A,

(//(@i“%)))),

dTh Igy

Burst Buffer: From Alpha to

Omega
Intel Extreme Performance Users Group
Middle East Conference 2018

25 April 2018

George Markomanolis Saber Feki
Computational Scientist Computational Scientist Team Lead

— _ KAUST Supercomputing Laboratory KAUST Supercomputing Laborato

orgios.markomanolis@kaust.edu.sa saber.feki@ka

e it

ﬂ'“mm(@' Outline

||||||||||||||||||||||||||

® |ntroduction to Parallel [/0
® Understanding the /0 performance on Lustre

® |[ntroduction to Burst Buffer

® Accelerating the performance

alllasc Ellall asaly '%’)))),

apidillg pglell

Kir |/\|IHIlI ivers:
Scienc

1d Techr

Iyl
ology

\

=

Shaheen II Supercomputer

Processor type:
Intel Haswell

2 CPU sockets per node
@2.3GHz
16 processor cores per CPU

6174 nodes

197,568 cores

128 GB of
memory per node

Over 790 TB total memory

Up to 3.5MW

Water cooled

More than 100
metrics tons

36 XC40 Compute cabinets, disk,
blowers, management nodes

7.2 Peta FLOPS
peak
performance

5.53 Peta FLOPS sustained
LINPACK and ranked 15t in the
latest Top500 list

Cray Aries
interconnect with
Dragonfly

topology

57% of the maximum global
bandwidth between the 18
groups of two cabinets

Sonexion 2000
Lustre appliance

17.6 Peta Bytes of usable storage
Over 500 GB/s bandwidth

DataWarp

Intel Solid Sate Devices (SSD)
fast data cache
Over 1.5 TB/s bandwidth

Tiered Adaptive
Storage (TAS)

Hierarchical storage with 200 TB
disk cache and 20 PB of tape
storage, using a spectra logic
tape library (Upgradable to 100
PB)

" N‘YI’:‘, \ ‘

alllasc Ellall deals o NS
aidilly pglell __
King Abdullah University of

Science and Technology

NIIHYNS

NAAHVYMS -

(.

. Appllcatlon Software

Weather & Environment: WRF, WRF-Chem, HIRAM, MITgcm

« Big Data: Mizan (in-house)

« Biology & MD: Amber, Gromacs, LAMMPS, NAMD, VEP, BLAST, Infernal

« Combustion: NGA, S3D, KARFS

« CFD & Plasma: Ansys, Fluent, OpenFOAM, Plasmoid (in-house)

« Chemistry & Materials Science: VASP, Materials Studio, Gaussian,
WEINZ2k, Quantum Espresso, ADF, CP2K

« Electromagnetism: Ansys, In-house developed code

« Oil & Gas: Madagascar, sofi2D, sofi3D, In-house developed codes

« Seismology: SORD, SeisSol, SPECFEM_3D_GLOBE

 Development Tool
« Compiler: Cray, Intel and GNU with MPICH library
« Optimized Math Library: Cray-libsci, Intel-MKL, PETSc, FFTW, ParMetis
« |/0O library: HDF5, NetCDF, PNetCDF, ADIOS
« Performance tools: CrayPat, Reveal, Extrae, Allinea Map
 Debugger: Totalview, Allinea DDT

L (@ .
wm(c.””' Introduction to parallel 1/0

® |[/O can create bottlenecks

® |/O components are much slower than the compute parts of a
supercomputer

® |f the bandwidth is saturated, larger scale of execution can not improve the
/0 performance

e Parallel I/0 is needed to
® Do more science than waiting files to be read/written
® No waste of resources
® Not stressing the file system, thus affecting other users

((.)))),

alllasc Ellal) a_quI_\
ayissllg @ »
King Abdullah Universlly(
Science and Technology

® There Is no one magic solution
® |/O performance depends on the pattern

® Of course a bottleneck can occur from any part of an application

® |ncreasing computation and decreasing 1/0 is a good solution but not
always possible

AR,
sessiss oo QYD Serial 1/0

iversity of

® Only one process performs |/0 (default option for WRF)
® Data Aggregation or Duplication
® | imited by single 170 process

® Simple solution but does not scale

® Time increases with amount of data
and also with number of processes

G

s D Parallel 1/0: File-per-Process

e All processes read/write their own separate file

§geses

® The number of the files can be limited
by file system

® Significant contention can be observed

((. '
s D Parallel 1/0: Shared File

® Shared File

® One file is accessed from all the
processes

® The performance depends on
the data layout

® | arge number of processes can
cause contention

A,

& ==
et QD attern Combinations

® Subset of processes perform [/0
® Aggregation of a group of processes data
® |[/O process may access independent files
® Group of processes perform parallel 1/0 to a shared file

GS)

A,
-
ity GG Lustre

ing bdullah University of

® |ustre file system is made up of an underlying:
e Set of I/0 servers called Object Storage Servers (0OSSs)

® Disks called Object Storage Targets (0OSTs), stores file data (chunk of
files). We have 144 OSTs on Shaheen

® The file metadata is controlled by a Metadata Server (MDS) and
stored on a Metadata Target (MDT)

Application

High-Level I/O Library

Parallel File System

Storage Hardware

e ~§"’))), I_ ustre O ol rati on

Application

processes
running on
compute
nodes

Memory Memory Memory Memory
High speed

I $
netlw:lcc))rk ‘

Processes
running on MDS
service
nodes

/0 channels

I

||
<iee =i) o) ~— — — — —
w | OSTO OST1 _OST2 _OST3

L essons learned from Lustre

King Abdullah University of

®* |mportant factors:
® Striping

® Aligned data

e But... how parallel is the |/0?

s = Collective Buffering — MPI |/O aggregators

Science and Technology

® During a collective write, the buffers on the aggregated nodes are
buffered through MPI, then these nodes write the data to the I/0O servers.

® Example 8 MPI processes, 2 MPI I/0 aggregators

Phase 1

How many MPI| processes are writing a
s O shared file?

e With CRAY-MPICH, we execute one application with 1216 MPI processes

and it provides parallel 170 with Parallel NetCDF and the file’s size is
360GB:

® First case (no stripping):
® mkdir execution_folder
copy necessary files in the folder
cd execution_folder
run the application

Timing for Writing restart for domain 1: 674.26 elapsed seconds

® Answer: 1 MPI process -

How many MPI| processes are writing a
(‘/«%T, :
e s B P shared file?

)"

e With CRAY-MPICH, we execute one application with 1216 MPI processes
%ré%l(i;chrovides parallel 1/0 with Parallel NetCDF and the file’s size is

® Second case:

mkdir execution_folder

Ifs seststripe —c 144 execution_folder

copy necessary files in the folder

cd execution_folder

Run the application

Timing for Writing restart for domain 1: 10.35 elapsed seconds

®* Answer: 144 MPI processes

Extract the list of the MPI I/0 aggregators

e,
((@\\‘5")))),

alllasc Ellall aealy
King Abdullah University of
Science and Technology

¢ export MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1

® First case:
AGG Rank nid

0 0 nid04134

® Second case;
AGG Rank nid

0 0 nid00292
1 8 nid00294

143 1144 nid04592

= /0 performance on Lustre while
=, : :
it P increasing OSTs

Science and Technology

Lustre
160

140 ‘\
120 \
100 \
80
\ =@==|_ustre
60

Time (in seconds)

-
w“ﬁf"’”’ Declare the number of MPI |/0 aggregators

® By default with the current version of Lustre, the number of MPI
|70 aggregators is the number of OSTs.

® There are two ways to declare the striping (number of OSTs).

® Execute the following command on an empty folder

® |fs setstripe -c X empty_folder
where X is between 2 and 144, depending on the size of the used files.

® Use the environment variable MPICH_MPIIO_HINTS to declare striping per files
export MPICH_MPIIO_HINTS=
"'wrfinput®:striping_factor=64,wrfrst*:striping_factor=144\
wrfout®:striping_factor=144"

Using Dars

)

I ()

asissl |9 fu«)lv_Ll
King Abdullah University of
Science and Technology

{

¢

| runtime: 2584 seconds |

Avrngn VO 000k Do e

Percartagn of AV
g 8

Foas Wte Open St Sesk Mg Faye

PO —— WO Gt w—
MO e S

VO Padern

TR EE

a 2 P
R R mm
Fload mEN Wty £ Totw e el T
File Count Summary
3 Most Common Access Sizes (estimated by L/O access offsets)
— 3005 size count type | number of files | avg. size | max size
total opened 2446 455M |

read-only files 3 27G
1 files 6 180G
read/write files o 0
created files 6 180G

nan tool to visualize |/0
verformance

[o5id: 889210 T [nprocs: 1216 T runtime: 959 seconds]
Average YO 0ou e procens O Opantion Conrts
0
l‘
fow
3
‘»
»
o
Fad Wite Open St Sesk Mmap Fayc
POSC w0 Col. m—
10 ey =
O Pt

200000 AO0000

e

Pm. A0

'm E:

!-m :m

Em» gm

ik B vsoomo

e

s B R R e

4% % % %‘b e Fana ~ta

File Count
(estimated by /O access offsets)
number of Tes | avg. size

oS, .
s WP Using Darshan tool

® Have you ever used Darshan tool?

® |f the answer is “| don’t know, probably not”, then maybe you have used it,
as it is enabled automatic on Shaheen Il and Cori.

e KAUST Supercomputing Laboratory (KSL) provides a framework to
provide you easy access to performance data from Darshan:

® Visit web page https://kaust-ksl.github.io/HArshaD/ for instructions. The

framework is supported on both Shaheen and Cori, Darshan v2.x and v3.x.

-
D
‘="

alllasc Ellall aealy
axisillg pglell »
King Abdullah University
Science and Technology

® Get the Darshan performance data from your last experiment, execute:
® /open_darshan.sh

® Get the Darshan performance data from the job id 65447, execute:
® /open_darshan.sh 65447

® Compare Darshan perfromance data from job id 65447 and 65448,
execute:

® /compare_darshan 65447 65448

(((.)))),

alllasc Sllal)l asaly
wlgfl »
Kir ,/\i IIIU yr
s

ience and l I

ArshaD Il

Comparison

® |n case that you want to compare the execution of two applications, execute:

® compare_darshan.sh job1_id job2_id

® One PDF file, with the Darshan performance data of both executions, is created

wif.exe (1/10/,2017)

[jobid: 2707981

100

g
e
fo
k.

