A Machine Learning Framework for Large-Scale Weather and Climate Prediction using Exact and Approximate Linear Algebra Computation

Sameh Abdulah, Hatem Ltaief, Ying Sun, Marc Genton and David Keyes Extreme Computing Research Center King Abdullah University of Science and Technology

IXPUG Annual Fall Conference 2018, Oregon, US

September 25-28, 2018

• Problem Statement.

- Problem Statement.
- Matern Covariance Function.

- Problem Statement.
- Matern Covariance Function.
- Dynamic Runtime Systems.

- Problem Statement.
- Matern Covariance Function.
- Dynamic Runtime Systems.
- State-of-the-Art Linear Algebra Libraries.

- Problem Statement.
- Matern Covariance Function.
- Dynamic Runtime Systems.
- State-of-the-Art Linear Algebra Libraries.
- ExaGeoStat Framework.

- Problem Statement.
- Matern Covariance Function.
- Dynamic Runtime Systems.
- State-of-the-Art Linear Algebra Libraries.
- ExaGeoStat Framework.
 - Synthetic Dataset Generator.

- Problem Statement.
- Matern Covariance Function.
- Dynamic Runtime Systems.
- State-of-the-Art Linear Algebra Libraries.
- ExaGeoStat Framework.
 - Synthetic Dataset Generator.
 - Maximum Likelihood Estimator (MLE).

- Problem Statement.
- Matern Covariance Function.
- Dynamic Runtime Systems.
- State-of-the-Art Linear Algebra Libraries.
- ExaGeoStat Framework.
 - Synthetic Dataset Generator.
 - Maximum Likelihood Estimator (MLE).
 - ExaGeoStat Predictor.

- Problem Statement.
- Matern Covariance Function.
- Dynamic Runtime Systems.
- State-of-the-Art Linear Algebra Libraries.
- ExaGeoStat Framework.
 - Synthetic Dataset Generator.
 - Maximum Likelihood Estimator (MLE).
 - ExaGeoStat Predictor.
- Tile Low-Rank (TLR) Approximation.

- Problem Statement.
- Matern Covariance Function.
- Dynamic Runtime Systems.
- State-of-the-Art Linear Algebra Libraries.
- ExaGeoStat Framework.
 - Synthetic Dataset Generator.
 - Maximum Likelihood Estimator (MLE).
 - ExaGeoStat Predictor.
- Tile Low-Rank (TLR) Approximation.
- Performance on Synthetic and Real Datasets.

- Problem Statement.
- Matern Covariance Function.
- Dynamic Runtime Systems.
- State-of-the-Art Linear Algebra Libraries.
- ExaGeoStat Framework.
 - Synthetic Dataset Generator.
 - Maximum Likelihood Estimator (MLE).
 - ExaGeoStat Predictor.
- Tile Low-Rank (TLR) Approximation.
- Performance on Synthetic and Real Datasets.
- Outcomes.

- Problem Statement.
- Matern Covariance Function.
- Dynamic Runtime Systems.
- State-of-the-Art Linear Algebra Libraries.
- ExaGeoStat Framework.
 - Synthetic Dataset Generator.
 - Maximum Likelihood Estimator (MLE).
 - ExaGeoStat Predictor.
- Tile Low-Rank (TLR) Approximation.
- Performance on Synthetic and Real Datasets.
- Outcomes.
- Conclusion.

• Applications for climate and environmental predictions are among the most time-consuming simulations workloads running on today's supercomputer facilities.

- Applications for climate and environmental predictions are among the most time-consuming simulations workloads running on today's supercomputer facilities.
- Today, weather and climate data are usually huge!

- Applications for climate and environmental predictions are among the most time-consuming simulations workloads running on today's supercomputer facilities.
- Today, weather and climate data are usually huge!
 - A set of Z observations at given n locations.

- Applications for climate and environmental predictions are among the most time-consuming simulations workloads running on today's supercomputer facilities.
- Today, weather and climate data are usually huge!
 - A set of Z observations at given n locations.
 - Z observations could be temperature, precipitation, ... etc.

- Applications for climate and environmental predictions are among the most time-consuming simulations workloads running on today's supercomputer facilities.
- Today, weather and climate data are usually huge!
 - A set of Z observations at given n locations.
 - Z observations could be temperature, precipitation, ... etc.
- Maximum Likelihood Function

- Applications for climate and environmental predictions are among the most time-consuming simulations workloads running on today's supercomputer facilities.
- Today, weather and climate data are usually huge!
 - A set of Z observations at given n locations.
 - Z observations could be temperature, precipitation, ... etc.
- Maximum Likelihood Function
 - An important statistical technique for predicting unknown measurements in climate and environmental applications.

- Applications for climate and environmental predictions are among the most time-consuming simulations workloads running on today's supercomputer facilities.
- Today, weather and climate data are usually huge!
 - A set of Z observations at given n locations.
 - Z observations could be temperature, precipitation, ... etc.
- Maximum Likelihood Function
 - An important statistical technique for predicting unknown measurements in climate and environmental applications.
 - Prohibitive computational Cost and memory requirements:

$$\ell(\boldsymbol{\theta}) = -\frac{1}{2} \mathbf{Z}^T \Sigma^{-1}(\boldsymbol{\theta}) \mathbf{Z} - \frac{1}{2} \mathrm{log} |\Sigma(\boldsymbol{\theta})|$$

- Applications for climate and environmental predictions are among the most time-consuming simulations workloads running on today's supercomputer facilities.
- Today, weather and climate data are usually huge!
 - A set of Z observations at given n locations.
 - Z observations could be temperature, precipitation, ... etc.
- Maximum Likelihood Function
 - An important statistical technique for predicting unknown measurements in climate and environmental applications.
 - Prohibitive computational Cost and memory requirements:

$$\ell(\boldsymbol{\theta}) = -\frac{1}{2} \mathbf{Z}^T \Sigma^{-1}(\boldsymbol{\theta}) \mathbf{Z} - \frac{1}{2} \log |\Sigma(\boldsymbol{\theta})|$$

• The linear solver and log-determinant involving floating point operations on *n*-by-*n* covariance matrix with $O(n^3)$ complexity and $O(n^2)$ memory footprint.

