enabled us to produce, scale up, and optimize 
Physics Analysis Workloads with data input up to 1 PB.
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Scalability Tests
The data processing job of this project was 
developed in Scala by CMS members. 

• Performs event selection (i.e. Data Reduction)

• Uses the filtered events to compute the 
dimuon invariant mass

• On a single thread/core and one single 
file as input, the workload reads one 
branch and calculates the dimuon 
invariant mass in approximately 10 mins 
for a 4GB file EOS
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Scalability Tests: Technology
• Apache Spark

• Hadoop YARN

• Kubernetes  and Openstack

• Collaborated with Intel for Spark jobs optimizations: using Intel CoFluent Cluster Simulation Technology

• Services/Tools Used:  
• EOS Public, CERN open data

• Hadoop-XRootD Connector (allows Spark to access the CERN EOS storage system)

• spark-root (Spark data source for ROOT format)

• sparkMeasure (spark instrumentation)

• Spark on Kubernetes Service

• Issues that we tackled:
• Network bottleneck at scale: “readAhead” buffer size configuration of the Hadoop-XRtooD connector

• Running tests on a shared clusters and share infrastructure in IT datacenter



Hadoop and Spark Clusters at CERN

• Clusters: 

• YARN/Hadoop 

• Spark on Kubernetes

• Hardware: Intel based servers, continuous refresh and capacity expansion

Accelerator logging

(part of LHC 

infrastructure)

Hadoop - YARN - 30 nodes

(Cores - 800, Mem - 13 TB, Storage – 7.5 PB)

General Purpose Hadoop - YARN, 65 nodes

(Cores – 1.3k, Mem – 20 TB, Storage – 12.5 PB)

Cloud containers Kubernetes on Openstack VMs, Cores - 250, Mem – 2 TB

Storage: remote HDFS or EOS (for physics data)



Scalability Tests – Optimization Results

• Key workload metrics and time spent, 

measured with Spark custom instrumentation 

for 1 PB of input with 804 logical cores, 8 

logical cores per Spark executor

Metric 

Name

Total Time Spent (Sum 

Over al Executors)
% (Compared
to Execution 
Time)

Total 

Execution 

Time

~3000 - 3500 hours 1

CPU 

Time

~1200 hours 40%

EOS Read 

Time

~1200 - 1800 hours, 

depending on 

readAhead size

40-50%

Garbage 

Collection 

Time

~200 hours 7-8 % • Read Throughput in GB/s

• Measure throughout during job 
execution  for 1 PB of input with, 100 
Spark executors, each using 8 logical 
cores.



Scalability Tests - Results
• Performance and Scalability of the 

tests for different input size in 

minutes, 800 logical cores, and 8 

logical cores per Spark executor
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Input data size

Data reduction job, run time

Input Data Time for EOS Public

22 TB 7.3 mins

44 TB 11.9 mins

110 TB 27 mins (±2) 

220 TB 59 mins (±5) 

1 PB 228 mins (±10)
(~3.8 hours)

• Can we reduce 1 PB in 5 hours
(original project milestone)? YES.

• We even dropped to 4 hours in our latest
tests



Machine Learning Use Case
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Deep Learning Pipeline for Physics Data
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• R&D to improve the quality of filtering systems

• Develop a “Deep Learning classifier” to be used by the filtering system

• Goal: Reduce false positives -> do not store nor process uninteresting events

• “Topology classification with deep learning to improve real-time event selection at the 

LHC”, Nguyen et al. Comput.Softw.Big Sci. 3 (2019) no.1, 12



Engineering Efforts to Enable Effective ML

• From “Hidden Technical Debt in Machine Learning 

Systems”, D. Sculley at al. (Google), paper at NIPS 2015



Analytics Platform at CERN

HEP software

Experiments storage

HDFS

Personal storage

Integrating new “Big Data” 

components with existing 

infrastructure:

• Software distribution

• Data platforms
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https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiutqHg3dThAhUCPFAKHVErDuQQjRx6BAgBEAU&url=https%3A%2F%2Findico.cern.ch%2Fevent%2F656157%2F&psig=AOvVaw3qNP_2iQRsdOTIFWOKfk_F&ust=1555508199266077


Code

Monitoring

Visualizations

Analytics with SWAN
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Text

All the required tools, 
software and data 
available in a single 
window! 