QEEEEEEEHg

| uid: 137767 | nprocs: 1280 runtime: 113 seconds
Arerage WO o= per prooess VO Opeation Counts
1. 20406
o065
¥
g S0000
& S00000
i
E. 400000
&
200000
o
%'+ %‘b o
Foad m— fload White Cpan St Sesk Mmap Faymc
Wirine E—

Motacata S
Cther (ncludng application compute) e

VO Szes

% o, ++e‘_¢,.%?(_ "f:"%‘?‘rq‘?i, (-3

Foad e YWrite S

PO a— PO Coll —
MFHG Indop. s

1/ Patem

Read Wit

Total — Sequential mmmes Corsocutve SR

wrf.exe (1/10/,2017) 1of3
| jobid: 2707977 | uid: 137767 [nprocs: 1280 runtime: 101 seconds
Average VO cost per process. VO Operation Coures

100 120406

el 12406
i]

5w g 00000
3 &

a"o T s00000
§ o

& 20 %, 400000
&

a 200000

‘%ﬁff %”o
Fload m— nndthop-nsn &dthhq;\‘s,rl:
PP —] POSH m— ME Coll. —
Other {induding application compute) MR Indop. mmm—
VO Sizes VO Pamern
100000 120000
20000

_ E0000 100000
w

g 20000

= 0000
2

g o

20000

° &, ‘o, 4-
ep T, "y, 0 7,
ke ‘E:% e oy Qz?' ° s Wree

Total — Soquontial mmmes Corsccufive S

<
) ;

e o Discussion about Lustre

® There are many parameters to optimize Lustre, one quite interesting is

the striping_unit. This declares the number of bytes to store on an OST
before moving to the next OST

® |fs setstripe -s X empty_folder where X in bytes

e export MPICH_MPIIO_HINTS=
"wrfinput®:striping_factor=64,wrfrst*:striping_factor=144:\
striping_unit=4194304 ,wrfout*:striping_factor=144:\
striping_unit=2097152"

)))))

=

Lt o Useful MPI environment variables

nd Technology

(//(@ ‘.,)))),

e export MPICH_ENV_DISPLAY=1
® Displays all settings used by the MPI during execution

e export MPICH_VERSION_DISPLAY=1
® Displays MPI version

e export MPICH_MPIIO_HINTS_DISPLAY=1
® Displays all the available 170 hints and their values

e export MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1
® Display the ranks that are performing aggregation when using MI-I/0 collective buffering

e export MPICH_MPIIO_STATS=1
e Statistics on the actual read/write operations after collective buffering

e export MPICH_MPIIO_HINTS=*...”
° Declare 170 hints

e export MPICH_MPIIO_TIMERS=1
. ® Timing statistics for each phase of MPI I/0 (requires MPICH v7.5.1)

) J
13 C ¢ yal asalx _
o L\.,r{].|x‘]}|rh,1\l~1| %—’) u rS u e r
K Abdullah University of
ence and Technology

King /

Shaheen |l: 268 Burst Buffer nodes, 536 SSDs, totally 1.52 PB, each node has 2 SSDs
Adds a layer between the compute nodes and the parallel file system

Cray DataWarp (DW) 1/0 is the technology and Burst Buffer is the implementation

0

Burst Buffer Architecture

Compute Compute Compute
scratch scratch scratch scratch scratch scratch
private stripe stripe private stripe pnvate

ount ount ount ount ount ou t
DW Server DW Server DW Server

(G .
sl (e’”)' Burst Buffer Architecture

++++++ + P
ek b b L L L.
Aries:SN +++++++ a
S ol o o oL L
+++++++ | SAN Fabri
pr +++++++ ﬂ°
“Nose: g gin gl ol 2 o o

+++++++
+++++++
aoh ob o0 b oL oL

+++++++

=
A
((«\\‘_',")))),

s O Burst Buffer — Use cases

iversity of
Science and Technology

® Periodic burst

® Transfer to PFS between bursts
® |/O improvements

® Accessed via POSIX /0 requests
e Stage-in/stage-out

® Shared BB allocation for multiple jobs

~* Coupling applications

alllasc Sllal)l asaly

(/(a‘\
st s Burst Buffer - Status
« 268 DataWarp (DW) nodes, total 1.52PB with granularity 397.44GB

(M)

> dwstat most
pool units quantity free gran
wim_pool bytes 1.52PiB 1.52PiB 368GiB

did not find any of [sessions, instances, configurations, registrations,
activations]

> dwstat nodes
node pool online drain gran capacity insts activs
nid0O0002 wim_pool true false 16MiB 5.82TiB O 0

nid07618 wim_pool true false 16MiB 5.82TiB 0 0

e

((

Check if there are jobs using BB

> scontrol show burst
Name=cray DefaultPool=wlm_pool Granularity=406976M
TotalSpace=1636043520M UsedSpace=0
Flags=EnablePersistent
StagelnTimeout=1800 StageOutTimeout=1800 ValidateTimeout=5
OtherTimeout=300
AllowUsers=...markomg...
GetSysState=/opt/cray/dw_wlm/default/bin/dw_wlm_cli

If your username is not in the list of AllowUsers while you have applied for BB
early access, send email to help@hpc.kaust.edu.sa

scontrol show burst

Name=cray DefaultPool=wlm_pool Granularity=406976M
TotalSpace=1636043520M UsedSpace=813952M
Flags=EnablePersistent

StagelnTimeout=1800 StageOutTimeout=1800 ValidateTimeout=5
OtherTimeout=300

AllowUsers=...,markomg...
GetSysState=/opt/cray/dw_wlm/default/bin/dw_wlm_cli

Allocated Buffers:

JobID=2729000 CreateTime=201/-01-20T17:15:31 Pool=wlm_pool
Size=813952M State=allocated UserlD=markomg(137767)

Per User Buffer Use:

UserlID=markomg(137767) Used=813952M

-

((

Burst Buffer Nodes Allocation

« How many DW instances per node?
DW_instances_per_node = 5.82*1024/368 = 16.19
A DW node can accommodate up to 16*368/1024 = 5.75 TB

* A user requests 60TB of DW nodes, how many DW nodes is he going
to reserve (for striped mode explained later)?

We have 268 DW nodes, each nodes provides initially one DW instance
and when all of them are used, then it starts from the first DW node
again. The allocation occurs under round - robin basis

Requested_DW_nodes = 60%*1024/368 = 166.95, so we will reserve 167
DW nodes.

Important: If you reserve more than 268 * 368/1024 = 96.31TB, then
some DW nodes will be used twice and this can cause |I/0 performance
iIssues

((

Burst Buffer Modes

DW supports two access modes

* Private

Each of the compute job has its own private space on BB and it will
lot be visible to other compute jobs. For now, data is not striped over
BB nodes in private mode (not tested). Each compute node has
access to a BB allocation equal to the granularity size.

« Striped
The data will be striped over several Burst Buffer nodes. BB nodes
are allocated on a round-robin basis. We use this mode mainly

BB supports two reservation modes
« Scratch is temporary space allocation which will be removed when

the job is finished

« Persistent is when you have many jobs that need to access the
same files, so this mode creates a DW space that persists after a
job is finished and it is available to other of your DW jobs.
Important: Persistent space is not a backup solution, you could
lose your data in case of any BB problem

T

((

Burst Buffer Workflow

 Initially the files are located on Lustre filesystem

« For the files that need to be accessed multiple times but also for any
big files you should move these files on BB before your job reservation.
This phase is called stage-in. You can stage-in either file or folder.

« When the job finishes, the created files will be returned to the folder
that the user declared in the script, this is called stage-out.

 The files on BB are located inside the path declared by environment
variable $DW_JOB_STRIPED (for striped mode)

Note: Stage-in and —out are not mandatory it depends what the user
needs. Maybe there are no input files or the user wants just to measure
the execution time.

)

=
' ~—_—

= : .
s P Modify SLURM script

e Lustre reservation

fj))

6

#!/bin/bash

#SBATCH --partition=workqg
#SBATCH -t 10:00:00
#SBATCH -A kO1

#SBATCH --nodes=32
#SBATCH --ntasks=1024
#SBATCH -J slurm_test

Comment: Insert the DW commands, exactly after the SBATCH
commands, do not include any other unrelated commands between
SBATCH and DW declarations.

((

Modify SLURM script

« BB reservation (2TB of DW space)
#!/bin/bash

#SBATCH --partition=workqg
#SBATCH -t 10:00:00

#SBATCH -A kO1

#SBATCH --nodes=32

#SBATCH --ntasks=1024

#SBATCH -J slurm_test

#DW jobdw type=scratch access_mode=striped capacity=2TiB

#DW stage_in type=directory source=/scratch/markomg/for_bb
destination=$DW_JOB_STRIPED

#DW stage_out type=directory destination=/scratch/markomg/back_up
source=$DW_JOB_STRIPED/

cd $DW_JOB_STRIPED

chmod +x executable

Note: You can stage-in/out also files instead of directory

)

E——xx

(

2

/

(M

s GO ow fast is stage-in?

King Abdullah University of
Science and Technology

—

Cray DataWarp - Stage-in 100GB

12

10

GB/sec
[e)]
|

0
4 8 16 32 64
#DW nodes

=Lustre stripe 1 =~ ====Lustre stripe 2 ===Lustre stripe 4 ——Lustre stripe 8

‘””@7»)))

alllasc Ellall asols oSN
agisal) %_,——
King Abdulla
cience a

9 r“91—V-U
llah U ity of

DataWarp — Restrictions

« When you stage-in executables, you need to execute a command when
you are on BB, that this file is executable (chmod +x executable)

« Symbolic links will be lost during stage-in

((

Profiling MPI |/0 on BB

Question: Using 160 nodes with 1 MPI process per node and 2TB of DW space (6 DW nodes) with
MPI 170 through PnetCDF, how many MPI I/0O aggregators are saving the NetCDF file on Lustre?

Answer: 6!
Table 6: File Output Stats by Filename

Write Time | Write MBytes | Write Rate | Writes | Bytes/ Call |File Name
| | MBytes/sec | | | PE

710.752322 | 988,990.668619 | 1,391.470191 | 671,160.0 | 1,545,133.62 | Total

{22623[%802623503 O369,720.282763 | 1,401.388533 | 46,690.0 | 8,303,272.98 |wrfrst_dO1_2009-

45299442 | 61,624.000000 | 1,360.369943 | 7,798.0 | 8,286,412.85 |pe.96
44410365 | 61,616.000000 | 1,387.423860 | 7,795.0 | 8,288,525.83 |pe.160
43.762797 | ©1,623.999999 | 1,408.136675 | 7,763.0 | 8,323,772.69 |pe.32
43.708663 | 61,616.148647 | 1,409.701068 | 7,762.0 | 8,323,784.42 |pe.O
43.532686 g%,gl6.1341 171 1,415399323 | 7/,764.0 | 8321,638.26 |pe.128

43.110299 8,275,800.13 |pe.64

,624.000000 1,429.44959% 7,808.0

0.000000 0.000000 o) pe.l
0.000000 0.000000 - 0.0 pe.2
0.000000 0.000000 — 0.0 pe.3
0.000000 0.000000 -- 0.0 pe.4
0.000000 0.000000 - 0.0 pe.5
0.000000 0.000000 — 0.0 pe.6
0.000000 0.000000 -- 0.0 pe.7

How do we choose the number of MPI [/0
ww‘ﬁ.””’ aggregators on BB?