- Applications for climate and environmental predictions are among the most time-consuming simulations workloads running on today's supercomputer facilities.
- Today, weather and climate data are usually huge!
 - A set of Z observations at given n locations.
 - Z observations could be temperature, precipitation, ... etc.
- Maximum Likelihood Function
 - An important statistical technique for predicting unknown measurements in climate and environmental applications.
 - Prohibitive computational Cost and memory requirements:

$$\ell(\boldsymbol{\theta}) = -\frac{1}{2} \mathbf{Z}^T \Sigma^{-1}(\boldsymbol{\theta}) \mathbf{Z} - \frac{1}{2} \mathrm{log} |\Sigma(\boldsymbol{\theta})|$$

- The linear solver and log-determinant involving floating point operations on *n*-by-*n* covariance matrix with $O(n^3)$ complexity and $O(n^2)$ memory footprint.
- For instance: 10⁶ locations require 8*TB* Memory!

Exascale Geostatistics (ExaGeoStat)

• A framework which exploits machine learning, statistical modeling and forecasting, and the state-of-the-art linear algebra techniques to handle large-scale Geostatistics data.

 In climate/weather applications different covariance functions can be used to generate Σ(θ).

- In climate/weather applications different covariance functions can be used to generate Σ(θ).
- A Generic covariance function can be directly used (Matérn function):

$$C(r;\theta) = \frac{\theta_1}{2^{\theta_3 - 1} \Gamma(\theta_3)} \left(\frac{r}{\theta_2}\right)^{\theta_3} \kappa_{\theta_3} \left(\frac{r}{\theta_2}\right)$$

- In climate/weather applications different covariance functions can be used to generate Σ(θ).
- A Generic covariance function can be directly used (Matérn function):

$$C(r;\theta) = \frac{\theta_1}{2^{\theta_3 - 1} \Gamma(\theta_3)} \left(\frac{r}{\theta_2}\right)^{\theta_3} \kappa_{\theta_3} \left(\frac{r}{\theta_2}\right)$$

• $\theta_1 > 0$ (Variance).

- In climate/weather applications different covariance functions can be used to generate Σ(θ).
- A Generic covariance function can be directly used (Matérn function): θ_1 (r) θ_3 (r)

$$C(r;\theta) = \frac{\theta_1}{2^{\theta_3 - 1} \Gamma(\theta_3)} \left(\frac{r}{\theta_2}\right)^{\theta_3} \kappa_{\theta_3} \left(\frac{r}{\theta_2}\right)$$

- $\theta_1 > 0$ (Variance).
- $\theta_2 > 0$ (Spatial Range, larger values \rightarrow strong correlation).

- In climate/weather applications different covariance functions can be used to generate Σ(θ).
- A Generic covariance function can be directly used (Matérn function):

$$C(r;\theta) = \frac{\theta_1}{2^{\theta_3 - 1} \Gamma(\theta_3)} \left(\frac{r}{\theta_2}\right)^{\theta_3} \kappa_{\theta_3} \left(\frac{r}{\theta_2}\right)$$

- $\theta_1 > 0$ (Variance).
- $\theta_2 > 0$ (Spatial Range, larger values \rightarrow strong correlation).
- $\theta_3 > 0$ (Smoothness, larger values \rightarrow smoother field).

- In climate/weather applications different covariance functions can be used to generate Σ(θ).
- A Generic covariance function can be directly used (Matérn function):

$$C(r;\theta) = \frac{\theta_1}{2^{\theta_3 - 1} \Gamma(\theta_3)} \left(\frac{r}{\theta_2}\right)^{\theta_3} \kappa_{\theta_3} \left(\frac{r}{\theta_2}\right)$$

- $\theta_1 > 0$ (Variance).
- $\theta_2 > 0$ (Spatial Range, larger values \rightarrow strong correlation).
- $\theta_3 > 0$ (Smoothness, larger values \rightarrow smoother field).
- Apparently dense matrices arising in climate/weather applications,

- In climate/weather applications different covariance functions can be used to generate Σ(θ).
- A Generic covariance function can be directly used (Matérn function):

$$C(r;\theta) = \frac{\theta_1}{2^{\theta_3 - 1} \Gamma(\theta_3)} \left(\frac{r}{\theta_2}\right)^{\theta_3} \kappa_{\theta_3} \left(\frac{r}{\theta_2}\right)$$

- $\theta_1 > 0$ (Variance).
- $\theta_2 > 0$ (Spatial Range, larger values \rightarrow strong correlation).
- $\theta_3 > 0$ (Smoothness, larger values \rightarrow smoother field).
- Apparently dense matrices arising in climate/weather applications,
 - Rely on leading edge parallel architectures.

- In climate/weather applications different covariance functions can be used to generate Σ(θ).
- A Generic covariance function can be directly used (Matérn function):

$$C(r;\theta) = \frac{\theta_1}{2^{\theta_3 - 1} \Gamma(\theta_3)} \left(\frac{r}{\theta_2}\right)^{\theta_3} \kappa_{\theta_3} \left(\frac{r}{\theta_2}\right)$$

- $\theta_1 > 0$ (Variance).
- $\theta_2 > 0$ (Spatial Range, larger values \rightarrow strong correlation).
- $\theta_3 > 0$ (Smoothness, larger values \rightarrow smoother field).
- Apparently dense matrices arising in climate/weather applications,
 - Rely on leading edge parallel architectures.
 - Compress dense matrices with tile low-rank approximation

- In climate/weather applications different covariance functions can be used to generate Σ(θ).
- A Generic covariance function can be directly used (Matérn function):

$$C(r;\theta) = \frac{\theta_1}{2^{\theta_3 - 1} \Gamma(\theta_3)} \left(\frac{r}{\theta_2}\right)^{\theta_3} \kappa_{\theta_3} \left(\frac{r}{\theta_2}\right)$$

- $\theta_1 > 0$ (Variance).
- $\theta_2 > 0$ (Spatial Range, larger values \rightarrow strong correlation).
- $\theta_3 > 0$ (Smoothness, larger values \rightarrow smoother field).
- Apparently dense matrices arising in climate/weather applications,
 - Rely on leading edge parallel architectures.
 - Compress dense matrices with tile low-rank approximation
 - Huge performance improvement via cutting down flops.

