
In Situ Analysis and Visualization
with SENSEI

E. Wes Bethel, Junmin Gu, Burlen Loring, Dmitriy Morozov, Gunther H. Weber, John
Wu (LBNL). Nicola Ferrier, Silvio Rizzi (ANL). Dave Pugmire, James Cress, Matthew
Wolf (ORNL). Earl Duque, Brad Whitlock (Intelligent Light). Utkarsh Ayachit, David

Thompson, Andrew Bauer, Patrick O’Leary (Kitware)

Why in situ?

Image courtesy Ken Moreland

The difference between our ability
to generate data and our ability to
move it results in lost science.

SENSEI : Scalable Environments for Scientific
Explorations In Situ

4 Project Pillars
• R&D for scalable infrastructure and methods to work around FLOPS-I/O

bottleneck
• Generic infrastructure maximizes portability and preserves investment in

DOE codes

• Science code team partnerships focus and prove R & D
• Outreach and community engagement make the technology accessible

Scalability Portability Science Community

Science Engagements

AVF Leslie + Libsim, 131K Cores Cori

LAMMPS + OSPray,
interactive, Theta

Figure 2: Subsample of particles from a light cone computed
in situ.

data and accumulates those particles that match a particular
criterion in a vector, saving them to disk once the simulation
ends its run. We run lightcone in situ with the simulation
because it requires little memory or time overhead: lightcone
accesses the simulation data directly and copies over only
those particles that match the specified criterion. In this
regime, less than a second is spent on the analysis during
an hour-long simulation run. Our lightcone implementation
contains an MPI_Reduce used for debugging purposes. This
is why lightcone slows down with increasing number of
processors.

Evaluation. Figure 3 and Table 1 show the results of the
(fair) in situ runs, where Gadget simulates 2001 time steps.
We note that (1) Henson initialization is negligible, taking less
than 25 seconds on 8192 cores; (2) the time spent in analysis
(tess and entropy) never exceeds the time in simulation,
balance achieved by the fair scheduling; and (3) more and
more time steps are analyzed in the time it takes to simulate
2001 time steps, from 213 steps using 1024 cores to 353 steps
using 8192 cores — analysis scales better than the simulation.
Figure 4 and Table 2 show the results of in transit runs,

where half of the processors are dedicated to the simulation,
and the other half to the analysis. Again, Gadget simulates
2001 time steps. The first thing to note is that communication
on the simulation side (send time) is negligible: from 6.97
seconds for 1024 cores down to 1.60 seconds for 8192 cores. In
other words, in this regime Gadget has virtually no overhead;
the processors dedicated to it spend almost all of their time
simulating the universe. This makes scheduling predictable.
On the other hand, communication on the analysis side

(receive time) is significant: when analysis finishes, it returns
control to receive, which signals to the send that it is ready
for more data. But such a request is only processed once the
simulation completes its current time step and passes control
to send. The wait times accumulate over the course of the
simulation.

1024 2048 4096 8192
0

2,000

4,000

Number of ranks

S
ec
on

d
s

Init Simulation Lightcone
Tessellation Entropy

Figure 3: Gadget–tess–entropy pipeline run in situ. Init
and Lightcone times are so small that they are imperceptible
in the plot. See the full data in Table 1.

1024 2048 4096 8192
0

2,000

4,000

Number of ranks

S
ec
on

d
s

Init Simulation Lightcone

Send/Receive Tess Entropy

Figure 4: Gadget–tess–entropy pipeline run in transit. Init,
Lightcone, and Send times are so small that they are imper-
ceptible in the plot. See the full data in Table 2.

How do in situ and in transit regimes compare to each
other? At first glance, it may seem that in situ analysis is
performing better since more time steps get analyzed. But
it also takes longer. To get a meaningful comparison of the
two, we estimate how long the simulation and analysis would
run in situ if they were to analyze the same number of time
steps as in transit (using the same total number of cores).
Specifically, we calculate s + (t + e) · (i2/i1), where s, t,
and e are the in situ simulation, tessellation, and entropy
times from Table 1, and i1 and i2 are the number of steps
analyzed in situ and in transit, respectively (i1 comes from
Table 1; i2, from Table 2). We compare the results to the
total running time of the in transit simulation (and, by
construction, analysis); see Figure 5.
As the figure illustrates, despite the communication over-

head, in transit analysis performs better. Although surprising
at first, there is a simple explanation: Neither simulation, nor
analysis scale perfectly. When running in situ, both have to
use twice as many processors as they would in the equivalent
in transit setting. Accordingly, the parallel overheads are
higher, and the codes spend more time to perform the same
work.

