
In Situ ParaView - Catalyst
Deep Dive
Dave DeMarle
IXPUG SDVis Workshop
May 2018

Simulation	

Traditional/Post Hoc Analysis

Traditional/Post Hoc Analysis

•  sometime later…

Post	process	

Traditional/Post Hoc Analysis

Simulation	 Post	process	

Traditional/Post Hoc Analysis

Simulation	 Post	process	

In Situ Analysis

Small Run-Time Overhead

•  Small initialization and
finalization times

•  Scalable analysis and
visualization algorithms

•  Reduced amount of IO
–  More complex IO

patterns

0

5

10

15

20

25

16 32 64 128 256 512 1024 2048

S
ec

on
ds

 p
er

 T
im

e
S

te
p

Cores

data generation
annotations
write
render

XRAGE (LANL) simulation
https://datascience.lanl.gov/data/papers/2013-2.pdf

Access to More Data

Post-processing In situ processing

CTH (Sandia) simulation with roughly equal data stored at simulation time

Reflections and shadows added in post-processing for both examples

Du
m
p	
Ti
m
es
	

Better Insight

Full dump every 400 time steps versus in situ every 25 time steps
Animation courtesy Sean Ziegeler (PETTT/Engility)

Quick and Easy Run-Time Checks
Expected wind stress field at the
surface of the ocean

Wind stress in new run, quick glance
indicates using wrong wind stress

MPAS-O (LANL) simulation

Going to Exascale

•  Highly parallel algorithms (if possible)
•  Avoid file IO issues
•  Freeze Python
•  Process 0 reads Python script and

broadcasts to other processes
•  Don’t generate .pyc files
•  Static libraries
•  Simulation appropriate levels of

parallelism

Movie courtesy Michel Rasquin (Cenaero/ UC Boulder)

1M MPI ranks on Mira@ANL (BG/Q)

256K MPI ranks on Mira@ANL (BG/Q)

ParaView Architecture

Client	
(qt	gui	&|	python)	

ParaView	Server	
ParaView	Server	
ParaView	Server	
ParaView	Server	

ParaView	Server	

TCP

Read	File	
Create	VTK	

DataStructures	

Filters	
Arbitrarily	
process	

Display	|	Write	
Files	

Create Pipeline();
 Add Reader();
 Add Filter();
 Add Renderer();

Render();
Save DataExtract();

Catalyst Architecture

Simulation	Code	

ParaView	Server	
ParaView	Server	
ParaView	Server	
ParaView	Server	

Catalyst	
Function

calls

Take	Data	()	
Create	VTK	

DataStructures	

Filters	
Arbitrarily	
process	

Display	|	Write	
Files	

Create Pipeline()
 Define Data()
 Add Filter()
 Add Renderer()

CoProcess()
 Give New Data()
 Render()
 Save DataExtract()

Simulation	Code	
Simulation	Code	
Simulation	Code	

Motivation Continued

Simulation	 plot	

Bespoke -
Why not just hardcode plot routines?

Motivation Continued

Simulation	 plot	

Why not just hardcode plot routines?

Why not code in assembler?

Take advantage of ParaView - an
extremely capable, flexible, scalable
library with tens of thousands of
developer hours behind it.

Motivation Continued

Simulation	 plot	

Why not use an extremely capable, flexible,
scalable library with tens of thousands of
developer hours behind it?

 millions of lines of code?
 memory overhead?
 unfamiliar syntax?

and millions of
lines of code

Since 2009 we’ve been steering ParaView

•  Millions of Lines of Code?
–  VTK 6.0 Modularity : Catalyst Editions (even custom)
–  Boiled down to three entry points to add to simulation

•  Memory Overhead?
–  Editions again
–  Zero copy arrays

•  Unfamiliar Syntax?
–  Documentation
–  User Level Controls : choose nitty gritty details or high level record/play

•  Can code at VTK level (c++ or Python)
•  Can record python scripts in GUI and run them
•  Can encapsulate as Domain Specific Commands (Sparta) in Input Deck

All of ParaView in my Sim?!