- In climate/weather applications different covariance functions can be used to generate Σ(θ).
- A Generic covariance function can be directly used (Matérn function):

$$C(r;\theta) = \frac{\theta_1}{2^{\theta_3 - 1} \Gamma(\theta_3)} \left(\frac{r}{\theta_2}\right)^{\theta_3} \kappa_{\theta_3} \left(\frac{r}{\theta_2}\right)$$

- $\theta_1 > 0$ (Variance).
- $\theta_2 > 0$ (Spatial Range, larger values \rightarrow strong correlation).
- $\theta_3 > 0$ (Smoothness, larger values \rightarrow smoother field).
- Apparently dense matrices arising in climate/weather applications,
 - Rely on leading edge parallel architectures.
 - Compress dense matrices with tile low-rank approximation
 - Huge performance improvement via cutting down flops.
 - Preserving the accuracy requirements of the scientific application.

ExaGeoStat Framework

ExaGeoStat		
HiCMA		
Chameleon		
StarPU Runtime System		
Shared Memory	GPUs	Distributed Memory
• Operate directly on the sequential code and schedule the various tasks across the underlying hardware resources.

- Operate directly on the sequential code and schedule the various tasks across the underlying hardware resources.
- Its role is to ensure that the data dependencies are not violated.

- Operate directly on the sequential code and schedule the various tasks across the underlying hardware resources.
- Its role is to ensure that the data dependencies are not violated.
- Enhance the software productivity by abstracting the hardware complexity from the end users.

- Operate directly on the sequential code and schedule the various tasks across the underlying hardware resources.
- Its role is to ensure that the data dependencies are not violated.
- Enhance the software productivity by abstracting the hardware complexity from the end users.
- StarPU

- Operate directly on the sequential code and schedule the various tasks across the underlying hardware resources.
- Its role is to ensure that the data dependencies are not violated.
- Enhance the software productivity by abstracting the hardware complexity from the end users.
- StarPU
 - INRIA Bordeaux, France.

- Operate directly on the sequential code and schedule the various tasks across the underlying hardware resources.
- Its role is to ensure that the data dependencies are not violated.
- Enhance the software productivity by abstracting the hardware complexity from the end users.
- StarPU
 - INRIA Bordeaux, France.
 - A unified Runtime System for Heterogeneous Multicore Architectures.

- Operate directly on the sequential code and schedule the various tasks across the underlying hardware resources.
- Its role is to ensure that the data dependencies are not violated.
- Enhance the software productivity by abstracting the hardware complexity from the end users.
- StarPU
 - INRIA Bordeaux, France.
 - A unified Runtime System for Heterogeneous Multicore Architectures.
 - Shared Memory, GPUs, Distributed Systems.

State-of-the-art Linear Algebra Libraries

- Tile Algorithms
 - PLASMA, Chameleon, and FLAME,

\square			

		W//	
	$W\!M_{\bullet}$	WW	
	$W\!M\!,$	WW	\mathbb{W}
	WM.	WW	$W\!M$

State-of-the-art Linear Algebra Libraries

- Tile Algorithms
 - PLASMA, Chameleon, and FLAME,
 - The dense matrix is broken into tiles.

\backslash			

		W//	WM
	$W\!M_{\bullet}$	WW	WM
////	$W\!M\!,$	WW	WM
////	WM.	WW	WM

State-of-the-art Linear Algebra Libraries

- Tile Algorithms
 - PLASMA, Chameleon, and FLAME,
 - The dense matrix is broken into tiles.
 - Weaken the synchronization points by bringing the parallelism in multithreaded BLAS.

• Synthetic Dataset Generator

• Synthetic Dataset Generator

• Generate large-scale geospatial datasets which can be separately used as benchmark datasets for other software packages.

- Synthetic Dataset Generator
 - Generate large-scale geospatial datasets which can be separately used as benchmark datasets for other software packages.
- Maximum Likelihood Estimator (MLE)

- Synthetic Dataset Generator
 - Generate large-scale geospatial datasets which can be separately used as benchmark datasets for other software packages.
- Maximum Likelihood Estimator (MLE)
 - Evaluate the maximum likelihood function on large-scale geospatial datasets.

- Synthetic Dataset Generator
 - Generate large-scale geospatial datasets which can be separately used as benchmark datasets for other software packages.
- Maximum Likelihood Estimator (MLE)
 - Evaluate the maximum likelihood function on large-scale geospatial datasets.
 - Support full machine precision accuracy (full-matrix) and Tile Low-Rank (TLR) approximation.

- Synthetic Dataset Generator
 - Generate large-scale geospatial datasets which can be separately used as benchmark datasets for other software packages.
- Maximum Likelihood Estimator (MLE)
 - Evaluate the maximum likelihood function on large-scale geospatial datasets.
 - Support full machine precision accuracy (full-matrix) and Tile Low-Rank (TLR) approximation.
- ExaGeoStat Predictor

- Synthetic Dataset Generator
 - Generate large-scale geospatial datasets which can be separately used as benchmark datasets for other software packages.
- Maximum Likelihood Estimator (MLE)
 - Evaluate the maximum likelihood function on large-scale geospatial datasets.
 - Support full machine precision accuracy (full-matrix) and Tile Low-Rank (TLR) approximation.
- ExaGeoStat Predictor
 - Predict unknown measurements on known geospatial locations by leveraging the MLE estimated parameters.