Remark. In a separate set of runs, we also performed a
third type of analysis, a topological analysis of the density

Henson Gadget, 8192
Cores Edison

Phasta + Catalyst, 1M Cores, Mira

Warp + Libsim,
16k Cores Edison

SENSEI In situ Infrastructure

Write once run everywhere - use any simulation with
any visualization/analysis and easily swap back-ends at

run time

SENSEI enables connection of simulation data sources to visualization and
analysis back ends through a data model and API

Simulations get run-time interchangeability of analysis/vis codes
analysis/vis codes can consume data from any simulation

Delivarables

Focus Area Co-leads

expanding the data model Andrew Bauer (Kitware), Brad Whitlock
(Intelligent Light)

bidirectional data movement Patrick O’Leary (Kitware), Matthew Wolf
(ORNL)

design/execution patterns Dmitriy Morozov (LBNL), Dave Pugmire (ORNL)

scaling to next-generation systems Nicola Ferrier (ANL), John Wu (LBNL)

outreach, code team partnerships, cookbook,
workshops

Gunther Weber (LBNL), Matthew Wolf (ORNL)

software products, distribution, releases Earl Duque (Intelligent Light), Patrick O’Leary
(Kitware)

Expanding the data model

Bidirectional data movement

Bidirectional data movement supports more science use case
scenarios; eg, computational steering

Sim

Vis/Analysis

Sim

Vis/Analysis

Design and execution patterns

MxN MxN

Research focus areas:
• MxN data

redistribution
• Depth of copies

N producer ranks,
N consumer ranks
Unidirectional
data
movement/control
(N:N:1)

M producer ranks,
N consumer ranks
Unidirectional
data
movement/control
(M:N:1)

M producer ranks,
N1 and N2
consumer ranks,
Unidirectional
data
movement/control
(M:<N1, N2>:1)

M producer ranks,
N consumer ranks
Bidirectional data
movement/control
(M:N:2)

MxN

• Leveraging arch
features like NVRAM
for staging

• Leveraging 3rd party
tools like TensorFlow
for ML-based
analytics

• Specific science app
use case drivers

• Bidirectional:
interface, pipeline
management

data model

What simulation data types does SENSEI support?

• many more purpose specific and
esoteric data types are supported by
VTK

• no explicit dependence on other
parts of VTK such as i/o, filters,
renderering, etc etc

vtkDataObject

Uniform Cartesian

Stretched Cartesian

Curvilinear (logically Cartesian)

Unstructured/FEM

Molecular

Tabular

Graphs

Multi-"block"

AMR

Array Collection (no geometry)

PIC/Point cloud

www.vtk.org

zero copy layouts provide pointer equivalent performance
• Array of Structures (AOS)
― single array with components interleaved

• Structure of Arrays (SOA)
― each component in its own arrays

Speed & Efficiency

x1 y1 z1 …x2 y2 z2 xn yn znv=

x1 x2 x3 … xnvx=

y1 y2 y3 … ynvy=

z1 z2 z3 … znvz=

// use the new SOA class
vtkSOADataArrayTemplate<double> *soa =
 vtkSOADataArrayTemplate<double>::New();
soa->SetNumberOfComponents(3);
soa->SetArray(0, vx, n, true);
soa->SetArray(1, vy, n);
soa->SetArray(2, vz, n);

// VTK's default is AOS, no need to use
vtkAOSDataArrayTemplate
vtkDoubleArray *aos = vtkDoubleArray::New();
aos->SetNumberOfComponents(3);
aos->SetArray(v, 3*n, 0);