® [|n this example we have parallel 170 and we can adjust the number of the MP!
processes for simulating an application

e MPICH _MPIIO_HINTS
o cxport MPICH_MPIIO_HINTS="wrfrst*.cb_nodes=80,wrfout*:cb_nodes=40"

® [n this case we select 80 MPI |/0O aggregators for the files starting with the name
wrfrst*, and 40 MPI |/O aggregators for the files starting with the name wrfout*.

® Although this depends on the application, according to out experience, if you have
one MPI |/0 aggregator per DW node (default behavior), the performance is not
always good. In order to stress the SSDs of the DW node, more than one MPI process
should write data per DW node, and this happens with MPI 1/0 aggregators.

® Depending on the size of the file, some times we need to use different number of MPI
|/0 aggregators per file.

How do we choose the number of MPI |/0O
GS
e s B P aggregators on BB?

Y/
o

® Tips:

® The number of the MPI I/0 aggregators should divide the number of total
MPI processes for better load balancing. For example, If you have 1024
MPI processes, do not declare 100 MPI |/O aggregators, but 128 or 64.

® The number of the requested DW nodes, should divide the number of the
MPI 1/0 aggregators for better load balancing also.

® Of course the requested DW nodes should provide enough data for all of
your experiments, thus there is a minimum amount of needed DW nodes.

DW _nodes, if we use one aggregator per DW node

() —
MPI10_aggregators { k * DW _nodes,where k € N,2 < k < 128

umber_of_total_MPI_processes= [x MPI_I0_aggregators, wher

ww‘@”’ Compute the required DW space

® |t is already mentioned that we need to have enough space for our
experiments

® |f the experiments are about DW scalability and the number of the
MPI/OpenMP processes remain stable, then you could modify the MP|
|70 aggregators and the number of DW nodes. As these two numbers
should be divided you can compute how many nodes you have to
request.

® |f you need for example 64 DW nodes, then you should calculate the
requested space as follows:

® Multiply with the DW granularity:
*368=23552

-
Gonp

L o Create persistent DW space |

® (Create persistent DW space

#!/bin/bash -x

#SBATCH --partition=workq

#SBATCH -t 1

#SBATCH -A kO1

#SBATCH --nodes=1

#SBATCH -J create_persistent_space

#BB create_persistent name=george_test capacity=600G access=striped
type=scratch

exit O

Checking the status of the persistent DW
s O reservation

> dwstat most

sess state token creator owner created expiration nodes
985 CA--- george_test CLI 137767 2017-01-20T18:01:00 never O

inst state sess bytes nodes created expiration intact label public confs
977 CA--- 985 736GIB 2 2017/-01-20T18:01:01 never true george_test true 1

> dwstat nodes

node pool online drain gran capacity insts activs
nid01349 wim_pool true false 16MIiB 5.82TiB 1 O
nid0O1410 wim_pool true false 16MiB 5.82TiB 1 0

T L T

a
7 =
Cap

sy O Use DW persistent space |

sity

#!/bin/bash

#SBATCH --partition=workqg

#SBATCH -t 10

#SBATCH -A kO1

#SBATCH --nodes=1

#DW persistentdw name=george_test

#DW stage_in type=directory source=/project/kO1/markomg/wrf
destination=$DW_PERSISTENT_STRIPED_george_test

cd $DW_PERSISTENT_STRIPED_george_test/

oS, .
st s Use DW persistent space |l

®* Now, you can execute the second job on the persistent space, however, do not
stage-in the same files:
® squeue -u markomg

JOBID USER ACCOUNT NAME ST REASON START_TIME TIME TIME_LEFT NODES
2729358 markomg kOl test PD burst_buf N/A 0:00 3:.00 40

e scontrol show job 2729358

JobState=PENDING

Reason=burst_ buffer/cra%/) _dws_data_in:_Error_creating_staging_object_for_file_(/
scratch/markomg/burst_buffer earIy_access/wrfchem/wrfchem-
3.7.1_burst/test/em_real/forburst)_-2_Staging failures_reported_
Dependency=(null)

® scancel 2729358

If thegroblem is not solved send us email immediately! help@hpc.kaust.edu.sa, inform also
the BB users through bb_users@hpc.lists.kaust.edu.sa

<
)]

i i O Use DW persistent space |l

® Submit another jobs by either stage-in different files, or without stage-
N

® |n the case that you want to connect interactively on the compute node
to have access to BB and check the files, follow the instructions:

® (Create a file, called it for example bbf.conf with the following:
® #DW persistentdw name=george_test

® Execute:
salloc -N 1 -t 00:10:00 --bbf="bbf.conf”
srun -N 1 bash -I
cd $DW_PERSISTENT_STRIPED_george_test

® markomg@nid00024:/var/opt/cray/dws/mounts/batch/george_test/ss

T L T

)))))

/a\%

:“;;;‘M'w'%””' Use DW persistent space IV

® Three jobs were executed on persistent DW space and created a job folder with the job id as their
name:
nid00024:/var/opt/cray/dws/mounts/batch/george_test/ss/ Is -| 2729*

2729356:
-rw-r--r-- 1 markomg g-markomg 3053617664 Jan 20 18:49 wrfout_d01_2007-04-03_00_00_00

-rw-r--r-- 1 markomg g-markomg 3053617664 Jan 20 18:49 wrfout_d01_2007-04-03_01_00_00
2729361
-rw-r--r-- 1 markomg g-markomg 3053617664 Jan 20 18:57 wrfout_d01_2007-04-03_00_00_00
-rw-r--r-- 1 markomg g-markomg 3053617664 Jan 20 18:57 wrfout_d01_2007-04-03_01_00_00
2729362:

-rw-r--r-- 1 markomg g-markomg 3053617664 Jan 20 19:09 wrfout_d01_2007-04-03_00_00_00 —

A,
)

s 1 O Finalize DW persistent reservation

®* When the experiments are finished, then stage-out the files. Do not

copy the files from the interactive mode back to Lustre as this can be
much slower, depending on the file sizes.

® Finally delete the DW space

G : : :
wm&’”)’ Use DataWarp for Medata intensive jobs

® Real case, a user was hurting the metadata server with just one compute
node, reading/writing into the same file more than 140 million times.

® Login nodes almost could not be used, lagging for seconds. Users were
reporting slow |O.

® Moving the user to DataWarp, we were able to have many parallel
executions of the same job without influencing login nodes or other jobs.

oS
i oG

Applications/Benchmarks

(f()

King Abdullah University of
Science and Technology

Data Centric Optimizations of Seismic
Natural Migration Algorithm at Scale on
Parallel File Systems and Burst Buffer

=S
R) U ' N
alllasc flall deals oS\
e s,& I e
King Abdullah University of
Science and Technology

e Seismic Natural Migration

® |/O optimizations
® on parallel filesystem
® using Cray DataWarp Burst Buffer

e Summary and Future Work

A
G = =D

e o Seismic Natural Migration

® Natural Migration is a seismic imaging tool that
maps buri

Buried
Fault-line

Projected
Fault-line

Depth [m]
Depth [m]

Natural Migration
Image

* Application toNéIt_“SH\f %%‘?:h, CA @%Ve”émgs

Buried fault lines in the
subsurface are shown as

i, 1%« . i Unknown faults are under
lineaments in the images

populated LA areas.

A,
s s B Seismic Natural Migration

® Natural Migration is a seismic imaging tool that maps buried faults.

® The Algorithm uses recorded Green’s functions G(s,x,t) to compute an
Image:

Image(x) = ZN ZN[G(S, % t) * G(rx,0)] - Gi(s,18) ,

where the s and r denote seismic data coordinates, and x denotes image
coordinates.

® The Green’s functions are pre-computed and stored in a single file with
more than 86GB of size (for this experiment)

(f‘“‘
=

Computational Aspects

» Natural migration equation: Image(x)=ZN2N[G(s,x,t)*G(r,x,t)] Gi(s,m D)
® There are N=5297 Green’s functions.

® The outer summation is distributed among MPI
processes

® All runs are configured with one MPI process per socket
using 16 OpenMP threads.

® Each MPI process loads the whole 86GB file in parts (one
Green’s function at a time) to compute the inner
summation.

® The time convolution and dot-product operations in the
equation above are Computatlonally cheap compared to —
the /0 cost for retrieving the Green’s function from .

Natural Migration |/0O Profile Before
Tuning

(C ”———%
alllasc Sllal) WS(«)))),
.,:.ZTTJ 9 691;‘2(1-:

5((‘

Average I/O cost per process

100 -

Percentage of run time

Y,
%
(o)
Read m—m
Write ===

Metadata m—
Other (including application compute) ==

B
QO
%

File Count Summary

Most Common Access Sizes

: type | number of files | avg. size | max size
aeoees e count total opened 5305 17M 86G
ota
17310596 i read-only files 6 15G 86G
4935 58267 ; :
write-only files 1 108M 108M
21188 26485 o
3268 5997 read/write files 0 0 0
created files ik 108M 108M

o® Tuning Lustre Stripe Count for Natural
2"’ Migration

alllasc Ellall asaly \p
dpiszllg r"91—“u

7/

2000
1800
1600 \\ X‘\
@ 1400
g 1200 \ \ ——50 Nodes
[1000 \ \ —a—100 Nodes
c
= \ \\ \ —+—250 Nodes
S 800
o \ \k —+500 Nodes
L5 600 5 3!? ; i.Ii —%-1000 Nodes
400 = = ——2649 Nodes
200

4 10 100 144
LFS Stripe Count

oS,
~-&" Natural Migration 1/0 Profile After Tuning

sience and Technolo

Average /O cost per process Average I/O cost per process
100 100 -
80 80 |
£ £
560l S 60
k] k)
2 g
Sl gwof
o g
() [
& 20 & 2t
0 0
Read Read mmmmm
Write === Write ===
Metadata m— . . . Metadata —
Other (including application compute) == Other (including application compute) ==

File Count Summary

Most Common Access Sizes

. type | number of files | avg. size | max size
access size count : = EeE o e
total opene
17310596 a(lasaod read-only files 6 15G 86G
4935 58267 : ;
write-only files 1 108M 108M
21188 26485 & oy
3268 5997 read/write files 0 0 0
created files 1 108M 108M

g

et %”’r uning DataWarp Nodes Count for Natural Migration

3500

3000

—o—50 Nodes

’(\
\ —=—100 Nodes
1500 . —+—250 Nodes
X
\ \ / 500 Nodes

1000
\\\// 1000 Nodes
500 .> \ —x /:.