Synthetic Dataset Generator

• Cholesky factorization of $\Sigma(\theta)$:

$$\boldsymbol{\Sigma}(\boldsymbol{\theta}) = \boldsymbol{V}.\boldsymbol{V}^{\mathsf{T}}$$

Synthetic Dataset Generator

• Cholesky factorization of $\Sigma(\theta)$:

$$\boldsymbol{\Sigma}(\boldsymbol{\theta}) = \boldsymbol{V}.\boldsymbol{V}^{\mathsf{T}}$$

• Z Vector Generation

 $Z = V.e \sim N(0,1)$

Synthetic Dataset Generator

• Cholesky factorization of $\Sigma(\theta)$:

 $\Sigma(\theta) = V.V^{T}$

• Z Vector Generation

 $Z = V.e \sim N(0,1)$

 An example of 400 points irregularly distributed in space, with 362 points (•) for maximum likelihood estimation and 38 points (×) for prediction validation.

$$\ell(\boldsymbol{\theta}) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\log|\boldsymbol{\Sigma}(\boldsymbol{\theta})| - \frac{1}{2}\boldsymbol{\mathsf{Z}}^{\top}\boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1}\boldsymbol{\mathsf{Z}}.$$
 (1)

 Log determinant and linear solver requires a Cholesky factorization of the given covariance matrix Σ(θ).

$$\ell(\boldsymbol{\theta}) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\log|\boldsymbol{\Sigma}(\boldsymbol{\theta})| - \frac{1}{2}\boldsymbol{\mathsf{Z}}^{\top}\boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1}\boldsymbol{\mathsf{Z}}.$$
 (1)

- Log determinant and linear solver requires a Cholesky factorization of the given covariance matrix Σ(θ).
- Cholesky factorization requires $O(n^3)$ floating point operations and $O(n^2)$.

$$\ell(\boldsymbol{\theta}) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\log|\boldsymbol{\Sigma}(\boldsymbol{\theta})| - \frac{1}{2}\boldsymbol{\mathsf{Z}}^{\top}\boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1}\boldsymbol{\mathsf{Z}}.$$
 (1)

- Log determinant and linear solver requires a Cholesky factorization of the given covariance matrix Σ(θ).
- Cholesky factorization requires $O(n^3)$ floating point operations and $O(n^2)$.
- Dense ExaGeoStat uses Chameleon linear algebra libraries to provide a large-scale exact solution for the MLE operation.

$$\ell(\boldsymbol{\theta}) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\log|\boldsymbol{\Sigma}(\boldsymbol{\theta})| - \frac{1}{2}\boldsymbol{\mathsf{Z}}^{\top}\boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1}\boldsymbol{\mathsf{Z}}.$$
 (1)

- Log determinant and linear solver requires a Cholesky factorization of the given covariance matrix Σ(θ).
- Cholesky factorization requires $O(n^3)$ floating point operations and $O(n^2)$.
- Dense ExaGeoStat uses Chameleon linear algebra libraries to provide a large-scale exact solution for the MLE operation.
- NLOPT optimization library has been used to maximize the likelihood function till convergence in both cases.

ExaGeoStat Predictor

$$\begin{bmatrix} \mathbf{Z}_1 \\ \mathbf{Z}_2 \end{bmatrix} \sim N_{m+n} \begin{pmatrix} \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix}$$
(2)

$$Z_1|Z_2 \sim N_m(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(Z_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}).$$
 (3)

• Assuming \mathbf{Z}_2 has a zero-mean function ($\mu_1 = 0, \mu_2 = 0$)

$$\mathbf{Z}_1 = \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{Z}_2. \tag{4}$$

ExaGeoStat Predictor

$$\begin{bmatrix} \mathbf{Z}_1 \\ \mathbf{Z}_2 \end{bmatrix} \sim N_{m+n} \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}$$
(2)

$$Z_1|Z_2 \sim N_m(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(Z_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}).$$
 (3)

• Assuming Z_2 has a zero-mean function ($\mu_1 = 0, \mu_2 = 0$)

$$\mathbf{Z}_1 = \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{Z}_2. \tag{4}$$

• Solution of system of linear equation $\pmb{\Sigma}_{22}^{-1}\pmb{Z}_2$ needs also a Cholesky factorization of $\pmb{\Sigma}_{22}$

ExaGeoStat Framework (Exploit Data Sparsity)

- Tile Low-Rank (TLR) Algorithms
 - HiCMA Library (KAUST, 2017).

- Tile Low-Rank (TLR) Algorithms
 - HiCMA Library (KAUST, 2017).
 - Use SVD, approximate each off-diagonal tile, keep the most significant k (matrix rank) singular values and their left and right singular vectors, U and V.

- Tile Low-Rank (TLR) Algorithms
 - HiCMA Library (KAUST, 2017).
 - Use SVD, approximate each off-diagonal tile, keep the most significant k (matrix rank) singular values and their left and right singular vectors, U and V.
 - Depend on Selected accuracy (application specific).

- Tile Low-Rank (TLR) Algorithms
 - HiCMA Library (KAUST, 2017).
 - Use SVD, approximate each off-diagonal tile, keep the most significant k (matrix rank) singular values and their left and right singular vectors, U and V.
 - Depend on Selected accuracy (application specific).
 - Two variations can be provided,

- Tile Low-Rank (TLR) Algorithms
 - HiCMA Library (KAUST, 2017).
 - Use SVD, approximate each off-diagonal tile, keep the most significant k (matrix rank) singular values and their left and right singular vectors, U and V.
 - Depend on Selected accuracy (application specific).
 - Two variations can be provided,
 - Fixed Rank.

- Tile Low-Rank (TLR) Algorithms
 - HiCMA Library (KAUST, 2017).
 - Use SVD, approximate each off-diagonal tile, keep the most significant k (matrix rank) singular values and their left and right singular vectors, U and V.
 - Depend on Selected accuracy (application specific).
 - Two variations can be provided,
 - Fixed Rank.
 - Fixed Accuracy.

- Tile Low-Rank (TLR) Algorithms
 - HiCMA Library (KAUST, 2017).
 - Use SVD, approximate each off-diagonal tile, keep the most significant k (matrix rank) singular values and their left and right singular vectors, U and V.
 - Depend on Selected accuracy (application specific).
 - Two variations can be provided,
 - Fixed Rank.
 - Fixed Accuracy.
 - In the case of Fixed accuracy, *k* varies from one tile to another. Therefore, load imbalance issues appear.

- Tile Low-Rank (TLR) Algorithms
 - HiCMA Library (KAUST, 2017).
 - Use SVD, approximate each off-diagonal tile, keep the most significant k (matrix rank) singular values and their left and right singular vectors, U and V.
 - Depend on Selected accuracy (application specific).
 - Two variations can be provided,
 - Fixed Rank.
 - Fixed Accuracy.
 - In the case of Fixed accuracy, k varies from one tile to another. Therefore, load imbalance issues appear.
 - Solution: rely on dynamic runtime systems.