•  The entire reason for VTK 6.0

•  a.k.a. modularization
–  19 kits -> 160 modules (== libs)
–  Remove unused code by deleting

directories
•  100MB->5MB

–  Add code by dropping in directories
–  Dependency scripts traverse includes

•  At Catalyst level - called “Editions”

Base
Base + Essentials
Base + Essentials + Render
Base + Essentials + Render + Python
Custom

Maker scripts that build source tree
See 4.1 in Catalyst Users Guide

!@^#

Efficient Memory-Wise
•  Try to use simulation data structure memories

(read only)
–  Catalyst support structure-of-arrays and array-of-

structures memory layouts
–  Pipeline architecture ensures data isn’t modified by

Catalyst
•  Only create objects that are needed when they’re

needed
•  Small library size

–  Catalyst editions – versions without linking to
unneeded parts of VTK/ParaView, Python and/or
rendering components

•  UH3D using Catalyst editions
–  400 MB extra memory footprint with full ParaView
–  40 MB extra memory footprint with Catalyst edition

with rendering support

https://blog.kitware.com/paraview-catalyst-editions-what-are-they/
https://blog.kitware.com/why-is-paraview-using-all-that-memory/

Catalyst Architecture

Simulation	Code	

ParaView	Server	
ParaView	Server	
ParaView	Server	
ParaView	Server	

Catalyst	
Function

calls

Take	Data	()	
Create	VTK	

DataStructures	

Filters	
Arbitrarily	
process	

Display	|	Write	
Files	

Create Pipeline()
 Define Data()
 Add Filter()
 Add Renderer()

CoProcess()
 Give New Data()
 Render()
 Save DataExtract ()

Simulation	Code	
Simulation	Code	
Simulation	Code	

How to make an Adaptor

1.  Link to Catalyst Library
2.  Insert three calls into simulation

–  vtkCPProcessor::Initialize()
–  vtkCPProcessor::CoProcess()
–  vtkCPProcessor::Finalize()

3.  Translate Simulation Data to VTK Data Structures
–  vtkCPInputDataDescription::SetGrid(vtkDataObject *)

4.  Define Pipeline/Results to gather
Use generic option and let simulation user do this

API for the Developer

•  vtkCPDataDescription
–  A means to transfer information from sim to ParaView (->) and back (<-)
–  -> named map of Grids for which new data is ready

•  “name” : vtkCPInputDataDescription

–  -> Time
–  <- Is Data necessary at this time?

•  vtkCPInputDataDescription (CPIDD)
–  A container for a grid
–  Adaptor is responsible for populating CPIDD’s vtkDataObject

Efficient Compute-Wise
•  Catalyst called every time step
•  Negligible compute time if no output is requested
•  Only create VTK objects if there is in situ work

Simulation	

CoProcess(grid, fields,
 time, timeStep)

Catalyst	Adaptor	

RequestDataDescription(description)
hasWork

CreateGridAndFields()
CoProcess(description)

opt hasWork

Populating vtkDataObjects

•  See Section 3.2 of the Catalyst User Guide v 2.0
–  Data Structures

•  Geometry, Connectivity, Values
–  Arrays

–  ZeroCopy Arrays/Grids

•  http://www.vtk.org/Wiki/VTK/InSituDataStructures
•  vtkMappedDataArray (old)
•  vtkGenericDataArray vtkSOADataArray

vtkDataObject	

vtkCompositeDataObject	

vtkUniformGridAMR	

vtkOverlapping
AMR	

API for the Developer continued

•  vtkCPPipeline
–  a ParaView pipeline with arbitrary contents

–  vtkCPPythonScriptPipeline
•  Takes in a python script that defines the pipeline

–  Or derive your own subclass and manually create VTK/PV filters

API for the Developer continued

•  vtkCPProcessor - Manages the whole server
–  Sim runs visualization through CPProcessor calls
–  Has 0 or more vtkCPDataDescriptions
–  Has 0 or more vtkCPPipelines
–  Initialize()

•  Create Pipeline(s)

–  CoProcess()
•  Use CPDataDescriptions to ask if Pipelines need to run
•  If yes:
•  Populate their CPIDD’s with new data
•  Call Update (actually CoProcess) on Pipeline

–  Finalize()

Small Code Footprint

•  Typically 3 calls between simulation code and adaptor
–  Initialize()

•  MPI communicator (optional)
•  Add analysis scripts

–  CoProcess()
•  Does the work (potentially)