N N
o)
o o
(@) (@)

Execution Time (s)

I
—
(@)

40 100
Number of DataWarp Nodes

//(’;—‘§
N g&»»

Kin JAIdIIhU
ie nd Techn |Jy

1400

1200

—
o
o
o

800

600

Execution Time (s)

400

200

Lustre Filesystem vs DataWarp

/ -141%

/

/

/{ -31.45%
4

+11.29%
+28.76%

+34.09%

50 Nodes 100 Nodes 250 Nodes 500 Nodes 1000 Nodes
Nodes Count

=0==BEST LFS PERF
=@=BEST DW PERF

;a\

Summary and Future Work on Seismic
=, ; - -
e s B P Natural Migration Algorithm
® Tuning Lustre stripe count significantly improved the seismic natural

migration code, especially at larger scale.

® Natural migration code benefited from DataWarp burst buffer up to a
certain scale with up to 349% improvement.

®* Next Steps: study the performance of algorithmic changes to minimize
/0 and use MPI communications instead.

oS
i oG

Study-case NAS BTIO

G= . .
st GBI Applications

NAS BTIO
“As part of the NAS parallel benchmark set an 10 benchmark has been
developed which is based on one of the computational kernels. The BT
benchmark is based on a CFD code that uses an implicit algorithm to
solve the 3D compressible Navier-Stokes equations.”

L
x&ﬂ' NAS — BT I/0 Benchmark - PNetCDF

100.00 Increasing the file size from

90.00 50 GB (2 DW nodes) up to
> e 52 TB (256 DW nodes)
S 80.00 /
o /0.00
E 60.00 / —DW - 128 compute
o / nodes
'S 50.00
S / —Lustre - 128 compute
= 40.00
@ 30.00 /[nodes
O / —Lustre - 512 compute
AN / nodes

1000 +——

0.00 — T

2 4 8 16 32 64 128256
DW nodes

A

@™ NAS - BT I/0 Benchmark - PNetCDF

1/0 Efficiency

I I I I I I u |/0 Efficiency
16

o4 128 256 -
DW nodes e i

o
o

o1
@)

N

o O O O O
|

1/0 efficiency (in %)
N W

| e—

-
G

King

|]]
alllasc flall deals oS\
i Abdullah University of
e and Technology

NAS BT 1/0
Domain size: 1024 x 512 x 256
256 to 1024 MPI processes, 8 — 32 nodes

Size of output file: 50 GB

(((.)))),

L i O Burst Buffer nodes

® A user tries to scale his application on Burst Buffer by just

Increasing the BB nodes and this does not always provide the best
results.

Increasing the BB nodes by 64 times, provide less than 8 times
better performance and the practical efficiency is less than 2%

NAS BT |0 - DataWarp - 8 compute nodes NAS BT 10 - DataWarp Practical Efficiency

8 compute nodes

8 16 32
#BB nodes

8
#BB nodes

e ‘@ Collective Buffering — MPI I/0 aggregators |l

® Using optimized MPI I/0O aggregators improved the performance up to 3,11 times on
just one BB node.

® We achieved best performance with 64 MPI I/O aggregators

NAS - BT I/0 Bandwidth - Using 1 BB node and
increasing the MPI |/O aggregators

3500
3000 —

2500
2000
1500
1000
1 2 4 8 16 32 64
Number of MPI I/O aggregators

Write Bandwidth (MB/s)

(%
‘=D
al_”.J_A_L Ml asaly
R v »
King Al)dulluh University o
Science and h-chnulngy

Striping Unit
® The stripe units are the segments of sequential data written to or read from a

disk before the operation continues to the next disk

® For NAS BT |0, decreasing the striping unit up to 2 MB, increases the
performance by 10%.

NAS - BT I/O Bandwidth - Using 1 BB node and
decreasing the striping unit

= 3000 —
2 2500

X o

£

8 4 2 1
Striping Unit (in MB)

<7 NAS BT |/0 - Understanding striping unit

2897 MB/s
MPIIO write access patterns for
/var/opt/cray/dws/mounts/batch/3129772/ss//btio.nc

independent writes =11
collective writes = 40960
independent writers =1
aggregators =64
stripe count =1

stripe size = 8388608
system writes =6411

stripe sized writes = 6400

2165 MB/s
MPIIO write access patterns for
/var/opt/cray/dws/mounts/batch/3151099/ss//btio.nc

independent writes =11
collective writes = 40960
independent writers =1
aggregators =64
stripe count =1

stripe size = 1048576
system writes =51211

stripe sized writes = 51200

total bytes for writes = 53687091532 = 51200 MiB = 50 GiB total bytes for writes = 53687091532 = 51200 MiB = 50 GiB

ave system write size = 8374214
read-modify-write count = 0
read-modify-write bytes = 0

number of write gaps = 21

ave write gap size = 23336707978

ave system write size = 1048350
read-modify-write count = O
read-modify-write bytes = 0

number of write gaps = 21

ave write gap size = 23297910666

NAS - BT I/O Bandwidth - Using 1 BB node and By decreasing the striping
decreasing the striping unit unit by 8 times, the System

3500
3000
2500
2000
1500
1000

500

B/s)

Write Bandwidth (M

writes were increased by 8
times.

Doubling the number of BB
nodes from 1 to 2, the 1/0
bandwidth from 2165 MB/s
4 8 ; becomes 3850 MB/s,
Striping Unit (in MB) 78.2% improvement.

=
<D
((@\\‘5")))),

s O CLE comparison
® Cray provides the CLE 6 with new functionalities and performance
Improvements.
® |n the next slides we compare the CLE 5.2 vs 6.0.4

* We use NAS BTIO, with a domain which leads to a shared output file of
25GB.

® We use 1 BB node

(f«%\., .
i CLE 5.2 vs 6.0.4 — default settings

ity of
d Technology

NAS BTIO Benchmark - Comparison CLE 5.2 vs CLE 6.0.4 default settings
MPI -1/O - Shared file - 25GB

1400

1300

1200

1100

1000

MB/s

900

800

700

600

500
16 36 64 256 1024

MPI processes

e \\rite - CLE5.2 ~ =====Read - CLE5.2 ====Write-CLE 6.0.4 =====Read - CLE6.0.4

B O~ /0 Efficiency — Default parameters

King Abdullah University of

|70 Efficiency - NAS BTIO Benchmark - Default parameters
Comparison CLE 5.2 vs CLE 6.0.4 16 MPI I/0O aggregators
Shared file - 25GB

><*\\

—

N
ol

N
o

—
o1

—
(@]

|70 Efficiency (in %)

o1

o

16 36 64 256 1024
MPI processes

== \\/rite - CLE 6.0.4 «===Read - CLE 6.0.4

e \\/rite - CLE 5.2 e Read - CLE 5.2

//(%
N g&»)))p

Kin JNdIIhU sity of
vie IThIgy

CLE 5.2 vs 6.0.4 — optimized parameters

NAS BTIO Benchmark - Comparison CLE 5.2 vs CLE 6.0.4 16 MPI I/O aggregators
Shared file - 25GB

6000
5000

e . ;:::==="—‘-“===:T
4000

3000

oo / et
/

MB/s

1000

16 36 64 256 1024
MPI processes

== \Nrite - CLE5.2 ===Read -CLE5.2 ===Write-CLE6.0.4 ====Read-CLEG6.0.4

amww‘@w' /0 Efficiency — Optimized parameters

Ki gAld IIhU
3 nd Technology

|70 Efficiency - NAS BTIO Benchmark - Optimized parameters
Comparison CLE 5.2 vs CLE 6.0.4 16 MPI I/0 aggregators
Shared file - 25GB

/

- —

O
o

(0]
(@]

1

o

A~ O O
(@]

o

w
o

i

|70 Efficiency (in %)

—
o O

16 36 64 256 1024
MPI processes

=\\rite - CLE 5.2 e===Read - CLE5.2 ===Write - CLE 6.0.4 ==—Read - CLE 6.0.4

oS
s G

Study-case Neuromap
Application provided for the SC17/ tutorial

o
=" |
s i O Neuromap - Replib

* The Neuronm(ini)app(lication) library reproduces the algorithms of the
main software of the Blue Brain Project as a collection of mini-apps For
its first release, the Neuromapp framework focuses on CoreNeuron

application.

® Replib is a miniapp that mimics the behavior of Neuron's ReportingLib.
It uses MPI |/0 collective calls to write a fake report to a shared file.
The miniapp provides several options to distribute data across ranks in

different ways.

® Contact person: Judit Planas

(/”(«3\;»»

allla,c qw| um ._4_,

K]/\i |||u yr

International Outreach

The neuromapp application was one of the test codes for an SC17 Tutorial entitled: Getting Started with the Burst Buffer: Using
DataWarp Technology. The presenters will be George S. Markomanolis from KAUST and Deborah Bard from LBNL.

C (The long-awaited Burst Buffer technology is now being deployed on major supercomputing systems. In this tutorial,
we will introduce the Burst Buffers deployed at the two latest supercomputers at NERSC (Cori) and KAUST (Shaheen 1) based
on the Cray DataWarp, and discuss in detail our experience with Burst Buffers from both a system and a user’s perspective.
Both KAUST and NERSC have been supporting BB projects for more than a year, and have developed a wealth of experience
using these resources efficiently. For this tutorial, we combine the knowledge and experience of staff from both sites to
provide attendees with an effective understanding of how to optimally use BB technology. We focus on optimizing massively
parallel I/0 for SSDs, a relatively new problem compared to well-established optimizations for parallel I/0 to disk-based file
systems. The tutorial will conclude with a live demonstration of a complex workflow executed on the Cray DataWarp,

including simulation, analysis and visualization.