 Climate/ weather modeling applications requires 10⁻⁹ accuracy threshold.

0	500	133	47	35	154	83	44	33	59	49	38	30	40	37	33	29	33	32	30	27-
	133	500	139	48	86	163	86	44	50	59	50	38	37	41	37	33	32	33	32	30
	47	139	500	137	44	86	153	83	38	49	59	49	33	37	41	37	30	32	33	32
	35	48	137	500	33	44	83	164	30	38	49	59	29	33	37	41	27	30	32	33
	154	86	44	33	500	134	48	34	165	84	44	33	59	50	38	30	41	37	33	30
5	- 83	163	86	44	134	500	139	48	86	163	85	44	49	59	50	38	37	40	37	33 -
	44	86	153	83	48	139	500	137	44	86	172	86	38	50	59	49	33	37	40	37
	33	44	83	164	34	48	137	500	33	44	86	166	30	39	50	59	29	33	37	41
	59	50	38	30	165	86	44	33	500	143	48	35	164	85	44	33	59	49	38	31
	49	59	49	38	84	163	86	44	143	500	143	48	84	159	87	44	49	59	49	38
10	- 38	50	59	49	44	85	172	86	48	143	500	134	44	86	156	81	38	49	58	49-
	30	38	49	59	33	44	86	166	35	48	134	500	33	45	86	157	30	39	49	59
	40	37	33	29	59	49	38	30	164	84	44	33	500	138	48	35	162	86	44	33
	37	41	37	33	50	59	50	39	85	159	86	45	138	500	142	48	85	165	85	45
	33	37	41	37	38	50	59	50	44	87	156	86	48	142	500	133	44	84	159	85
15	- 29	33	37	41	30	38	49	59	33	44	81	157	35	48	133	500	33	44	81	157-
	33	32	30	27	41	37	33	29	59	49	38	30	162	85	44	33	500	142	47	34
	32	33	32	30	37	40	37	33	49	59	49	39	86	165	84	44	142	500	136	48
	30	32	33	32	33	37	40	37	38	49	58	49	44	85	159	81	47	136	500	130
	27	30	32	33	30	33	37	41	31	38	49	59	33	45	85	157	34	48	130	500
	0					5	-	-		-	10	_		-	-	15		-	-	_

- Climate/ weather modeling applications requires 10⁻⁹ accuracy threshold.
- Using Exponential covariance function,

 $C(r;\theta) = \theta_1 exp(\frac{r}{\theta_2})$

0	500	133	47	35	154	83	44	33	59	49	38	30	40	37	33	29	33	32	30	27-
	133	500	139	48	86	163	86	44	50	59	50	38	37	41	37	33	32	33	32	30
	47	139	500	137	44	86	153	83	38	49	59	49	33	37	41	37	30	32	33	32
	35	48	137	500	33	44	83	164	30	38	49	59	29	33	37	41	27	30	32	33
	154	86	44	33	500	134	48	34	165	84	44	33	59	50	38	30	41	37	33	30
5	- 83	163	86	44	134	500	139	48	86	163	85	44	49	59	50	38	37	40	37	33 -
	44	86	153	83	48	139	500	137	44	86	172	86	38	50	59	49	33	37	40	37
	33	44	83	164	34	48	137	500	33	44	86	166	30	39	50	59	29	33	37	41
	59	50	38	30	165	86	44	33	500	143	48	35	164	85	44	33	59	49	38	31
	49	59	49	38	84	163	86	44	143	500	143	48	84	159	87	44	49	59	49	38
10	- 38	50	59	49	44	85	172	86	48	143	500	134	44	86	156	81	38	49	58	49-
	30	38	49	59	33	44	86	166	35	48	134	500	33	45	86	157	30	39	49	59
	40	37	33	29	59	49	38	30	164	84	44	33	500	138	48	35	162	86	44	33
	37	41	37	33	50	59	50	39	85	159	86	45	138	500	142	48	85	165	85	45
	33	37	41	37	38	50	59	50	44	87	156	86	48	142	500	133	44	84	159	85
15	- 29	33	37	41	30	38	49	59	33	44	81	157	35	48	133	500	33	44	81	157-
	33	32	30	27	41	37	33	29	59	49	38	30	162	85	44	33	500	142	47	34
	32	33	32	30	37	40	37	33	49	59	49	39	86	165	84	44	142	500	136	48
	30	32	33	32	33	37	40	37	38	49	58	49	44	85	159	81	47	136	500	130
	27	30	32	33	30	33	37	41	31	38	49	59	33	45	85	157	34	48	130	500
	0					5	-	-		-	10	-		-	-	15		-	-	
Tile-Low Rank Approximation

- Climate/ weather modeling applications requires 10⁻⁹ accuracy threshold.
- Using Exponential covariance function,

 $C(r;\theta) = \theta_1 exp(\frac{r}{\theta_2})$

• Example, rank distribution on $2k \times 2k$ matrix where nb = 500, 2D problem.

0	500	133	47	35	154	83	44	33	59	49	38	30	40	37	33	29	33	32	30	27-
	133	500	139	48	86	163	86	44	50	59	50	38	37	41	37	33	32	33	32	30
	47	139	500	137	44	86	153	83	38	49	59	49	33	37	41	37	30	32	33	32
	35	48	137	500	33	44	83	164	30	38	49	59	29	33	37	41	27	30	32	33
	154	86	44	33	500	134	48	34	165	84	44	33	59	50	38	30	41	37	33	30
5	- 83	163	86	44	134	500	139	48	86	163	85	44	49	59	50	38	37	40	37	33 -
	44	86	153	83	48	139	500	137	44	86	172	86	38	50	59	49	33	37	40	37
	33	44	83	164	34	48	137	500	33	44	86	166	30	39	50	59	29	33	37	41
	59	50	38	30	165	86	44	33	500	143	48	35	164	85	44	33	59	49	38	31
	49	59	49	38	84	163	86	44	143	500	143	48	84	159	87	44	49	59	49	38
10	- 38	50	59	49	44	85	172	86	48	143	500	134	44	86	156	81	38	49	58	49-
	30	38	49	59	33	44	86	166	35	48	134	500	33	45	86	157	30	39	49	59
	40	37	33	29	59	49	38	30	164	84	44	33	500	138	48	35	162	86	44	33
	37	41	37	33	50	59	50	39	85	159	86	45	138	500	142	48	85	165	85	45
	33	37	41	37	38	50	59	50	44	87	156	86	48	142	500	133	44	84	159	85
15	- 29	33	37	41	30	38	49	59	33	44	81	157	35	48	133	500	33	44	81	157-
	33	32	30	27	41	37	33	29	59	49	38	30	162	85	44	33	500	142	47	34
	32	33	32	30	37	40	37	33	49	59	49	39	86	165	84	44	142	500	136	48
	30	32	33	32	33	37	40	37	38	49	58	49	44	85	159	81	47	136	500	130
	27	30	32	33	30	33	37	41	31	38	49	59	33	45	85	157	34	48	130	500
	0					5	-	-		-	10	-		-	-	15		-	-	-

