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Why in situ?

Image courtesy Ken Moreland

The difference between our ability 
to generate data and our ability to 
move it results in lost science. 



SENSEI : Scalable Environments for Scientific 
Explorations In Situ

4 Project Pillars
• R&D for scalable infrastructure and methods to work around FLOPS-I/O 

bottleneck
• Generic infrastructure maximizes portability and preserves investment in 

DOE codes

• Science code team partnerships focus and prove R & D
• Outreach and community engagement make the technology accessible

Scalability Portability Science Community 



Science Engagements

AVF Leslie + Libsim, 131K Cores Cori

LAMMPS + OSPray,  
interactive, Theta

Figure 2: Subsample of particles from a light cone computed
in situ.

data and accumulates those particles that match a particular
criterion in a vector, saving them to disk once the simulation
ends its run. We run lightcone in situ with the simulation
because it requires little memory or time overhead: lightcone
accesses the simulation data directly and copies over only
those particles that match the specified criterion. In this
regime, less than a second is spent on the analysis during
an hour-long simulation run. Our lightcone implementation
contains an MPI_Reduce used for debugging purposes. This
is why lightcone slows down with increasing number of
processors.

Evaluation. Figure 3 and Table 1 show the results of the
(fair) in situ runs, where Gadget simulates 2001 time steps.
We note that (1) Henson initialization is negligible, taking less
than 25 seconds on 8192 cores; (2) the time spent in analysis
(tess and entropy) never exceeds the time in simulation,
balance achieved by the fair scheduling; and (3) more and
more time steps are analyzed in the time it takes to simulate
2001 time steps, from 213 steps using 1024 cores to 353 steps
using 8192 cores — analysis scales better than the simulation.
Figure 4 and Table 2 show the results of in transit runs,

where half of the processors are dedicated to the simulation,
and the other half to the analysis. Again, Gadget simulates
2001 time steps. The first thing to note is that communication
on the simulation side (send time) is negligible: from 6.97
seconds for 1024 cores down to 1.60 seconds for 8192 cores. In
other words, in this regime Gadget has virtually no overhead;
the processors dedicated to it spend almost all of their time
simulating the universe. This makes scheduling predictable.
On the other hand, communication on the analysis side

(receive time) is significant: when analysis finishes, it returns
control to receive, which signals to the send that it is ready
for more data. But such a request is only processed once the
simulation completes its current time step and passes control
to send. The wait times accumulate over the course of the
simulation.
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Figure 3: Gadget–tess–entropy pipeline run in situ. Init
and Lightcone times are so small that they are imperceptible
in the plot. See the full data in Table 1.
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Figure 4: Gadget–tess–entropy pipeline run in transit. Init,
Lightcone, and Send times are so small that they are imper-
ceptible in the plot. See the full data in Table 2.

How do in situ and in transit regimes compare to each
other? At first glance, it may seem that in situ analysis is
performing better since more time steps get analyzed. But
it also takes longer. To get a meaningful comparison of the
two, we estimate how long the simulation and analysis would
run in situ if they were to analyze the same number of time
steps as in transit (using the same total number of cores).
Specifically, we calculate s + (t + e) · (i2/i1), where s, t,
and e are the in situ simulation, tessellation, and entropy
times from Table 1, and i1 and i2 are the number of steps
analyzed in situ and in transit, respectively (i1 comes from
Table 1; i2, from Table 2). We compare the results to the
total running time of the in transit simulation (and, by
construction, analysis); see Figure 5.
As the figure illustrates, despite the communication over-

head, in transit analysis performs better. Although surprising
at first, there is a simple explanation: Neither simulation, nor
analysis scale perfectly. When running in situ, both have to
use twice as many processors as they would in the equivalent
in transit setting. Accordingly, the parallel overheads are
higher, and the codes spend more time to perform the same
work.

Remark. In a separate set of runs, we also performed a
third type of analysis, a topological analysis of the density

Henson Gadget, 8192 
Cores Edison

Phasta + Catalyst, 1M Cores, Mira

Warp + Libsim, 
16k Cores Edison



SENSEI In situ Infrastructure

Write once run everywhere - use any simulation with 
any visualization/analysis and easily swap back-ends at 

run time

SENSEI enables connection of simulation data sources to visualization and 
analysis back ends through a data model and API

Simulations get run-time interchangeability of analysis/vis codes
analysis/vis codes can consume data from any simulation



Delivarables

Focus Area Co-leads

expanding the data model Andrew Bauer (Kitware), Brad Whitlock 
(Intelligent Light)

bidirectional data movement Patrick O’Leary (Kitware), Matthew Wolf 
(ORNL)

design/execution patterns Dmitriy Morozov (LBNL), Dave Pugmire (ORNL)

scaling to next-generation systems Nicola Ferrier (ANL), John Wu (LBNL)

outreach, code team partnerships, cookbook, 
workshops

Gunther Weber (LBNL), Matthew Wolf (ORNL)

software products, distribution, releases Earl Duque (Intelligent Light), Patrick O’Leary
(Kitware)