Neuromap — Replib on Cray Burst Buffer

A
(f@%\\,,)
D Default parameters

a_UI.L._c q.uul a_su.ll_\ '\4\\\-—,
Kir
Srn'nL

Neuromap - Replib on Cray Burst Buffer - Default settings

Write Bandwidth (GB/S)

8(1) 16(2) 32(2) 64 (4) 128 (8)
Nodes (# BB nodes)

=]00KB e====G50KB w===1MB g —

= Neuromap — Replib on Cray Burst Buffer
”“ﬁ%%%w' |70 Efficiency — Default parameters

1/0 efficiency

—_
xR
£
)
c
2
%
&
7]
(@]
=

(((.)))),

e o MPI 1/0 Statistics — Default parameters

For 32 nodes with default settings:

__ +
MPIIO write by phases, writers only, for /var/opt/cray/dws/mounts/batch/3774697/ss//out2
min max ave

file write time = 22.92 23.58 23.25
time scale: 1 = 2**7 clock ticks min max ave
total = 523689105
imbalance = 148522 248791 198657 0%
local compute = 4516667 4527122 4521894 O%
wait for coll = 1225864 /7717977 4471921 0%
collective = 1092307 1149546 1120927 O%
exchange/write = 890825 908929 899877 0%
data send = 90654295 96061956 93358125 17%
file write = 412044716 423894304 417969510 799%
other = 568026 633007 600516 0%
data send BW (MiB/s) - 24.445
raw write BW (MiB/s) = 2795.602
net write BW (MiB/s) - 2231.241

~. Neuromap — Replib on Cray Burst Buffer
(f«%
-~ @™ Comparison with optimized parameters

Neuromap - Replib on Cray Burst Buffer - Default settings vs optimized parameters

30
25

20

Write Bandwidth (GB/S)

o

8(1) 16(2) 32(2) 64 (4) 128 (8)
Nodes (# BB nodes)

e 1(00KB - Default e G50KB - Default =1 MB - Default w1 00KB - Optimized = 50KB - Optimized w1 MIB - Optimized

order to stress the SSDs, we increase the MPI I/0 aggregators, according to our tests we > can even disable
eclaration for the case of 650KB:

(f(«i—‘\\j)
G MPL /O Statistics — Optimized parameters
S e e e e e
MPIIO write by phases, all ranks, for /var/opt/cray/dws/mounts/batch/3774937/ss//out2
number of ranks writing = 1024
number of ranks not writing = O
min max ave
open/close/trunc time = 0.02 0.04 0.03
file write time = 0.45 6.37 4.46
time scale: 1 = 2**5 clock ticks min max ave
total = /07678293
imbalance = 394311 1217998 866269 O%
open/close/trunc = 1734852 2731840 2312575
local compute = 329159 29586804 13915952 17
wait for coll = 226899601 671583722 369929561 529%
file write = 32257150 457948530 320653934 45%
other = 0 0 0 0%
raw write BW (MiB/s) = 14576.170
net write BW (MiB/s) = 6604 564

= Neuromap — Replib on Cray Burst Buffer
|70 efficiency comparison with optimized parameters

Science and Technology

1/0 efficiency

\/

1/0 efficiency (in %)

8(1) 16(2) 32(2) 64 (4) 128 (8)

)))))

“WJ&%‘—”))’ Neuromap — Replib on Cray Burst Buffer

nd Technology

Neuromap - Replib Scalability

600

500

B~
o
o

Write Bandwidth (GB/s)
N w
o =
o o

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Nodes

—100KB =——650KB ——1MB

Neuromap — Replib on Cray Burst Buffer
|70 Efficiency — Optimized parameters

_—
(((,))),

al_II.J_._c Ml u_v_/.)l_\ \\4\
Abdu »
Sricnuc und Tuh

I/O efficiency

1/0 efficiency (in %)
w S w
o o o

8 (1) 16(2) 32(2) 64 (4) 128 (8) 256 (16) 512 (32) 1024 (64) 2048(128) 4096 (268)

—————

Nodes (#BB nodes)

e===100KB- Optimized = =====650KB- Optimized =====1MB - Optimized

» For the case of chunks of 100KB, the I/0 efficiency is between 6 549% and o

(f<
L -~

Scien dT h lgy

4

Study-case WRF-CHEM
(on Cori)

L
ML‘.”’ WRF-CHEM on Burst Buffer

®* Weather Research and Forecasting Model coupling with Chemistry
® Small domain: 330 x 275

e Size of input file: 804 MB

® Size of output file: 2.9GB, it is saved every one hour of simulation
® Qutput file quite small

® For all the WRF-CHEM experiments we use 1280 MPI processes (40 nodes),
as this is the optimum for the computation/communication

® For the default case, we stage-in all the files and we execute the simulation
from BB -

- Total execution time and |/0 on BB
@™ without MPICH_MPIIO_HINTS (default)

Burst Buffer

Time (in seconds)
= W
N
[BN)
[B J

1 2 4 8
#DW nodes

—eo—Total time —e=Reading input file —e=Writing output file = —e—Lustre 64 OSTs

Darshan - WRFChem
B o= 1 BB node — default parameters

%v“
King Abdullah University of
Science and Technology
| jobid: 6568872 | uid: 74747 [nprocs: 1280 | runtime: 244 seconds
I/0 performance estimate (at the MPI-IO layer): transferred 182344 MiB at 218.44 MiB/s
170 performance estimate (at the STDIO layer): transferred 0.2 MiB at 1.19 MiB/s i 4 6 840 5 N i By B S CGRA PO TDIO)
: - 102 m—
WIQ s—
]
Average I/O cost per process /O Operation Counts g
100 30405
E
g 80 + 250406
é g 00:00:00 000‘0:3 00:0‘1 :00 00:0‘1 30 0&(;200 oo:o‘zao m:c;azoo oox;azso 00:(; :00
& | 2e+06 > &
> g hows:minutes:seconds
g 40 ; 15e+06
§ 3
S 2t tg 1e+06
0 500000
0 —-I
Read mmmmm Read Write Open Stat Seek Mmap Fsync
Write S
Meladata meems POSIX MPLIO Coll. s
Other (including application compute) s MPLIO Indep. semssmsn STDIO wesseses
POSIX Access Sizes MPI-I0 Access Sizes 1:
100000 25e+06
90000
__ 80000 | _. 2e<05 |
3 70000 3
a a
5 60000 | 3z 15e+06 |
F 50000 | 3
'3 40000 ’3 1e+08
§ 30000 | §
20000 | 500000 |
10000
0 b B b Bl 0

Q}I 11 /

7 TR W R s
% a"'xr*"erqt’tb?'a, v, "*:" :

Read mmmmm Wrile SwamR Read mmmmm Write Sosmm

- MPI /0O phases Statistics
:“;;;;‘wm‘({%"”))' (MPICH_MPIIO_TIMERS=1) |

P -
MPIIO read by phases, readers only, for wrfinput_d01
min max ave

file read time = 1.54 1.54 1.54
time scale: 1 = 2**6 clock ticks min max ave
total = /73580678
imbalance = 284814 284814 284814 0%
local compute = 91505804 91505804 91505804 11%
wait for coll = 2398813 2398813 2398813 0%
collective = 3646301 3646301 3646301 O%
read/exchange = 18196022 18196022 18196022 2%
file read = bb222120 55222120 55222120 7%
data receive = b88775983 588775983 588775983 76%
other = 12888553 12888553 12888553 1%
data receive BW (MiB/s) = 0.146
raw read BW (MiB/s) = 1819.310
net read BW (MiB/s) = 129. 872

e e
Timing for processing wrfinput file (stream 0) for domaln 1: 21.68633 elapsed seconds

- MPI I/0O phases Statistics
:“;;;;‘wm‘@”' (MPICH_MPIIO_TIMERS=1) I

S e e e e e e e e
MPIIO write by phases, writers only, for wrfout_d01 2007 04-03_01_00_00
min max ave

file write time = 2.30 2.30 2.30

time scale: 1 = 2**/7 clock ticks min max ave

total 532124046

imbalance 158972 158972 158972 0%
local compute 48146033 48146033 48146033 9%
wait for coll 855958 855958 855958 0%

collective = 1589992 1589992 1589992 0%

exchange/write 9748711 9748711 9748711 1%
data send 418919605 418919605 418919605 78%
file write 41345308 41345308 41345308 7%
other 10140527 10140527 10140527 1%
data send BW (MiB/s) = 0.107

raw write BW (MiB/s) = 1262.748

net write BW (MiB/s) = 98. 114

Tlmlng for Writing wrfout_dO1_2007-04-03_01_00_00 for domain 1: 30.25151 elapsed seconds

- MPI I/0O phases Statistics
:“;;;;‘wm‘({%"”))' (MPICH_MPIIO_TIMERS=1) [lI

B -+
MPIIO read by phases, readers only, for wrfbdy_d01
min max ave
file read time = 1.31 1.31 1.31
time scale: 1 = 2**8 clock ticks min max ave
total = 995854066
imbalance = 349921 349921 349921 0%
local compute = 133146526 133146526 133146526 13%
wait for coll = 1342000 1342000 1342000 0%
collective = 4455424 4455424 4455424 0%
read/exchange = 22374792 22374792 22374792 2%
file read = 11742536 11742536 11742536 1%
data receive = 803299250 803299250 803299250 80%
other = 18892054 18892054 18892054 1%
data receive BW (MiB/s) = 0.210
raw read BW (MiB/s) = 271.116
net read BW (MiB/s) = 3. 197

Timing for processing lateral boundary for domain 1: 111.10603 elapsed seconds

Compare the total execution time on single DW

oS .
i nodes across various MPI |/O aggregators

alllasc Ellall asaly \'
azisillg pglell &——4
King Abdullah University of
Science and Technology

250
240

230

200

190

180 —— — — —
1 2 4 8

MPI 1/0 aggregators

N
N
o

N
—
o

Time (in seconds)

« Example for declaring 4 MPI |/O aggregators
export MPICH_MPIIO_HINTS="wrfinput*:cb_nodes=4,wrfout*:cb_nodes=4,
*:cb_nodes=4"

—. . Understand the MPI |/0 statistics on BB
GS
et G (MPICH_MPIIO_STATS=1) |

S -+
MPIIO read access patterns for wrfinput_dO1
independent reads =1
collective reads = 527360
independent readers =1
aggregators =4 We have 4 MPI I/0 aggregators
stripe count =1 We use one BB node (stripe count)
St”tpe size ’ = 83?22608 Default stripe size 8 MB
system reads = - *
S50 szl reas _ 108 Only 14.17% of the reads are striped (100*¥108/762)
total bytes for reads = 2930104643 = 2794 MiB = 2 GIiB
ave system read size = 3845281 The average system read size s less than 4MB,
number Of read gaps — 2 e stripe size snou € Close 10 the average system read size
ave read gap size =0
See "Optimizing MPI 170 on Cray XE Systems" S-0013-20 for explanations.
|

Understand the MPI |/0O statistics on BB

A
O _
L (MPICH_MPIIO_STATS=1) I
A e e ———————————
MPIIO write access patterns for wrfout_ dOl _2007-04-03_00_00_00
independent writes =2
collective writes = 552960
independent writers =1
aggregators =4
stripe count =1
stripe size = 8388608
system writes =797 Similar 14.3% of the writes are striped (100%¥114/797)
stripe sized writes =114

aggregators active = 234240,0,0,318720 (1,<=1,> 1, 2)
total bytes for writes = 3045341799 = 2904 MiB = 2 GiB
ave system write size = 3821006
read-modify-write count = O
read-modify-write bytes = 0
number of write gaps = 2
ave write gap size = 4194300
See "Optimizing MPI 1/0 on Cray XE Systems” S-0013-20 for explanations.