SENSEI Overhead

Run Original and Baseline configs, 3 levels of concurrency: 1K, 6K, 45K
• Original: subroutine called, Baseline: through SENSEI bridge

0	 50	 100	 150	 200	 250	

812	

6496	

45440	

812	

6496	

45440	

O
rig

in
al
	

SE
N
SE
I	

Au
to
co
rr
el
a;

on
	

Original	Time	(seconds)	 SENSEI	Time	(seconds)	

0

10

20

30

40

50

60

70

812 6496 45440 812 6496 45440

Original SENSEI	Autocorrelation
M
ax
	V
m
HW

M
	in
	M

Bs

Performance Analysis, Design Considerations, and Applications of Extreme-scale In Situ Infrastructures. SC16

run time memory use

SENSEI architecture

In situ Architecture

bridge

data
adaptor

analysis
adaptor

simulation analysis

bridge

data
adaptor

analysis
adaptor

simulation analysis

The bridge

Manages data and analysis adaptors, periodically pushes data to the
analysis
• Typically 3 functions: Initialize, Update and Finalize

The data adaptor

DataAdaptors – API giving analyses access to simulation data and
metadata

• Convert simulation data to/from the data model

bridge

data
adaptor

analysis
adaptor

simulation analysisdata
adaptor

The analysis adaptor

AnalysisAdaptor – API for simulation to invoke vis & analysis
• Consume/process data

bridge

data
adaptor

analysis
adaptor

simulation analysisanalysis
adaptor

Analyses

ConfigurableAnalysisAdaptor – select an analysis at run time via an XML
config file

bridge

data
adaptor

analysis
adaptor

simulation analysis

bridge code

VTK data
adaptor

simulation
Configurable

analysis
adaptor

ADIOS
analysis
adaptor

bridge code

Configurable
analysis
adaptor

Catalyst
analysis
adaptor

Libsim
analysis
adaptor

Histogram
analysis
adaptor

ADIOS end-
point

ADIOS data
adaptor

In transit Architecture

XML selects
one of these

FLEXPATH transport
moves data across
network

Simulation runs in 1st job

End-point runs in 2nd job

bridge code

VTK data
adaptor

simulation
Configurable

analysis
adaptor

ADIOS
analysis
adaptor

bridge code

Configurable
analysis
adaptor

Catalyst
analysis
adaptor

Libsim
analysis
adaptor

Histogram
analysis
adaptor

ADIOS end-
point

ADIOS data
adaptor

ADIOS Adaptors

XML selects
one of these

FLEXPATH transport
moves data across
network

Simulation runs in 1st job

End-point runs in 2nd job

bridge code

VTK data
adaptor

simulation
Configurable

analysis
adaptor

ADIOS
analysis
adaptor

bridge code

Configurable
analysis
adaptor

Catalyst
analysis
adaptor

Libsim
analysis
adaptor

Histogram
analysis
adaptor

ADIOS end-
point

ADIOS data
adaptor

End-Point

XML selects
one of these

FLEXPATH transport
moves data across
network

Simulation runs in 1st job

End-point runs in 2nd job

In situ demo

Newton mini-app

N-body Gravitational Simulation. A
single file, <400 lines.

Solves Newton's law of gravitation
Velocity Verlet method
Fi = Fj = G*mi*mj/rij**2

xi' = vi

vi' = Fi/mi

Footer 24

m1

F1

v2

x1

m2F2

v1

x2

r12

Newton mini-app

Footer 25

– direct solver, O(N**2)
– Velocity Verlet

» second order, symplectic, conserves
momentum exactly, time reversible

– the simplest possible code
– a single file, <400 lines, to better focus on

use of SENSEI interface
– a production quality code could easily be

thousands of lines (see NBODY6 ~6K lines)

Instrumenting the simulation

 # set up the initial condition
 n_bodies = args.n_bodies*n_ranks
 ic = uniform_random_ic(n_bodies, -5906.4e9, \
 5906.4e9, -5906.4e9, 5906.4e9, 10.0e24, \
 100.0e24, 1.0e3, 10.0e3)
 ids,x,y,z,m,vx,vy,vz,fx,fy,fz = ic.allocate()
 h = args.dt if args.dt else ic.get_time_step()