–  Finalize()
•  Information provided by solver to adaptor

–  Time, time step, (optional) force output
–  Grids and fields

Solver Adaptor

Simulation

Catalyst

#	Create	the	reader	and	set	the	filename.		
reader	=	servermanager.sources.Reader(FileNames=path)	
view	=	servermanager.CreateRenderView()	
repr	=	servermanager.CreateRepresentation(reader,	view)	
reader.UpdatePipeline()	
dataInfo	=	reader.GetDataInformation()	

pDinfo	=	dataInfo.GetPointDataInformation()	
arrayInfo	=	pDInfo.GetArrayInformation("displacement9")	
if	arrayInfo:	
		#	get	the	range	for	the	magnitude	of	displacement9		
		range	=	arrayInfo.GetComponentRange(-1)	

		lut	=	servermanager.rendering.PVLookupTable()	
		lut.RGBPoints		=	[range[0],	0.0,	0.0,	1.0,	
																				range[1],	1.0,	0.0,	0.0]	
		lut.VectorMode	=	"Magnitude"		
		repr.LookupTable	=	lut	
		repr.ColorArrayName	=	"displacement9"	

		repr.ColorAttributeType	=	"POINT_DATA"	

Statistics

Polygonal Output
with Field Data

Script
Export

Augmented
script in
input deck

Rendered Images

User Workflow

Series Data

Creating a Catalyst Python Script

•  Open a representative data set in ParaView GUI

•  Setup pipeline
•  Define the outputs

–  Load in the Catalyst Script Generator Plugin
–  Add writers to Pipeline - Data Extracts
–  (within Export Script Dialog) Export Views - Rendered Images

•  Save Script

29	

Create Pipeline 1 - load plugin

30	

Only if ParaView < 5.5

Plugin adds two new menus

Two new menu items specific to creating Catalyst Python scripts

31	

< PV 5.5 > PV 5.5

Create Pipeline

Load “representative” data
set
•  File→Open…

–  Shortcut
–  Choose /home/

catalystuser/
filename_4.pvtu

32	

Define Writers
•  Only valid writers available in

Writers menu
•  Parameters:

–  File Name – %t gets replaced with
time step

–  Write Frequency

33	

Export the Pipeline (Script)

34	

< PV 5.5

> PV 5.5

Configure Renders

•  Click “Output rendering components i.e. views”

•  Choose which Windows to export
Previous View, Next View

•  Set Render Frequency

35	

In PV >= 5.6 will UI will be streamlined:

Save Script

•  Click on Finish
•  Save scripts as

dataextracts.py

36	

LANL’s ParaView 5.6 refactoring

About the Catalyst Script

•  Generated script will look
something like this

•  Pass script (or scripts) as an
argument to simulation run.
–  Sim will run, periodically produce

extracts and images
•  Need to change vis?

–  Regenerate script and rerun
–  (or just edit it)

38	

Some other ways to define pipeline
Lower level :
By hand at VTK/PV level
•  Derive directly from vtkCPPipeline

Instead of vtkCPPythonScriptPipeline

•  No change to DataDescription and
CoProcessor use model

•  Create VTK or PV pipeline manually

Higher Level:
By hand in simulation input deck

ParaView	Server	

ParaView	Server	

Honorable Mention : Live

Simulation	Code	

ParaView	Server	ParaView	Server	ParaView	Server	ParaView	Server	

Catalyst	
Function

calls
Take	Data	()	
Create	VTK	

DataStructures	

Filters	
Arbitrarily	
process	

Display	|	Write	
Files	

Simulation	Code	
Simulation	Code	
Simulation	Code	

Take	Data	()	
Create	VTK	

DataStructures	

Filters	
Arbitrarily	
process	

ParaView	GUI	

•  Get references to simulation’s pipeline(s)
•  See data change as it evolves
•  Optionally transfer designated data for further processing
•  Optionally control settings of filters
•  Optionally set breakpoints in simulation

•  Live

New	Filters	

Honorable Mention
•  Cinema -

–  Image based parameter exploration
–  Tell sim what vis parameters you want

to inspect
–  In situ save image for all Combinations
–  http://cinemascience.org
–  http://cinemaviewer.org

Thank You!

Movie courtesy Mike Stephens (DAAC)

Further information: andy.bauer@kitware.com