- Understand the MPI I/0 statistics on BB
mwéé”))' (MPICH_MPIHO_STATS=1) Ili

1h University
:chnolo

o
gy

MPIIO read access patterns for wrfbdy_dO1
independent reads =2
collective reads = 2338560
independent readers =1
aggregators =2 All the reads are not striped which mean this 1/0 is
stripe count = not efficient.
stripe size = 8333608 The average system read size is 197973 bytes
system reads = 1876

stripe sized reads =0
total bytes for reads = 371398962 = 354 MiB

ave system read size 197973
number of read gaps =06
ave read gap size =0

See "Optimizing MPI 170 on Cray XE Systems" S-0013-20 for explanations.
+

Declaring MPICH MPIIO HINTS
& parameters based on the previous data

MPICH_MPIO_HINTS="wrfinput*.cb_nodes=4:striping_unit=2097152,
wrfout®*:cb_nodes=4:striping_unit=2097152,
wrfb*:cb_nodes=4:striping_unit=197973"

| jobid: 6575384 | uid: 74747 | nprocs: 1280 | runtime: 172 seconds

I/0 performance estimate (at the MPI-1O layer): transferred 182112 MiB at 350.40 MiB/s
I/0 performance estimate (at the STDIO layer): transferred 0.2 MiB at 1.34 MiB/s

Average /O cost per process VO Operation Counts

100 ¢ 3e+06

o 80 _ 25e406 |
£ 2

§ 60 } % 2e406 |
K e
a

.fs: ol = 156406 |
g K

< 20 } "g 1e+06 |

0 500000 [

Read Write Open Stat Seek Mmap Fsync

POSIX = MPI-10 Coll. s
MPI-IO Indep. semsae STDIO

P Understand the MPI /0 statistics on BB
i T W (MPICH_MPIIO_STATS=1) IV

A —
MPIIO read access patterns for wrfinput_dO1
iIndependent reads =1
collective reads = 527360 We have 4 MPI |/0 aggregators
mdepentdent readers 4_ 1 We use one BB node (stripe count)
gﬁ,%ggcaoaﬁ — 1 New stripe size 2 MB
stripe size = 2097152 Only 63% of the reads are striped
system reads 1810 The number of the operations increase (1810 reads)

stripe sized reads = 1
total bytes for reads = 2930104643 = 2794 MiB = 2 GIiB
ave system read size = 1618842

number of read gaps =2
ave read gap size =0
See "Optimizing MPI I/0 on Cray XE Systems" S-0013-20 for explanations.
T -

Timing for processing wrfinput file (stream 0O) for domain 1: 9.56521 elapsed seconds

- Understand the MPI /0 statistics on BB
i O (MPICH_MPIIO_STATS=1) V

A e e ————————
MPIIO write access patterns for wrfout_ dOl _2007-04-03_00_00_00

independent writes =2

collective writes = 552960

independent writers =1

aggregators =4

stripe count =1

stripe size = 2097152

system writes = 1886 62.7% of the writes are striped
stripe sized writes = 1183

aggregators active = 208640,33280,0,311040 (1,<=2,> 2, 4)
total bytes for writes = 3045341799 = 2904 MiB = 2 GiB
ave system write size = 1614709
read-modify-write Count =0
read-modify-write bytes = 0
number of write gaps = 2
ave write gap size = 1048572
See "Optimizing MPI I/O on Cray XE Systems” S-0013-20 for explanations.

Tlmlng for Writing wrfout_dO1_2007-04- 03 _00_00_00 for domain 1: 12.99924 elapsed seconds

'~ Understand the MPI I/O statistics on BB
:“S;;;w:!@”' (MPICH_MPIIO_STATS=1) VI

S -+
MPIIO read access patterns for wrfbdy_dO1
iIndependent reads =2
collective reads = 2338560
independent readers =1
aggregators =4
sEmpe count =1€197973
stripe size = .
sys’?em reads 3705 3% of the reads are striped

stripe sized reads = 1
total bytes for reads = 371398962 = 354 MIB
ave system read size = 100242

number of read gaps =5
ave read gap size = 444575572
See "Optimizing MPI I/0 on Cray XE Systems" S-0013-20 for explanations.
L — -

Timing for processing lateral boundary for domain 1: 83.90572 elapsed seconds

<
)]

s O Looking for the optimum parameters

of
i Technology

® We executed more experiments and tested various parameters
according to the MPI |O statistics data.

* |f the performance does not increase while we decrease the value of
the striping unit, increase the number of the MPI 1/0 aggregators.

* While we decrease the value of the striping unit, the number of

reads/writes Is increasing. Maybe there is a need to use more BB
nodes to achieve better performance.

//(%;\\\

EM — Final results

WREF-C

K]/\i|IIIU Iy[
ce and Techr ology

[jobid: 6568872 | uid: 74747 [nprocs: 1280 | runtime: 244 seconds] [jobid: 6575835 | uid: 74747 | nprocs: 1280 | runtime: 105 seconds]

I/0 performance estimare (at the MPI-IO layer): transferred 182756 MIB at 794.25 MiB/s

1/0 performance estimate (at the MPIIO layer): transferred 182344 MIB at 218.44 MiB/s
I/0 performance estimate (at the STDIO layer): transferred 0.2 MiB at 1.38 MiB/s

10 performance estimate (at the STDIO layer): transferred 0.2 MiB at 1.19 MiB/s

Bearigya WO et e o o

WO Opaat;m Cous

Eearaga WO omd par ool

Aa-08

W0 Cpar i nt Counlts

it Aaed it
a0 25a08 a0 25008
z - z =
5 5 &
=] F
Z a0 g Fur 2 0 g 2us08
H £ H £
Ta ERETT o ERETL]
2 2 2 3
& a9 (ST & 49 £ taed
M 500000 a S0
“, a, kS
% il bl o LB '] & -
Faad 'Wrie Open S Seak Mmag Fame

Flaad m——

Wrin

Mdadi se—

Crhr (rchidng appicaion g E—

Flaad ‘Write Opan Stal Seek Mmap Fame

MFIOC L a——
SO0 —

PO, —
MPHOIntep. S

v (il udin g o pd st 1 exvi g)

The execution time was decreased by 57% on just one BB node!

Optimum parameters

MPICH _MPIIO_ HINTS wrflnput* cb nodes=16:striping_unit=262144\

POGE — AR ol p—"
MR e AR ETO0 —

Studying MPI |/0 aggregators and striping

G .)))),

s e -~ SlZe
Parameters 1/0 duration for 1/0 duration for wrfout 1/0 duration for
wrfinput (in sec.) (in sec.) wrbdy dO1 (in sec.)
Default 21,68 30,25 111,10
Optimized 5,51 7,27 32,8

The 170 bandwidth was improved between 3.4 and 4.1 times

-~ Comparison between BB and Lustre on
wm«»”))’ Shaheen

200
180
160
140
120

100
80
60
40
20

0

Default parameters Optimized parameters

m BB mLustre

The total execution time on BB is 13.49% faster than Lustre for one hour of
simulation of WRF-CHEM. For 24 hours of simulation the execution time on BB is
sterthan Lustre by 14 8%

WRF-CHEM - Split output to one file per

L Drocess
Reported “I/0” time from WRF-CHEM
3
2.5

N

Time (in seconds)
=
— o1

o
o

(@)

1 2 4 8 16

DW nodes

o4

EFile 2.9GB

WRF-CHEM - Split output to one file per

(/”(«/E‘\\/ﬁ)))),
alllasc Ellall dsals \‘*J
L i O process |l
|70 efficiency using reported “I/0” time from WRF-CHEM
20
18
16
X 14
o
=12
)
®10
§ 8
s 6
o
: .
2
; 1 — -
1 2 4 8 16 32 64

DW nodes

EFile 2.9GB

~. WRF - Split output to one file per process
Gup

alllasc Ellall dsals _ —
L Large cases
King Abdullah Universit

Science and Technol

Y/
o

Reported “I/0” time from WRF

N S T

O N B OO O DN A

Time (in seconds)

8 16

32 64 128
DW nodes

EFile 81GB mFile 361GB

~ WRF - Alaska domain 1km 6075 x 6075 x 28, 256 com

)

G

wm%’”’ WRF — Split output to one file per process Il

170 efficiency using reported “I1/0” time from WRF

4 8 16 32 64 128

DW nodes

120

100

(09)
o

N
(@]

Percentage (in %)
(o))
(@)

N
o

(@)

EFile 81GB ®File 361GB

((.)))),

]
alllasc Ellal) o_v_al_\
azisillg @ »
King Abdullah University of
Science and Technology

® Submitting 3 jobs of 20 compute nodes and requesting 64 DW nodes
each one

® used_bb_nodes.sh
192 BB nodes are used with at least one BB job
O BB nodes are used from more than one BB job

® Variation 2-3%

® Variation can be significant when the system is mpre than 60-70%
used

DataWarp vs Lustre for same number of
="? nodes (OSTs)

WRF reports I/0 time but it includes other functionalities which is beyond /0O

).)

(//(«

al_”.J_n_L Ml asalx
9131]

((

170 time for the WRF restart file, size 361 GB

160

140

120

100

80

=@==| ustre

Time (in seconds)

60 =@=DataWarp

40

20

5 10 20 40 80 100 144

#0OSTs or DW nodes

o I% .
e T T ey o ey

DataWarp vs Lustre, percentage of
s P performance difference

Science and Technology

(

;u;;;;ew"@' WRF — Lustre vs DW

900
$ 850 AN
(7] \

£ 750

_g 700
3 650
(«b]

% 600
2 550

500
4 8 16 32 o4 128

e # DW nodes

—Lustre
—DW

oS,
e G

Study-case Seissol

e,
(&%ﬁ"»)),

[]
alllasc Ellall aealy
apidillg pglell »
King Abdullah University
Science and Technolo

® SeisSol is a software package for simulating wave propagation and

dynamic rupture based on the arbitrary high-order accurate derivative
discontinuous Galerkin method

e Using 128 DataWarp nodes with 256 compute nodes. Developer
provided an |/0 kernel benchmark called checkpoint and it is available
In the corresponding github repository.

