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Problem Statement

Climate/Weather Forecasting

Applications for climate and environmental predictions are among the
most time-consuming simulations workloads running on today’s
supercomputer facilities.

Today, weather and climate data are usually huge!

A set of Z observations at given n locations.
Z observations could be temperature, precipitation, ... etc.

Maximum Likelihood Function

An important statistical technique for predicting unknown
measurements in climate and environmental applications.

Prohibitive computational Cost and memory requirements:

The linear solver and log-determinant involving floating point
operations on n-by-n covariance matrix with O(n3) complexity and
O(n2) memory footprint.
For instance: 106 locations require 8TB Memory!
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Problem Statement

Exascale Geostatistics (ExaGeoStat)

A framework which exploits machine learning, statistical modeling
and forecasting, and the state-of-the-art linear algebra techniques to
handle large-scale Geostatistics data.
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Problem Statement

Matérn Covariance Function

In climate/weather applications different covariance functions can be
used to generate Σ(θ).

A Generic covariance function can be directly used (Matérn function):

θ1 > 0 (Variance).
θ2 > 0 (Spatial Range, larger values → strong correlation).
θ3 > 0 (Smoothness, larger values → smoother field).

Apparently dense matrices arising in climate/weather applications,

Rely on leading edge parallel architectures.
Compress dense matrices with tile low-rank approximation

Huge performance improvement via cutting down flops.
Preserving the accuracy requirements of the scientific application.
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Overview

ExaGeoStat Framework
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ExaGeoStat Underlying Software

Dynamic Runtime Systems

Operate directly on the sequential code and schedule the various
tasks across the underlying hardware resources.

Its role is to ensure that the data dependencies are not violated.

Enhance the software productivity by abstracting the hardware
complexity from the end users.

StarPU

INRIA Bordeaux, France.
A unified Runtime System for Heterogeneous Multicore Architectures.
Shared Memory, GPUs, Distributed Systems.
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ExaGeoStat Underlying Software

State-of-the-art Linear Algebra Libraries

Tile Algorithms

PLASMA, Chameleon, and FLAME,

The dense matrix is broken into tiles.
Weaken the synchronization points by bringing the parallelism in
multithreaded BLAS.
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ExaGeoStat Framework

ExaGeoStat

Synthetic Dataset Generator

Generate large-scale geospatial datasets which can be separately used
as benchmark datasets for other software packages.

Maximum Likelihood Estimator (MLE)

Evaluate the maximum likelihood function on large-scale geospatial
datasets.
Support full machine precision accuracy (full-matrix) and Tile
Low-Rank (TLR) approximation.

ExaGeoStat Predictor

Predict unknown measurements on known geospatial locations by
leveraging the MLE estimated parameters.
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ExaGeoStat Framework

Synthetic Dataset Generator

Cholesky factorization of Σ(θ):

Σ(θ) = V .V T

Z Vector Generation

Z = V .e ∼ N(0, 1)

An example of 400 points
irregularly distributed in space,
with 362 points (◦) for
maximum likelihood estimation
and 38 points ( × ) for
prediction validation.
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ExaGeoStat Framework

Maximum Likelihood Estimator (MLE)

`(θ) = −n

2
log(2π)− 1

2
log |Σ(θ)| − 1

2
Z>Σ(θ)−1Z. (1)

Log determinant and linear solver requires a Cholesky factorization of
the given covariance matrix Σ(θ).

Cholesky factorization requires O(n3) floating point operations and
O(n2).

Dense ExaGeoStat uses Chameleon linear algebra libraries to provide
a large-scale exact solution for the MLE operation.

NLOPT optimization library has been used to maximize the likelihood
function till convergence in both cases.
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ExaGeoStat Framework

ExaGeoStat Predictor

[
Z1

Z2

]
∼ Nm+n(

[
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

]
) (2)

Z1|Z2 ∼ Nm(µ1 + Σ12Σ−122 (Z2 − µ2),Σ11 −Σ12Σ−122 Σ21). (3)

Assuming Z2 has a zero-mean function (µ1 = 0, µ2 = 0)

Z1 = Σ12Σ−122 Z2. (4)

Solution of system of linear equation Σ−122 Z2 needs also a Cholesky
factorization of Σ22
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ExaGeoStat Framework (Exploit Data Sparsity)

Tile-Low Rank Approximation

Tile Low-Rank (TLR) Algorithms

HiCMA Library (KAUST, 2017).

Use SVD, approximate each
off-diagonal tile, keep the most
significant k (matrix rank) singular
values and their left and right singular
vectors, U and V .
Depend on Selected accuracy
(application specific).
Two variations can be provided,

Fixed Rank.
Fixed Accuracy.

In the case of Fixed accuracy, k varies
from one tile to another. Therefore,
load imbalance issues appear.
Solution: rely on dynamic runtime
systems.
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ExaGeoStat Framework (Exploit Data Sparsity)

Tile-Low Rank Approximation

Climate/ weather modeling applications
requires 10−9 accuracy threshold.

Using Exponential covariance function,

C (r ; θ) = θ1exp( r
θ2

)

Example, rank distribution on 2k × 2k
matrix where nb = 500, 2D problem.

S. Abdulah et al. 14 / 35



ExaGeoStat Framework (Exploit Data Sparsity)

Tile-Low Rank Approximation

Climate/ weather modeling applications
requires 10−9 accuracy threshold.

Using Exponential covariance function,

C (r ; θ) = θ1exp( r
θ2

)

Example, rank distribution on 2k × 2k
matrix where nb = 500, 2D problem.

S. Abdulah et al. 14 / 35



ExaGeoStat Framework (Exploit Data Sparsity)

Tile-Low Rank Approximation

Climate/ weather modeling applications
requires 10−9 accuracy threshold.