• Soil Moisture data at the top layer of the Mississippi River Basin in the United States, on January 1st, 2004.

- Soil Moisture data at the top layer of the Mississippi River Basin in the United States, on January 1st, 2004.
- $\sim 2M$ Locations.

- Soil Moisture data at the top layer of the Mississippi River Basin in the United States, on January 1st, 2004.
- $\sim 2M$ Locations.

• Wind Speed data at Middle East, on September 1st, 2017.

- Soil Moisture data at the top layer of the Mississippi River Basin in the United States, on January 1st, 2004.
- $\sim 2M$ Locations.

- Wind Speed data at Middle East, on September 1st, 2017.
- $\sim 1M$ Locations.

- Intel Haswell,
 - Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz.
 - Dual-socket 18-core.
 - Memory: 256 GB.
 - Around 6.21*X*

speedup compared to Full-tile with accuracy 10^{-5} .

- Intel Broadwell,
 - Intel(R) Xeon(R) CPU E5-2680 v4@ 2.40GHz.
 - Dual-socket 14-core.
 - Memory: 128 GB.
 - Around 9.16X speedup compared to

full-tile with accuracy 10^{-5} .

- Intel Knights Landing,
 - Intel(R) Xeon
 Phi(TM) CPU 7210 @
 1.30GHz.
 - Single socket 64-core.
 - Memory: 112 GB.
 - Around 13X speedup compared to full-tile with accuracy 10⁻⁵.

- Intel Skylake,
 - Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz.
 - Dual-socket 28-core.
 - Memory: 256 GB.
 - Around 4.48X speedup compared to full-tile with accuracy 10⁻⁵

Performance on Distributed Memory

- Shaheen-2,
 - 6174 Intel Haswell Processors.
 - Each processor: dual-socket 16-core.
 - 790 TB of aggregate memory.
 - Around 5X speedup compared to Full-tile with accuracy 10⁻⁵ on 256 nodes.

Performance on Distributed Memory

- Shaheen-2,
 - 6174 Intel Haswell Processors.
 - Each processor: dual-socket 16-core.
 - 790 TB of aggregate memory.
 - Around 6X speedup compared to Full-tile with accuracy 10⁻⁵ on 1024 nodes

Performance on Distributed Memory (Prediction)

- Shaheen-2,
 - 6174 Intel Haswell Processors.
 - Each processor: dual-socket 16-core.
 - 790 TB of aggregate memory.
 - Around 5X speedup compared to Full-tile with accuracy 10⁻⁵ on 256 nodes

Qualitative Results (Data Correlation Impact)

- Synthetic Datasets (40k)
 - Initial $(\theta) = (1, 0.03, 0.5).$
 - Full-tile, TLR w acc. = $10^{-12},\, TLR$ w acc. = $10^{-9},\, \text{and}\,\, TLR$ w acc. = 10^{-7}

Qualitative Results (Data Correlation Impact)

- Synthetic Datasets (40k)
 - Initial $(\theta) = (1, 0.01, 0.5).$
 - Full-tile, TLR w acc. = $10^{-12},\, TLR$ w acc. = $10^{-9},\, \text{and}\,\, TLR$ w acc. = 10^{-7}

Qualitative Results (Data Correlation Impact)

- Synthetic Datasets (40k)
 - Initial $(\theta) = (1, 0.3, 0.5).$
 - Full-tile, TLR w acc. = $10^{-12},\, TLR$ w acc. = $10^{-9},\, \text{and}\,\, TLR$ w acc. = 10^{-7}

Initial θ =(1, 0.3, 0.5)

Initial θ =(1, 0.3, 0.5)

Qualitative Results (Data Smoothness Impact)

- Synthetic Datasets (40k)
 - Initial $(\theta) = (1, 0.1, 1)$.
 - Full-tile, TLR w acc. = $10^{-12},\, TLR$ w acc. = $10^{-9},\, \text{and}\,\, TLR$ w acc. = 10^{-7}

Initial θ =(1, 0.1, 1)

Qualitative Results (Data Smoothness Impact)

- Synthetic Datasets (40k)
 - Initial $(\theta) = (1, 0.1, 0.5).$
 - Full-tile, TLR w acc. = $10^{-12},\, TLR$ w acc. = $10^{-9},\, \text{and}\,\, TLR$ w acc. = 10^{-7}

Qualitative Results (Soil Moisture Dataset)

		Matérn Covariance														
B				Variance (θ_1)				Smoothness (θ_3)							
			TLR A	ccuracy				TLR A	ccuracy				TLR A	Accuracy		
	1	10^{-5}	10^{-7}	10^{-9}	10^{-12}	Full-tile	10^{-5}	10^{-7}	10-9	10^{-12}	Full-tile	10^{-5}	10^{-7}	10^{-9}	10^{-12}	Full-tile
R	1 0	0.855	0.855	0.855	0.855	0.852	6.039	6.034	6.034	6.033	5.994	0.559	0.559	0.559	0.559	0.559
R	2 0	0.383	0.378	0.378	0.378	0.380	10.457	10.307	10.307	10.307	10.434	0.491	0.491	0.491	0.491	0.490
R	3 0	0.282	0.283	0.283	0.283	0.277	11.037	11.064	11.066	11.066	10.878	0.509	0.509	0.509	0.509	0.507
R	4 0	0.382	0.38	0.38	0.38	0.41	7.105	7.042	7.042	7.042	7.77	0.532	0.533	0.533	0.533	0.527
R	5 0	0.832	0.837	0.837	0.837	0.836	9.172	9.225	9.225	9.225	9.213	0.497	0.497	0.497	0.497	0.496
R	5 0	0.646	0.615	0.621	0.621	0.619	10.886	10.21	10.317	10.317	10.323	0.521	0.524	0.524	0.524	0.523
R	7 0	0.430	0.452	0.452	0.452	0.553	14.101	15.057	15.075	15.075	19.203	0.519	0.516	0.516	0.516	0.508
R	3 0	0.661	1.194	0.769	0.769	0.906	18.603	37.315	22.168	22.168	27.861	0.469	0.462	0.467	0.467	0.461

• Highly correlated regions require higher TLR accuracy (ex., regions 7 and 8).