® Many back-ends to be tests, MPI |/O, POSIX, HDF5, the SIONLIB had
some ISSUes.

[]
((o))))
al_”.J_A_L M asaly
AN ‘,
King Al)dulluh University of
Science and Technology

The developers have already integrated many advanced parameters such
as:

SEISSOL_CHECKPOINT_ALIGNMENT=8388608
SEISSOL_CHECKPOINT_BLOCK_SIZE=8388608
SEISSOL_CHECKPOINT_SION_BACKEND=ansi
SEISSOL_CHECKPOINT_SION_NUM_FILES=1
SEISSOL_CHECKPOINT_SION_COLL_SIZE=0
SEISSOL_CHECKPOINT_CB_NODES=256
SEISSOL_CHECKPOINT_ROMIO_CB_WRITE=disable
SEISSOL_CHECKPOINT_ROMIO_DS_WRITE=disable
SEISSOL_CHECKPOINT_MPIO_LARGE_BUFFER=0

oS, .
ity GG SeisSol Results

‘((

Filesystem /0 write performance (GB/s)

Lustre MPI 1/0 100
DataWarp MPI1 170 472
DataWarp POSIX 503
DataWarp HDF5 449

In this case, DataWarp is 4.72 times faster than Lustre and around to 60% 1/0
efficiency

(()
s WP DataWarp AP

® Libatawarp

e dw_get_stripe_configuration
* dw_query_directory_stage
* dw_query_file_stage

* dw_set_stage concurrency

* dw_stage file_out

T dw_wait_directory_stage

:
o ;ﬁ‘&z)

eeeeeeeeeeeeeeeeeeee

ExpBB: An auto-tuning framework to
explore the Performance of Burst Buffer
(Cray DataWarp)

(p n M
s U))' Motivation

e Burst Buffer (BB) does not provide the expected performance... or
we do not know how to use it?

® A user should be familiar with some technical details and most of
them are science-focus researchers.

® We need a tool that a user can execute and extract the optimized
parameters for his application and the used domain.

<
) |

s o Framework preparation |

iversity of

* Fill in the required information in the beginning of the ExPBB
script

® export executable="btio"

® #Declare option for the executable (leave empty if no arguments)

export arguments="inputbtl.data"

® #Declare the minimum requested Burst Buffer size in GB

export min_bb_size=1

GS)

Ay,
et D Framework preparation |l

iversity of

® #Declare stage-in folder, full path

export stage_in="/project/kO1/markomg/development/expbb

e #Declare stage-out folder, full path

export stage_out="/project/kO1/markomg/back2"

®* The executable is required to have been compiled with the
Darshan profiling tool

®* The framework works for parallel 1/0 on shared file

((.)))),

alllasc Ellall asaly
aaisld] 9 9l_vJJ »
King Abdull
Science and T(chnulugy

Important MP| environment variables

e export MPICH_ENV_DISPLAY=1
® Displays all settings used by the MPI during execution

® export MPICH_VERSION_DISPLAY=1
® Displays MPI version

e export MPICH_MPIIO_HINTS_DISPLAY=1
® Displays all the available 1/0 hints and their values

e export MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1

® Display the ranks that are performing aggregation when using MI-1/0 collective buffering

e export MPICH_MPIIO_STATS=1 or 2
e Statistics on the actual read/write operations after collective buffering

e export MPICH_MPIIO_HINTS="...”
® Declare I/0 hints

(((’ :
s WP Execution of ExPBB

® |f your submission script is called btio.sh, then execute:

./expbb btio.sh

® Then the following will happen:

® A parser will extract the compute resources from the original script and it will add
the corresponding #DW commands in a copy of the original script. From the
requested GBs the number of minimum BB nodes will be calculated.

® The previous important MPl environment variables are added to all the new
generated submission scripts

® Two executions will take place, one on Lustre and one on BB. This happens for two
reasons, first to extract the basic execution time for comparison reasons, and
second to extract the default striping unit and buffer for each case.

IS e o T TS

s O Execution of ExPBB Il

® Then the tool will create a new submissions script depending on the number
of the BB nodes, for example on Shaheen Il we have 268 BB nodes, if we
need 4 BB nodes minimum, then there will be scripts for 4, 8, 16, 32, 64,
128, and 256 BB nodes.

® Each of the script includes extra code before and after the srun command,
where loops change the values of the parameters, where their range depends
on the default values extracted on the first BB execution.

e After the srun command a parser is called, where it reads the Darshan
performance data and acts accordingly

® The first script will be submitted with the minimum requested nodes and it
will start investigating the results.

sults will be written in txt files that are easil

-))))J)

e W ExPBB example — Original script

-\

#!/bin/bash

Original script
#SBATCH ——partition=workq
#SBATCH -t 10
#SBATCH -A k1267
#SBATCH ——ntasks=1024
#SBATCH ——-ntasks—per—-node=32
#SBATCH ——ntasks-per-socket=16
#SBATCH -J btio
#SBATCH -0 btio_out_%j
#SBATCH —e btio_err_%j

srun —-n 1024 —-hint=nomultithread ./btio inputbtl.data

King Abdullah University of
Science and Technology

ww:ﬁfﬁé”’” ExPBB example — Converted script

#!/bin/bash - let total_tasks=256
let nodes=8
export MPICH_MPIIO_HINTS="btio.nc" . .
let expbb_mpi_tasks=256 S
SSEATEH —8 1 G e cript converted with ExpBB
#SBATCH -t if ["$expbb_mpi_tasks" -gt "$nodes"]; then . L. .
s let sockt=$expbb_mpi_tasks/$((2*$nodes)) C
#SBATCH -A . ode not final, to be modified in the
#SBATCH —-— export start_io_aggr=1 | d o
#SBATCH —-n end_io_aggr=16
#SBATCH —-n for ((expbb_io_aggr=$start_io_aggr; expbb_io_aggr<=$end_io_aggr; expbb_io_aggr=2x$expbb_io_aggr)); re ease Ve rSIOn
do
#SBATCH = if ["$expbb_io_aggr" -gt $start_io_aggr]; then
#SBATCH -0 export temp_io_aggr=$(($expbb_io_aggr/2))
#ESBIVTCPI-e export MPICH_MPIIO_HINTS='echo "$MPICH_MPIIO_HINTS" | sed "s/:cb_nodes=${temp_io_aggr}//
#DW jobdw t’ fi
#DW stage_i export MPICH_MPIIO_HINTS="$MPICH_MPIIO_HINTS:cb_nodes=$expbb_io_aggr" PED
#DW stage_o let de” for ((expbb_stripe_buffer=$(($default_stripe_buffer/8)); expbb_stripe_buffer<=5((4+sde
s }Et ??fault_stripe_buffer)); expbb_stripe_buffer=2xsexpbb_stripe_buffer))
or do
export err_ ize)); expbb_stripe_size=$((2x if ["$expbb_stripe_buffer" -eq "$(($default_stripe_buffer/8))"] && [$exp_id -gt 1]; then
t stud do export temp_stripe_buffer=$((4x$default_stripe_buffer)
eéxport stu if ["export MPICH_MPIIO_HINTS='echo "$MPICH_MPIIO_HINTS" | sed “s/:striping_buffer=${temp_stripe_buffer}//g""
export MPIC export fi '
export MPIC export if ["$expbb_stripe_buffer" -gt "$(($default_stri if [$com -gt @]; then
//9"" export temp_stripe_buffer=$(($expbb_stripe_buffer/2)) export best_run_id=${SLURM_JOBID}_$(($run_id-1))
export MPIC fi export MPICH_MPIIO_HINTS='echo "“$MPICH_MPIIO_HINTS" | sed echo $best_run_id > ${SLURM_SUBMIT_DIR}/best_run_id.txt
Eupo e SR 8 = t MPICH_MPIIO_HINTS b{eak
export expor | _| = else
export MPIC exSort export START=$(date +%s.%N) export best_run_id=${SLURM_JOBID}_$run_id
//g" time srun --ntasks=$expbb_mpi_tasks --nod export check_all="paste $folder/$execu/$year/$month/$day/${SLURM_JOBID}_ $run_id $folder/$execu/$year/$month/$day/${best
cd $DW_JOB fi pbb_omp_tasks} —-threads-per-core=1 —-hint=nomultithread _run_id} | awk '{if((($6-$12)/$12)>0.05) print 1; else print 0;}""
— —] END=$(date +%s.%N) if [$check_all -gt @]; then
chmod +x bt DIFF=$(echo $END - $START | bc) cd
export folder=${SLURM_SUBMIT_DIR}, chmod +x parse_darshan.sh g export myself="scontrol show job ${SLURM_JOBID} | grep Command | awk 'BEGIN{FS="/"} {print $NF}
t best run_ id= ${SLURM JOBID} ./parse_darshan.sh $SLURM_JOBID $run_id $folder $ «»
RXPOT let year="date +%Y' cp $myself hybrid_smyself
export execu=btio - 'gg;f!‘;a‘t’:ti% 5 sed s/cd $DW_JOB_STRIPED// —i hybrid_
gizg :E ?_ﬁg—ig_i export total_io="cat $folder/$execu/$year/$month/ EhD St om. i > s{SLg?r:gSUBMIT_DIR)/hybr:.d_run_.td.txt
_10= nt s} ; ;
cp del_tmp inputbtl.data export percentage="echo "scale=2; 100x$total_io/$ echo $best_run_id > s{SLl}lfi(M__SUBMIT_DIR}/best_run_:.d.txt
o : echo "The percentage of the total execution time
echo $DW_JOB_STRIPED >> inputbtl. export line="grep -n "| MPIIO" ${SLURM_SUBMIT_DIR 1
“ | tail -n 1 | awk 'BEGIN{FS=":"} {print $1}'° fi , ,
sed —n $line,$(($line+14))p ${SLURM_SUBMIT_DIR}/Serr_file e et run_id=s{run_id}+1
echo "BB_nodes=1 I0 aggregators=$expbb_io if ["$exp_id" -gt "1"]; then

pe_buffer time $DIFF" >> ${SLURM_SUBMIT_DIR}/results_s{SL export MPICH_MPIIO_HINTS="echo "$MPICH_MPIIO_HINTS" | sed "s/:striping_buffer=${expbb_stripe_buffer}//g""
if [$run_id -gt 1 1; then fi

export cfjn="paste sfolder/sexegu/syear/smonth/sday/s(sLUN grep "| MPIIO" ${SLURM_SUBMIT_DIR}/$err_file | grep patt | grep -v darshan | awk '{print $NF}' | uniq >
d} | awk '{if(($4-$10)<@) print -1; else print 1;}'" > ${SLURM_SUBMIT_DIR}/pio_files_${SLURM_JOBID}.txt

let exp_id=$exp_id+1

done;
done;

done

exit i

A,
E——x
ssc 1o sao "_,\J), R”
< 2 N
o JEWEeY |9'fa9l_9_ljl_) & | eS
King Abdullah University of
Science and Technology

* |f the performance becomes worse while we decrease the striping unit
and the number of system write/reads is significant large, then
increase the MPI I/0 aggregators. If the 1/0 is slower again, then restart
with the used number of MPI |/O aggregators but initial parameters

values.