Extending Spark to Read Physics Data

• Physics data is stored in EOS system, accessible with 

xrootd protocol: extended HDFS APIs

• Stored in ROOT format: developed a Spark Datasource

• Currently: 300 PBs

• Growing >50 PB/year

• https://github.com/cerndb/hadoop-xrootd

• https://github.com/diana-hep/spark-root
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https://github.com/cerndb/hadoop-xrootd
https://github.com/diana-hep/spark-root


Deep Learning Pipeline for Physics Data
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The Dataset

● Software simulators generate events and 

calculate the detector response

● Every event is a 801x19 matrix: for every 

particle momentum, position, energy, charge 

and particle type are given



Data Ingestion

• Read input files (4.5 TB) from ROOT format

• Compute physics-motivated features

• Store to parquet format

54 M events

4.5TB

750 GBs 

Stored on HDFS

Physics data 

storage



Features Engineering
• From the 19 features recorded in the 

experiment:
• 14 more are calculated based on domain specific 

knowledge: these are called High Level Features 
(HLF)

• Order the sequence of particles to be fed to a 
sequence based classifier
• The final sequence is ordered using custom Python 

code implementing physics



Feature Preparation
• All features need to be 

converted to a format 

consumable by the neural 

network

• One Hot Encoding of 

categories 

• Sort the particles for the 

sequence classifier with a UDF

• Executed in PySpark using 

Spark SQL and ML



Models Investigated 

1. Fully connected feed-forward 
DNN with High Level Features

2. DNN with a recursive layer 
(based on GRUs)

3. Combination of (1) + (2)

Complexity

Performance



Hyper-Parameter Tuning– DNN 
• Once the network topology is chosen, hyper-parameter 

tuning is done with scikit-learn + Keras and parallelized 

with Spark



Analytics Zoo & BigDL
• Analytics Zoo is a platform for unified analytics 

and AI on Apache Spark leveraging BigDL / 
Tensorflow
• For service developers: integration with the existing 

distributed and scalable analytics infrastructure 
(hardware, data access, data processing, 
configuration and operations)

• For users: Keras APIs to run user models, 
integration with Spark data structures and pipelines

• BigDL is a distributed deep learning framework 
for Apache Spark
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Model Development – DNN

• Model is instantiated with the Keras-

compatible API provided by Analytics Zoo



Model Development – GRU+HLF
A more complex topology for the network



Distributed Training
Instantiate the estimator using Analytics Zoo / BigDL

The actual training is distributed to Spark executors

Storing the model for later use



Analytics Zoo & BigDL scales very well in the 

ranges tested

Performance and Scalability of Analytics Zoo & BigDL



Results

• Trained models with 

Analytics Zoo and BigDL

• Met the expected 

accuracy results



TensorFlow on Kubernetes

• Additional results using TensorFlow 2.0 on Kubernetes 

• CERN Cloud on Openstack

• TF.distribute Multi Worker Strategy on K8S: https://github.com/cerndb/tf-spawner

• Data transformed from Parquet to TFRecord using Spark, then fed to TF.Data

Distributed training with TF 2.0

https://github.com/cerndb/tf-spawner


Data and 
models from 
Researchers

Input: 
labeled
data and DL 
models

Feature 
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ng at 
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Distributed 
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selector model
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(Random/Grid 
search)

Machine Learning with Spark and Keras



Conclusions
• Spark and “Big Data”-based analysis platforms can improve 

High Energy Physics data pipelines
• Industry-standard APIs

• Run natively on “data lakes” and cloud

• Profit from large communities in industry and open source

• Two use cases developed
• CMS Data reduction at scale with Apache Spark

• Deep learning pipeline with Spark + BigDL and TensorFLow

• Analytics platform at CERN
• Open for access to CERN community, notably users in Physics, 

Beams and Accelerators, IT.
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