Qualitative Results (Wind Speed Dataset)

Matérn Covariance													
	R		Varian	ice (θ_1)			Spatial R	lange (θ_2)			Smooth	ness (θ_3)	
		Т	LR Accura	су		T	LR Accura	су		TI	R Accura	су	Í .
		10^{-5}	10^{-7}	10^{-9}	Full-tile	10^{-5}	10^{-7}	10^{-9}	Full-tile	10^{-5}	10^{-7}	10^{-9}	Full-tile
	R1	7.406	9.407	12.247	8.715	29.576	33.886	39.573	32.083	1.214	1.196	1.175	1.210
	R2	11.920	13.159	13.550	12.517	26.011	28.083	28.707	27.237	1.290	1.267	1.260	1.274
	R3	10.588	10.944	11.232	10.819	18.423	18.783	19.114	18.634	1.418	1.413	1.407	1.416
	R4	12.408	17.112	12.388	12.270	17.264	17.112	17.247	17.112	1.168	1.170	1.168	1.170

• Highly correlated regions require higher TLR accuracy (ex., regions 1, 2, and 3).

Qualitative Results (Soil Moisture Dataset)

- Prediction Accuracy
- Soil Moisture (Region 1)

• Soil Moisture (Region 3)

• ExaGeoStat is an open-source software which is available at https://github.com/ecrc/exageostat.

- ExaGeoStat is an open-source software which is available at https://github.com/ecrc/exageostat.
- ExaGeoStatR is available at https://github.com/ecrc/exageostatR.

- ExaGeoStat is an open-source software which is available at https://github.com/ecrc/exageostat.
- ExaGeoStatR is available at https://github.com/ecrc/exageostatR.
- ExaGeoStat 0.1.0 (Nov. 9th 2017)

- ExaGeoStat is an open-source software which is available at https://github.com/ecrc/exageostat.
- ExaGeoStatR is available at https://github.com/ecrc/exageostatR.
- ExaGeoStat 0.1.0 (Nov. 9th 2017)
 - Support exact computation using Chameleon dense Linear algebra library and StarPU runtime system.

- ExaGeoStat is an open-source software which is available at https://github.com/ecrc/exageostat.
- ExaGeoStatR is available at https://github.com/ecrc/exageostatR.
- ExaGeoStat 0.1.0 (Nov. 9th 2017)
 - Support exact computation using Chameleon dense Linear algebra library and StarPU runtime system.
 - Support real and synthetic geospatial datasets.

- ExaGeoStat is an open-source software which is available at https://github.com/ecrc/exageostat.
- ExaGeoStatR is available at https://github.com/ecrc/exageostatR.
- ExaGeoStat 0.1.0 (Nov. 9th 2017)
 - Support exact computation using Chameleon dense Linear algebra library and StarPU runtime system.
 - Support real and synthetic geospatial datasets.
 - Soil moisture dataset at Mississippi basin area.

- ExaGeoStat is an open-source software which is available at https://github.com/ecrc/exageostat.
- ExaGeoStatR is available at https://github.com/ecrc/exageostatR.
- ExaGeoStat 0.1.0 (Nov. 9th 2017)
 - Support exact computation using Chameleon dense Linear algebra library and StarPU runtime system.
 - Support real and synthetic geospatial datasets.
 - Soil moisture dataset at Mississippi basin area.
- Today, ExaGeoStat supports,

- ExaGeoStat is an open-source software which is available at https://github.com/ecrc/exageostat.
- ExaGeoStatR is available at https://github.com/ecrc/exageostatR.
- ExaGeoStat 0.1.0 (Nov. 9th 2017)
 - Support exact computation using Chameleon dense Linear algebra library and StarPU runtime system.
 - Support real and synthetic geospatial datasets.
 - Soil moisture dataset at Mississippi basin area.
- Today, ExaGeoStat supports,
 - Tile-Low Rank approximation (TLR) using HiCMA TLR approximation.

- ExaGeoStat is an open-source software which is available at https://github.com/ecrc/exageostat.
- ExaGeoStatR is available at https://github.com/ecrc/exageostatR.
- ExaGeoStat 0.1.0 (Nov. 9th 2017)
 - Support exact computation using Chameleon dense Linear algebra library and StarPU runtime system.
 - Support real and synthetic geospatial datasets.
 - Soil moisture dataset at Mississippi basin area.
- Today, ExaGeoStat supports,
 - Tile-Low Rank approximation (TLR) using HiCMA TLR approximation.
 - Super Diagonal Tile (SDT) approximation.

- ExaGeoStat is an open-source software which is available at https://github.com/ecrc/exageostat.
- ExaGeoStatR is available at https://github.com/ecrc/exageostatR.
- ExaGeoStat 0.1.0 (Nov. 9th 2017)
 - Support exact computation using Chameleon dense Linear algebra library and StarPU runtime system.
 - Support real and synthetic geospatial datasets.
 - Soil moisture dataset at Mississippi basin area.
- Today, ExaGeoStat supports,
 - Tile-Low Rank approximation (TLR) using HiCMA TLR approximation.
 - Super Diagonal Tile (SDT) approximation.
 - Performance results of TLR-based computations on shared and distributed-memory systems attain up to 13X and 5X speedups.

