

In Situ Analysis and Visualization with SENSEI

<u>E. Wes Bethel</u>, Junmin Gu, Burlen Loring, Dmitriy Morozov, *Gunther H. Weber*, John Wu (LBNL). <u>Nicola Ferrier</u>, Silvio Rizzi (ANL). Dave Pugmire, James Cress, <u>Matthew</u> <u>Wolf</u> (ORNL). <u>Earl Duque</u>, Brad Whitlock (Intelligent Light). Utkarsh Ayachit, David Thompson, Andrew Bauer, <u>Patrick O'Leary</u> (Kitware)

Why in situ?

SENSEI : <u>Scalable Environments for Scientific</u> <u>Explorations In Situ</u>

4 Project Pillars

- R&D for scalable infrastructure and methods to work around FLOPS-I/O bottleneck
- Generic infrastructure maximizes portability and preserves investment in DOE codes
- Science code team partnerships focus and prove R & D
- Outreach and community engagement make the technology accessible

Scalability	Portability	Science	Community
-------------	-------------	---------	-----------

Science Engagements

Where do these codes come from? DOE Office of Science: HEP, BES, BER High Energy Physics (HEP) Basic Energy Sciences (BES) Biological and Environmental Research (BER) Academic research community, then picked up and extended/used by DOE, DoD, others.

Warp + Libsim,

SENSEI In situ Infrastructure

Write once run everywhere - use any simulation with any visualization/analysis and easily swap back-ends at run time

SENSEI enables connection of simulation data sources to visualization and analysis back ends through a data model and API

Simulations get run-time interchangeability of analysis/vis codes

analysis/vis codes can consume data from any simulation

Delivarables

Focus Area	Co-leads
expanding the data model	Andrew Bauer (Kitware), Brad Whitlock (Intelligent Light)
bidirectional data movement	Patrick O'Leary (Kitware), Matthew Wolf (ORNL)
design/execution patterns	Dmitriy Morozov (LBNL), Dave Pugmire (ORNL)
scaling to next-generation systems	Nicola Ferrier (ANL), John Wu (LBNL)
outreach, code team partnerships, cookbook, workshops	Gunther Weber (LBNL), Matthew Wolf (ORNL)
software products, distribution, releases	Earl Duque (Intelligent Light), Patrick O'Leary (Kitware)

Expanding the data model

user: sensei Tue May 22 12:12:00 2018

Bidirectional data movement

Bidirectional data movement supports more science use case scenarios; eg, computational steering

Design and execution patterns

M producer ranks, N consumer ranks Unidirectional data movement/control (M:N:1)

MxN

M producer ranks, N1 and N2 consumer ranks, Unidirectional data movement/control (M:<N1, N2>:1)

MxN

Research focus areas:

- MxN data redistribution
- Depth of copies
- Bidirectional: interface, pipeline management
- Leveraging arch features like NVRAM for staging
- Leveraging 3rd party tools like TensorFlow for ML-based analytics
- Specific science app use case drivers

data model

What simulation data types does SENSEI support?

- many more purpose specific and esoteric data types are supported by VTK
- no explicit dependence on other parts of VTK such as i/o, filters, renderering, etc etc

Speed & Efficiency

zero copy layouts provide pointer equivalent performance

- Array of Structures (AOS)
- single array with components interleaved
 v= x1 y1 z1 x2 y2 z2 ... xn yn zn
- Structure of Arrays (SOA)
- each component in its own arrays

// VTK's default is AOS, no need to use
vtkAOSDataArrayTemplate
vtkDoubleArray *aos = vtkDoubleArray::New();
aos->SetNumberOfComponents(3);
aos->SetArray(v, 3*n, 0);

<pre>// use the new SOA class</pre>		
<pre>vtkSOADataArrayTemplate<double> *soa =</double></pre>		
<pre>vtkSOADataArrayTemplate<double>::New();</double></pre>		
<pre>soa->SetNumberOfComponents(3);</pre>		
<pre>soa->SetArray(0, vx, n, true);</pre>		
<pre>soa->SetArray(1, vy, n);</pre>		
<pre>soa->SetArray(2, vz, n);</pre>		

SENSEI Overhead

Run Original and Baseline configs, 3 levels of concurrency: 1K, 6K, 45K

• Original: subroutine called, Baseline: through SENSEI bridge

Performance Analysis, Design Considerations, and Applications of Extreme-scale In Situ Infrastructures. SC16

SENSEI architecture

In situ Architecture

Manages data and analysis adaptors, periodically pushes data to the analysis

• Typically 3 functions: Initialize, Update and Finalize

The data adaptor

DataAdaptors – API giving analyses access to simulation data and metadata

Convert simulation data to/from the data model

The analysis adaptor

AnalysisAdaptor – API for simulation to invoke vis & analysis

Consume/process data

ConfigurableAnalysisAdaptor – select an analysis at run time via an XML config file

In transit Architecture

ADIOS Adaptors

End-Point

In situ demo

Newton mini-app

N-body Gravitational Simulation. A single file, <400 lines.