Using Exponential covariance function,

C (r ; θ) = θ1exp( r
θ2

)

Example, rank distribution on 2k × 2k
matrix where nb = 500, 2D problem.

S. Abdulah et al. 14 / 35



Performance Evaluation

Real Datasets Examples

Soil Moisture data at the top
layer of the Mississippi River
Basin in the United States, on
January 1st, 2004.

∼ 2M Locations.

Wind Speed data at Middle
East, on September 1st, 2017.

∼ 1M Locations.
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Performance Evaluation

Performance on Shared Memory

Intel Haswell,

Intel(R) Xeon(R)
CPU E5-2699 v3 @
2.30GHz.
Dual-socket 18-core.
Memory: 256 GB.
Around 6.21X
speedup compared to
Full-tile with accuracy
10−5.
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Performance Evaluation

Performance on Shared Memory

Intel Broadwell,

Intel(R) Xeon(R)
CPU E5-2680 v4@
2.40GHz.
Dual-socket 14-core.
Memory: 128 GB.
Around 9.16X
speedup compared to
full-tile with accuracy
10−5.
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Performance Evaluation

Performance on Shared Memory

Intel Knights Landing,

Intel(R) Xeon
Phi(TM) CPU 7210 @
1.30GHz.
Single socket 64-core.
Memory: 112 GB.
Around 13X speedup
compared to full-tile
with accuracy 10−5.
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Performance Evaluation

Performance on Shared Memory

Intel Skylake,

Intel(R) Xeon(R)
Platinum 8176 CPU
@ 2.10GHz.
Dual-socket 28-core.
Memory: 256 GB.
Around 4.48X
speedup compared to
full-tile with accuracy
10−5
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Performance Evaluation

Performance on Distributed Memory

Shaheen-2,

6174 Intel Haswell
Processors.
Each processor:
dual-socket 16-core.
790 TB of aggregate
memory.
Around 5X speedup
compared to Full-tile
with accuracy 10−5

on 256 nodes.
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Performance Evaluation

Performance on Distributed Memory

Shaheen-2,

6174 Intel Haswell
Processors.
Each processor:
dual-socket 16-core.
790 TB of aggregate
memory.
Around 6X speedup
compared to Full-tile
with accuracy 10−5

on 1024 nodes
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Performance Evaluation

Performance on Distributed Memory (Prediction)

Shaheen-2,

6174 Intel Haswell
Processors.
Each processor:
dual-socket 16-core.
790 TB of aggregate
memory.
Around 5X speedup
compared to Full-tile
with accuracy 10−5

on 256 nodes
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Performance Evaluation

Qualitative Results (Data Correlation Impact)

Synthetic Datasets (40k)
Initial (θ)=(1, 0.03, 0.5).

Full-tile, TLR w acc. = 10−12, TLR w acc. = 10−9, and TLR w acc.
= 10−7
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Performance Evaluation

Qualitative Results (Data Smoothness Impact)

Synthetic Datasets (40k)
Initial (θ)=(1, 0.1, 1).
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Performance Evaluation

Qualitative Results (Data Smoothness Impact)
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Performance Evaluation

Qualitative Results (Soil Moisture Dataset)

Highly correlated regions require
higher TLR accuracy (ex.,
regions 7 and 8).
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Performance Evaluation

Qualitative Results (Wind Speed Dataset)

Highly correlated regions require
higher TLR accuracy (ex.,
regions 1, 2, and 3).
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Performance Evaluation

Qualitative Results (Soil Moisture Dataset)

Prediction Accuracy
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Outcomes

ExaGeoStat Under the Microscope

ExaGeoStat is an open-source software which is available at
https://github.com/ecrc/exageostat.

ExaGeoStatR is available at https://github.com/ecrc/exageostatR.

ExaGeoStat 0.1.0 (Nov. 9th 2017)

Support exact computation using Chameleon dense Linear algebra
library and StarPU runtime system.
Support real and synthetic geospatial datasets.
Soil moisture dataset at Mississippi basin area.

Today, ExaGeoStat supports,

Tile-Low Rank approximation (TLR) using HiCMA TLR approximation.
Super Diagonal Tile (SDT) approximation.
Performance results of TLR-based computations on shared and
distributed-memory systems attain up to 13X and 5X speedups.
Support NetCDF Format.
Support Out-Of-Core (OOC) execution.
Wind Speed, Temperature datasets at Middle-East.
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conclusion

Conclusion

We introduce ExaGeoStat, a unified software for computational
Geostatistics that exploits recent developments in dense/approximate
linear algebra task-based algorithms associated with dynamic runtime
systems. https://github.com/ecrc/exageostat.

We propose an accurate and amenable MLE framework using
TLR-based approximation format to reduce the prohibitive complexity
of the apparently dense covariance matrix computation.

ExaGeoStat estimates the statistical model parameters for
Geostatistics applications and predict missing measurements.

ExaGeoStat relies on a single source code to target various hardware
resources including shared and distributed-memory systems.
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conclusion

Conclusion

We propose a synthetic dataset generator that can be used to
perform broader scientific experiments related to computational
geostatistics applications.

We propose an R-wrapper functions, ExaGeoStatR, to facilitate the
use of our software in the R environment.
https://github.com/ecrc/exageostatR

We evaluate performance using both synthetic and real datasets in
terms of elapsed time and number of floating-point operations
(Gflop/s) on several hardware systems.

We assess the quality of the estimation of the Matérn covariance
parameters and prediction operation achieved by ExaGeoStat through
a quantitative performance analysis and using both exact and
approximation techniques.
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Thank You!

Questions?

sameh.abdulah@kaust.edu.sa
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