 # create an analysis adaptor(bridge code)
 bridge = newton_bridge()
 bridge.initialize(args.analysis, args.analysis_opts)

 # run the sim and analysis
 bridge.update(0,0,ids,x,y,z,m,vx,vy,vz,fx,fy,fz)
 i = 1
 while i <= args.n_its:
 velocity_verlet(x,y,z,m,vx,vy,vz,fx,fy,fz,h)
 bridge.update(i,i*h,ids,x,y,z,m,vx,vy,vz,fx,fy,fz)
 i += 1

 # finish up
 bridge.finalize()

Footer 26

Bridge

class newton_bridge:
 def __init__(self):
 self.DataAdaptor = sensei.VTKDataAdaptor.New()
 self.AnalysisAdaptor = sensei.ConfigurableAnalysisAdaptor.New()

 def initialize(self, analysis, args=''):
 # select and configure SENSEI analysis adaptor
 …

 def finalize(self):
 self.AnalysisAdaptor.Finalize()

 def update(self, i,t,ids,x,y,z,m,vx,vy,vz,fx,fy,fz):
 # convert simulation data to VTK
 # invoke the analysis
 …

Footer 27

Invoking in situ analysis

def update(self, i,t,ids,x,y,z,m,vx,vy,vz,fx,fy,fz):

 # construct VTK a dataset
 node = points_to_polydata(ids,x,y,z,m,vx,vy,vz,fx,fy,fz)
 mb = vtk.vtkMultiBlockDataSet()
 mb.SetNumberOfBlocks(n_ranks)
 mb.SetBlock(rank, node)

 # pass it to the data adaptor
 self.DataAdaptor.SetDataTime(t)
 self.DataAdaptor.SetDataTimeStep(i)
 self.DataAdaptor.SetDataObject(mb)

 # execute the in situ analysis
 self.AnalysisAdaptor.Execute(self.DataAdaptor)

 # free up memory
 self.DataAdaptor.ReleaseData()

Footer 28

In situ demo

• Run the the simulation 2 times
• Use XML to switch back end between Libsim and Catalyst

Catalyst
<sensei>
 <analysis type="catalyst" pipeline="pythonscript" filename="catalyst_config.py" enabled="1" />
</sensei>

Libsim
<sensei>
 <analysis type="libsim" plots="Pseudocolor" plotvars="ids" image-filename="image_%ts"
 image-width="800" image-height="800" slice-project="1" image-format="png" frequency="1" enabled="1"/>
</sensei>

Footer 29

In transit demo

In transit demo

Simulation: XML configures ADIOS analysis with FLEXPATH
ADIOS
<sensei>
 <analysis type="adios" filename="newton.bp" method="FLEXPATH" enabled="1" />
 <analysis type="adios" filename="newton.bp" method="DATASPACES" enabled="0" />
 <analysis type="adios" filename="newton.bp" method="MPI" enabled="0" />
</sensei>

End-point: XML configures either Catalyst or Libsim
Catalyst
<sensei>
 <analysis type="catalyst" pipeline="pythonscript" filename="catalyst_config.py" enabled="1" />
</sensei>

Libsim
<sensei>
 <analysis type="libsim" plots="Pseudocolor" plotvars="ids" image-filename="image_%ts"
 image-width="800" image-height="800" slice-project="1" image-format="png" frequency="1" enabled="1"/>
</sensei>

Links

• Main page – http://www.sensei-insitu.org/
• Software repo – https://gitlab.kitware.com/sensei/sensei

• ADIOS – https://www.olcf.ornl.gov/center-projects/adios/
• VisIt/Libsim – https://www.visitusers.org/index.php?title=Category:Libsim

• ParaView Catalyst – http://www.paraview.org/in-situ/

Conduit data adaptor

bridge

Conduit
data

adaptor
analysis
adaptor

simulation analysis

Consume conduit/blue-print
data from simulations

already instrumented for
ascent

VTK-m as an analysis back-end

bridge

data
adaptor

analysis
adaptor

simulation VTK-m
analysis

Ascent/flow based VTK-m
pipelines?