Solves Newton's law of gravitation Velocity Verlet method

$$F_{i} = F_{j} = G^{*}m_{i}^{*}m_{j}/r_{ij}^{**}2$$

 $x_{i}' = V_{i}$

 $V_i' = F_i/m_i$

Newton mini-app

- direct solver, O(N**2)
 - Velocity Verlet
 - » second order, symplectic, conserves momentum exactly, time reversible
- the simplest possible code
 - a single file, <400 lines, to better focus on use of SENSEI interface
- a production quality code could easily be thousands of lines (see NBODY6 ~6K lines)

Instrumenting the simulation

```
# set up the initial condition
n_bodies = args.n_bodies*n_ranks
ic = uniform_random_ic(n_bodies, -5906.4e9, \
    5906.4e9, -5906.4e9, 5906.4e9, 10.0e24, \
    100.0e24, 1.0e3, 10.0e3)
ids,x,y,z,m,vx,vy,vz,fx,fy,fz = ic.allocate()
h = args.dt if args.dt else ic.get_time_step()
```

```
# create an analysis adaptor(bridge code)
bridge = newton_bridge()
bridge.initialize(args.analysis, args.analysis_opts)
```

```
# run the sim and analysis
bridge.update(0,0,ids,x,y,z,m,vx,vy,vz,fx,fy,fz)
i = 1
while i <= args.n_its:
    velocity_verlet(x,y,z,m,vx,vy,vz,fx,fy,fz,h)
    bridge.update(i,i*h,ids,x,y,z,m,vx,vy,vz,fx,fy,fz)
    i += 1
```

finish up
bridge.finalize()

Bridge

```
class newton bridge:
    def __init__(self):
        self.DataAdaptor = sensei.VTKDataAdaptor.New()
        self.AnalysisAdaptor = sensei.ConfigurableAnalysisAdaptor.New()
    def initialize(self, analysis, args=''):
        # select and configure SENSEI analysis adaptor
        •••
    def finalize(self):
        self.AnalysisAdaptor.Finalize()
    def update(self, i,t,ids,x,y,z,m,vx,vy,vz,fx,fy,fz):
       # convert simulation data to VTK
       # invoke the analysis
        •••
```


Invoking in situ analysis

```
def update(self, i,t,ids,x,y,z,m,vx,vy,vz,fx,fy,fz):
```

```
# construct VTK a dataset
node = points_to_polydata(ids,x,y,z,m,vx,vy,vz,fx,fy,fz)
mb = vtk.vtkMultiBlockDataSet()
mb.SetNumberOfBlocks(n_ranks)
mb.SetBlock(rank, node)
```

```
# pass it to the data adaptor
self.DataAdaptor.SetDataTime(t)
self.DataAdaptor.SetDataTimeStep(i)
self.DataAdaptor.SetDataObject(mb)
```

```
# execute the in situ analysis
self.AnalysisAdaptor.Execute(self.DataAdaptor)
```

```
# free up memory
self.DataAdaptor.ReleaseData()
```


In situ demo

- Run the the simulation 2 times
- Use XML to switch back end between Libsim and Catalyst

Catalyst

<sensei>

<analysis type="catalyst" pipeline="pythonscript" filename="catalyst_config.py" enabled="1" />
</sensei>

Libsim

<sensei>
 <analysis type="libsim" plots="Pseudocolor" plotvars="ids" image-filename="image_%ts"
 image-width="800" image-height="800" slice-project="1" image-format="png" frequency="1" enabled="1"/>
 </sensei>

In transit demo

In transit demo

Simulation: XML configures ADIOS analysis with FLEXPATH

ADIOS

<sensei>

```
<analysis type="adios" filename="newton.bp" method="FLEXPATH" enabled="1" />
<analysis type="adios" filename="newton.bp" method="DATASPACES" enabled="0" />
<analysis type="adios" filename="newton.bp" method="MPI" enabled="0" />
</sensei>
```

End-point: XML configures either Catalyst or Libsim

Catalyst

Libsim

<sensei>

```
<analysis type="libsim" plots="Pseudocolor" plotvars="ids" image-filename="image_%ts"
    image-width="800" image-height="800" slice-project="1" image-format="png" frequency="1" enabled="1"/>
</sensei>
```

Links

- Main page http://www.sensei-insitu.org/
- Software repo https://gitlab.kitware.com/sensei/sensei
- ADIOS https://www.olcf.ornl.gov/center-projects/adios/
- Vislt/Libsim https://www.visitusers.org/index.php?title=Category:Libsim
- ParaView Catalyst http://www.paraview.org/in-situ/

Conduit data adaptor

VTK-m as an analysis back-end