Expanding the data model



Bidirectional data movement

Bidirectional data movement supports more science use case 
scenarios; eg, computational steering

Sim

Vis/Analysis

Sim

Vis/Analysis



Design and execution patterns

MxN MxN

Research focus areas:
• MxN data 

redistribution
• Depth of copies

N producer ranks,
N consumer ranks
Unidirectional 
data 
movement/control
(N:N:1)

M producer ranks,
N consumer ranks
Unidirectional 
data 
movement/control
(M:N:1)

M producer ranks,
N1 and N2 
consumer ranks,
Unidirectional 
data 
movement/control
(M:<N1, N2>:1)

M producer ranks,
N consumer ranks
Bidirectional data 
movement/control
(M:N:2)

MxN

• Leveraging arch 
features like NVRAM 
for staging

• Leveraging 3rd party 
tools like TensorFlow
for ML-based 
analytics

• Specific science app 
use case drivers

• Bidirectional: 
interface, pipeline 
management



data model



What simulation data types does SENSEI support?

• many more purpose specific and 
esoteric data types are supported by 
VTK

• no explicit dependence on other 
parts of VTK such as i/o, filters, 
renderering, etc etc

vtkDataObject

Uniform Cartesian

Stretched Cartesian

Curvilinear (logically Cartesian)

Unstructured/FEM

Molecular

Tabular

Graphs

Multi-"block"

AMR

Array Collection (no geometry)

PIC/Point cloud

www.vtk.org



zero copy layouts provide pointer equivalent performance
• Array of Structures (AOS)
― single array with components interleaved

• Structure of Arrays (SOA)
― each component in its own arrays

Speed & Efficiency

x1 y1 z1 …x2 y2 z2 xn yn znv=

x1 x2 x3 … xnvx=

y1 y2 y3 … ynvy=

z1 z2 z3 … znvz=

// use the new SOA class
vtkSOADataArrayTemplate<double> *soa =
   vtkSOADataArrayTemplate<double>::New();
soa->SetNumberOfComponents(3);
soa->SetArray(0, vx, n, true);
soa->SetArray(1, vy, n);
soa->SetArray(2, vz, n);

// VTK's default is AOS, no need to use 
vtkAOSDataArrayTemplate
vtkDoubleArray *aos = vtkDoubleArray::New();
aos->SetNumberOfComponents(3);
aos->SetArray(v, 3*n, 0);



SENSEI Overhead

Run Original and Baseline configs, 3 levels of concurrency: 1K, 6K, 45K
• Original: subroutine called, Baseline: through SENSEI bridge
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SENSEI architecture



In situ Architecture

bridge

data 
adaptor

analysis
adaptor

simulation analysis



bridge

data 
adaptor

analysis
adaptor

simulation analysis

The bridge

Manages data and analysis adaptors, periodically pushes data to the 
analysis
• Typically 3 functions: Initialize, Update and Finalize



The data adaptor

DataAdaptors – API giving analyses access to simulation data and 
metadata

• Convert simulation data to/from the data model

bridge

data 
adaptor

analysis
adaptor

simulation analysisdata 
adaptor



The analysis adaptor

AnalysisAdaptor – API for simulation to invoke vis & analysis
• Consume/process data

bridge

data 
adaptor

analysis
adaptor

simulation analysisanalysis
adaptor



Analyses

ConfigurableAnalysisAdaptor – select an analysis at run time via an XML 
config file

bridge

data 
adaptor

analysis
adaptor

simulation analysis



bridge code

VTK data 
adaptor

simulation
Configurable 

analysis
adaptor

ADIOS 
analysis 
adaptor

bridge code

Configurable 
analysis
adaptor

Catalyst 
analysis 
adaptor

Libsim
analysis 
adaptor

Histogram 
analysis 
adaptor

ADIOS end-
point

ADIOS data 
adaptor

In transit Architecture

XML selects 
one of these

FLEXPATH transport 
moves data across 
network

Simulation runs in 1st job

End-point runs in 2nd job



bridge code

VTK data 
adaptor

simulation
Configurable 

analysis
adaptor

ADIOS 
analysis 
adaptor

bridge code

Configurable 
analysis
adaptor

Catalyst 
analysis 
adaptor

Libsim
analysis 
adaptor

Histogram 
analysis 
adaptor

ADIOS end-
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one of these

FLEXPATH transport 
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network

Simulation runs in 1st job

End-point runs in 2nd job



bridge code

VTK data 
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XML selects 
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FLEXPATH transport 
moves data across 
network

Simulation runs in 1st job

End-point runs in 2nd job



In situ demo



Newton mini-app

N-body Gravitational Simulation. A 
single file, <400 lines.