- ExaGeoStat is an open-source software which is available at https://github.com/ecrc/exageostat.
- ExaGeoStatR is available at https://github.com/ecrc/exageostatR.
- ExaGeoStat 0.1.0 (Nov. 9th 2017)
 - Support exact computation using Chameleon dense Linear algebra library and StarPU runtime system.
 - Support real and synthetic geospatial datasets.
 - Soil moisture dataset at Mississippi basin area.
- Today, ExaGeoStat supports,
 - Tile-Low Rank approximation (TLR) using HiCMA TLR approximation.
 - Super Diagonal Tile (SDT) approximation.
 - Performance results of TLR-based computations on shared and distributed-memory systems attain up to 13X and 5X speedups.
 - Support NetCDF Format.

- ExaGeoStat is an open-source software which is available at https://github.com/ecrc/exageostat.
- ExaGeoStatR is available at https://github.com/ecrc/exageostatR.
- ExaGeoStat 0.1.0 (Nov. 9th 2017)
 - Support exact computation using Chameleon dense Linear algebra library and StarPU runtime system.
 - Support real and synthetic geospatial datasets.
 - Soil moisture dataset at Mississippi basin area.
- Today, ExaGeoStat supports,
 - Tile-Low Rank approximation (TLR) using HiCMA TLR approximation.
 - Super Diagonal Tile (SDT) approximation.
 - Performance results of TLR-based computations on shared and distributed-memory systems attain up to 13X and 5X speedups.
 - Support NetCDF Format.
 - Support Out-Of-Core (OOC) execution.

- ExaGeoStat is an open-source software which is available at https://github.com/ecrc/exageostat.
- ExaGeoStatR is available at https://github.com/ecrc/exageostatR.
- ExaGeoStat 0.1.0 (Nov. 9th 2017)
 - Support exact computation using Chameleon dense Linear algebra library and StarPU runtime system.
 - Support real and synthetic geospatial datasets.
 - Soil moisture dataset at Mississippi basin area.
- Today, ExaGeoStat supports,
 - Tile-Low Rank approximation (TLR) using HiCMA TLR approximation.
 - Super Diagonal Tile (SDT) approximation.
 - Performance results of TLR-based computations on shared and distributed-memory systems attain up to 13X and 5X speedups.
 - Support NetCDF Format.
 - Support Out-Of-Core (OOC) execution.
 - Wind Speed, Temperature datasets at Middle-East.

Conclusion

 We introduce ExaGeoStat, a unified software for computational Geostatistics that exploits recent developments in dense/approximate linear algebra task-based algorithms associated with dynamic runtime systems. https://github.com/ecrc/exageostat.

Conclusion

- We introduce ExaGeoStat, a unified software for computational Geostatistics that exploits recent developments in dense/approximate linear algebra task-based algorithms associated with dynamic runtime systems. https://github.com/ecrc/exageostat.
- We propose an accurate and amenable MLE framework using TLR-based approximation format to reduce the prohibitive complexity of the apparently dense covariance matrix computation.

Conclusion

- We introduce ExaGeoStat, a unified software for computational Geostatistics that exploits recent developments in dense/approximate linear algebra task-based algorithms associated with dynamic runtime systems. https://github.com/ecrc/exageostat.
- We propose an accurate and amenable MLE framework using TLR-based approximation format to reduce the prohibitive complexity of the apparently dense covariance matrix computation.
- ExaGeoStat estimates the statistical model parameters for Geostatistics applications and predict missing measurements.
- We introduce ExaGeoStat, a unified software for computational Geostatistics that exploits recent developments in dense/approximate linear algebra task-based algorithms associated with dynamic runtime systems. https://github.com/ecrc/exageostat.
- We propose an accurate and amenable MLE framework using TLR-based approximation format to reduce the prohibitive complexity of the apparently dense covariance matrix computation.
- ExaGeoStat estimates the statistical model parameters for Geostatistics applications and predict missing measurements.
- ExaGeoStat relies on a single source code to target various hardware resources including shared and distributed-memory systems.

• We propose a synthetic dataset generator that can be used to perform broader scientific experiments related to computational geostatistics applications.

- We propose a synthetic dataset generator that can be used to perform broader scientific experiments related to computational geostatistics applications.
- We propose an R-wrapper functions, ExaGeoStatR, to facilitate the use of our software in the R environment. https://github.com/ecrc/exageostatR

- We propose a synthetic dataset generator that can be used to perform broader scientific experiments related to computational geostatistics applications.
- We propose an R-wrapper functions, ExaGeoStatR, to facilitate the use of our software in the R environment. https://github.com/ecrc/exageostatR
- We evaluate performance using both synthetic and real datasets in terms of elapsed time and number of floating-point operations (Gflop/s) on several hardware systems.

- We propose a synthetic dataset generator that can be used to perform broader scientific experiments related to computational geostatistics applications.
- We propose an R-wrapper functions, ExaGeoStatR, to facilitate the use of our software in the R environment. https://github.com/ecrc/exageostatR
- We evaluate performance using both synthetic and real datasets in terms of elapsed time and number of floating-point operations (Gflop/s) on several hardware systems.
- We assess the quality of the estimation of the Matérn covariance parameters and prediction operation achieved by ExaGeoStat through a quantitative performance analysis and using both exact and approximation techniques.

KAUST Team/Collaborators/Vendors

- Extreme Computing Research Center @ KAUST: R. Abdelkhalek, S. Abdulah, K. Akbudak, R. AlOmairy, A. Alonazy, T. Alturkestani, W. Boukaram, A. Charara, N. Doucet, M. Genton, E. A. Gonzalez Fisher, D. Keyes, H. Ltaief, A. Mikhalev, D. Sukkari and Y. Sun
- Tokyo Institute of Technology, Japan: R. Yokota
- Innovative Computing Laboratory @ UTK, USA: PLASMA/MAGMA/PaRSEC Teams
- INRIA/INP/LaBRI Bordeaux, France: Runtime/HiePACS Teams
- Max-Planck Institute@Leipzig, Germany: R. Kriemann
- American University of Beirut, Lebanon: G. Turkiyyah
- KAUST Supercomputing Lab
- Intel Parallel Computing Center

S. Abdulah et al.

• Cray Center of Excellence

Thank You!

Questions?

sameh.abdulah@kaust.edu.sa

S. Abdulah et al.