Solves Newton's law of gravitation
Velocity Verlet method
Fi = Fj = G*mi*mj/rij**2

xi' = vi

vi' = Fi/mi

Footer 24

m1

F1

v2

x1

m2F2

v1

x2

r12



Newton mini-app

Footer 25

– direct solver, O(N**2)
– Velocity Verlet

» second order, symplectic, conserves 
momentum exactly, time reversible

– the simplest possible code
– a single file, <400 lines, to better focus on 

use of SENSEI interface
– a production quality code could easily be 

thousands of lines (see NBODY6 ~6K lines)



Instrumenting the simulation

    # set up the initial condition
    n_bodies = args.n_bodies*n_ranks
    ic = uniform_random_ic(n_bodies, -5906.4e9, \
        5906.4e9, -5906.4e9, 5906.4e9, 10.0e24, \
        100.0e24, 1.0e3, 10.0e3)
    ids,x,y,z,m,vx,vy,vz,fx,fy,fz = ic.allocate()
    h = args.dt if args.dt else ic.get_time_step()

    # create an analysis adaptor(bridge code)
    bridge = newton_bridge()
    bridge.initialize(args.analysis, args.analysis_opts)

    # run the sim and analysis
    bridge.update(0,0,ids,x,y,z,m,vx,vy,vz,fx,fy,fz)
    i = 1
    while i <= args.n_its:
        velocity_verlet(x,y,z,m,vx,vy,vz,fx,fy,fz,h)
        bridge.update(i,i*h,ids,x,y,z,m,vx,vy,vz,fx,fy,fz)
        i += 1

    # finish up
    bridge.finalize()

Footer 26



Bridge

class newton_bridge:
    def __init__(self):
        self.DataAdaptor = sensei.VTKDataAdaptor.New()
        self.AnalysisAdaptor = sensei.ConfigurableAnalysisAdaptor.New()

    def initialize(self, analysis, args=''):
        # select and configure SENSEI analysis adaptor
        …

    def finalize(self):
        self.AnalysisAdaptor.Finalize()

    def update(self, i,t,ids,x,y,z,m,vx,vy,vz,fx,fy,fz):
        # convert simulation data to VTK
        # invoke the analysis
        …

Footer 27



Invoking in situ analysis

def update(self, i,t,ids,x,y,z,m,vx,vy,vz,fx,fy,fz):

    # construct VTK a dataset
    node = points_to_polydata(ids,x,y,z,m,vx,vy,vz,fx,fy,fz)
    mb = vtk.vtkMultiBlockDataSet()
    mb.SetNumberOfBlocks(n_ranks)
    mb.SetBlock(rank, node)

    # pass it to the data adaptor
    self.DataAdaptor.SetDataTime(t)
    self.DataAdaptor.SetDataTimeStep(i)
    self.DataAdaptor.SetDataObject(mb)

    # execute the in situ analysis
    self.AnalysisAdaptor.Execute(self.DataAdaptor)

    # free up memory
    self.DataAdaptor.ReleaseData()

Footer 28



In situ demo

• Run the the simulation 2 times
• Use XML to switch back end between Libsim and Catalyst

Catalyst
<sensei>
   <analysis type="catalyst" pipeline="pythonscript" filename="catalyst_config.py" enabled="1" />
</sensei>

Libsim
<sensei>
  <analysis type="libsim" plots="Pseudocolor" plotvars="ids" image-filename="image_%ts"
    image-width="800" image-height="800" slice-project="1" image-format="png" frequency="1" enabled="1"/>
</sensei>

Footer 29



In transit demo



In transit demo

Simulation: XML configures ADIOS analysis with FLEXPATH
ADIOS
<sensei>
  <analysis type="adios" filename="newton.bp" method="FLEXPATH" enabled="1" />
  <analysis type="adios" filename="newton.bp" method="DATASPACES" enabled="0" />
  <analysis type="adios" filename="newton.bp" method="MPI" enabled="0" />
</sensei>

End-point: XML configures either Catalyst or Libsim
Catalyst
<sensei>
   <analysis type="catalyst" pipeline="pythonscript" filename="catalyst_config.py" enabled="1" />
</sensei>

Libsim
<sensei>
  <analysis type="libsim" plots="Pseudocolor" plotvars="ids" image-filename="image_%ts"
    image-width="800" image-height="800" slice-project="1" image-format="png" frequency="1" enabled="1"/>
</sensei>



Links

• Main page – http://www.sensei-insitu.org/
• Software repo – https://gitlab.kitware.com/sensei/sensei

• ADIOS – https://www.olcf.ornl.gov/center-projects/adios/
• VisIt/Libsim – https://www.visitusers.org/index.php?title=Category:Libsim

• ParaView Catalyst – http://www.paraview.org/in-situ/





Conduit data adaptor

bridge

Conduit 
data 

adaptor
analysis
adaptor

simulation analysis

Consume conduit/blue-print  
data from simulations 

already instrumented for 
ascent



VTK-m as an analysis back-end

bridge

data 
adaptor

analysis
adaptor

simulation VTK-m 
analysis

Ascent/flow based VTK-m 
pipelines?