® When the exploration of specific number BB nodes finish, submit
another job with double BB nodes and compare with the previous best

performance result

wm(@' Results |

WRF-CHEM - Comparing execution on DataWarp
with and without ExpBB

180
160
140
120
100
80
60
40
20

B DataWarp

Time (in sec.)

B DataWarp with ExpBB

m_ B

Total execution Reading input Writing output
file file

The total execution time is improved 1,7 times with ExPBB and the
1/0is lmproved up to 3 8 tlmes for 1 BB node. Fina > '

Results |l

WRF - 256 compute nodes - write 361 GB restart file

¥ DataWarp without ExPBB
L M DataWarp with ExPBB
4 8 32 64

#DW nodes

140

120

100

Time (in sec.)
N ~ (o)} o8]
o o o o

o

The 1/0 was improved with ExPBB between 1 ,28 till 3,8 times.

'-—— (
—._—&.——_.___._

X

s = Results |l

5((

NAS BTIO Benchmark - Writing a file of 100GB

1 2 4 16 32 64

DW/0OST

25

20

1

o1

GB/sec

1

o

W [ustre - Default* M Lustre - Optimized ® DataWarp - Default ~ ®mDataWarp - ExpBB*

We observe that for 8 BB nodes, with ExXPBB framework, we have better performance
than every other configuration. The maximum speedup compared to default BB
ecution, | is 4,84. Moreover, 8 BB nodes have better perform |

(((

ah Un |vr||y of
Science and Technology

A
e P /0 - Efficiency

Cray - DataWarp - 170 Efficiency

60

170 efficiency (in %)
) ~
o o

N
o

10

1 2 4 8
DW nodes

B DataWarp - Default ®DataWarp - ExpBB

(()
T i ExpBB - Output |

1 hnology

/Jexpbb btio.sh

Preparing and executing default script on Lustre

|/0 duration for the file btio.mpi on Lustre with 1 OSTs is 155.26 seconds
|/0 duration for the file btio.mpi on Lustre with 2 OSTs is 69.87 seconds
|70 duration for the file btio.mpi on Lustre with 4 OSTs is 35.27 seconds
|70 duration for the file btio.mpi on Lustre with 8 OSTs is 18.57 seconds
|/0 duration for the file btio.mpi on Lustre with 16 OSTs is 10.12 seconds
|/0 duration for the file btio.mpi on Lustre with 32 OSTs is 5.93 seconds

|/0 duration for the file btio.mpi on Lustre with 64 OSTs is 5.59 seconds

~ |/0 duration for the file btio.mpi on Lustre with 128 OSTs is 6.10 seconds

((()
s WP ExpBB — Output |l

Preparing and executing default script on Burst Buffer

The 1/0 duration for the file btio.mpi on Burst Buffer with default parameters is 96.62 seconds
Starting auto-tuning execution on 1 Burst Buffer nodes

/0 duration for the file btio.mpi on 1 Burst Buffer with optimized parameters is 23.617 seconds
The new submission file with optimized parameters is named expbb_1_btio.sh

MPICH_MPIIO_HINTS=$DW_JOB_STRIPED/btio.mpi:cb_nodes=32:striping_unit=1048576:cb_buffer_size=4194304

Starting auto-tuning execution on 8 Burst Buffer nodes

170 duration for the file btio.mpi on 8 Burst Buffer with optimized parameters is 4.99633 seconds

The new submission file with optimized parameters is named expbb_8_btio.sh

MPICH_MPIIO_HINTS=$DW_JOB_STRIPED/btio.mpi:cb_nodes=128:striping_unit=2097152:cb_buffer_size=8388608

2

A

' ~—_—

G New submission script for 1 BB node

cience and Technology

—

#!/bin/bash J§

#SBATCH ——partition=workq
#SBATCH -t 10

#SBATCH -A k1267

#SBATCH ——ntasks=1024

#SBATCH —--ntasks-per-node=32
#SBATCH ——ntasks—-per-socket=16
#SBATCH -] btio

#SBATCH -0 btio_out_%j

#SBATCH —e btio_err_%j

#DW jobdw type=scratch access_mode=striped capacity=368GiB

#DW stage_in type=directory source=/project/k@1l/markomg/development/expbb/python_new/expbb/python/ destination=$DW_JO0B
_STRIPED

#DW stage_out type=directory destination=/project/k01l/markomg/back2 source=$DW_JOB_STRIPED

MPICH_MPIIO_HINTS=$DW_JOB_STRIPED/btio.mpi:cb_nodes=32:striping_unit=1048576:cb_buffer_size=4194304

cp tmp_inputbtl.data inputbtl.data
echo $DW_JOB_STRIPED >> inputbtl.data

srun -n 1024 —-hint=nomultithread ./btio inputbtl.data

((.
:“h::a_._:q_uf@l ;ﬁ .¥»))),

Science and Te h lgy

Study-case PIDX

alllasc Ellall 90l \-'))),
axisillg pglell s
King Abdullah University of
Science and Technology

e PIDX is an efficient parallel |/0 library that reads and writes
multiresolution IDX data files

® |t can provide high scalability up to 768k cores

® Successful integration with several simulation codes
e KARFS (KAUST Adaptive Reacting Flow Solvers) on Shaheen |l
® Uintah with production runs on Mira
e S3D

https://www.sci.utah.edu/software/pidx.nhtml

wm&%’”)’ PIDX description

nd Technolo

PO P1 P2 P3

Synchronous reducing
— mode of communication
using one-sided MPI

To balance the data movement,
_ the aggregators are uniformly
placed across the ranks.

PO P2

File locking contention is reduced
__ by having an aggregator to write
to only one file

File O File 1

File count are tunable (based on the file
system in use).

R e N L

&.Mwaﬁﬂp PIDX on BB
Rt 1000

((

900
800 /

700
600 ///
500

/ —BB
400

300
200
100

Write 1/0 bandwidth (GB/s)

16 32 04 128 144 256
BB nodes/OST

~The Ilbrary ach|eves up to 9OO GB/s on Burst Buffe|

((

sty \a»))p

(

Efficiency based on IOR peak

100
E—S e

80 I ——

70 \

O
o

Percentage of efficiency

16 32 64 128 144 256
BB nodes i

oS
i oG

Complex Workflows

Case 1: WRF-CHEM

o D Outline

||||||||||||||||||||||||||

® Motivation

®* |[n-depth explanation

® Demo - video

o
T —— Motivation

Science and Technology

¢ Using compute resources, while producing wrong results, costs time
and money (even in electricity)

® Spending core-hours from team project

® You are not sure if the simulation has any issue

=
e U Study case - WRF-CHEM

..........................

® This is a real case of a Shaheenll user at KAUST.

® 40 compute nodes are used

®* Around to 3GB of data are saved for specific time-steps.

((.
s WP Methodology

® First, we declare the required Burst Buffer (BB) space in persistent mode (create_persistent.sh).
®* Then we start the execution of the model, using the BB persistent space

®* Then we start the execution of the tool plot_and_stage_out.sh that does the following:

® Check the existence of any output file (we know the filename pattern)

e When an output file exists (NetCDF format), we use a script in Python with NetCDF and Matplotlib libraries to
read the output file and save one variable to an image file (with same filename pattern)

® Then a tool which uses DataWarp API, stages out only the image into the Lustre parallel filesystem.

® The same moment with the plot_stage_out.sh, we execute the wait.sh script which runs on the login
node. This script recognizes when an image has been stage-out and it visualizes it for the user. Then,
the user observes if the simulation is correct or not and can stop the simulation if it is required.

Instructions here:
https://github. com/gmarkomanolls/bb |xpug18
folder: complex_workflow/

wm‘U’)' Creating Persistent BB allocation

® File: create_persistent.sh
® Execution: sbatch create_persistent.sh

#!/bin/bash —x

#SBATCH --partition=workqg
#SBATCH -t 1

#SBATCH -A kO1

#SBATCH --nodes=1

#SBATCH -J create_persistent_space

#BB create_persistent name=george_test capacity=600G access=striped
’typeO scratch
exit

wm«s’”’ Executing the main application |

* File: wrfchem_bb_persistent.sh

e Execution: sbatch wrfchem_bb_persistent.sh (check the job id)

#SBATCH --partition=workqg

#SBATCH -t 60

#SBATCH -A kO1

#SBATCH --ntasks=1280

#SBATCH --ntasks-per-node=32
#SBATCH -J WRF_CHEM_PERSISTENT
#SBATCH -0 out_%;

#SBATCH -e err_%j

#DW persistentdw name=george_test
#DW stage_in type=directory
source=/project/k01/.../forburst destination=$DW_PERSISTENT_STRIPED_george_test

export MPICH_ENV_DISPLAY=1

export MPICH_VERSION_DISPLAY=1 -
export MPICH_MPIIO_HINTS_DISPLAY=1 _ i
export MPICH STATS_DISPLAY=1 J—

— D

et O Executing the main application I

export MPICH_MPIIO_HINTS="$DW_PERSISTENT_STRIPED_george_test/
wrfinput*:cb_nodes=40:striping_unit=131072,
$DW_PERSISTENT_STRIPED_george_test/wrfout*:cb_nodes=40:striping_unit=65536"
export MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1

export MPICH_MPIIO_STATS=2

cd $DW_PERSISTENT_STRIPED_george_test
chmod +x wrf.exe

time srun -n 1280 --hint=nomultithread wrf.exe

/(

0GP Create an image of the output NetCDF file

® File: plot_persistent.sh
® Execute: ./plot_persistent.sh filename_netcdf

#!/.../python

import matplotlib
matplotlib.use('Agg")

import matplotlib.pyplot as plt

import netCDF4

import sys

nc = netCDF4 Dataset(str(sys.argv[1]))

read all the data
topo = nc.variables['T2'][::1,::1]

make image
plt.figure(figsize=(10,10))
plt.imshow(topo.squeeze(),origin='lower")

— #plt title(nc.title)
~~~~~ Ut=str(s) sargV[l])"' png




ww‘ﬁ.””’ Stage out using DataWarp AP

* File: stage_out.c

® Compile:
® module load datawarp
® cc -0 stage_out stage_out.c

#include <stdio.h>
#include <datawarp.h>

int main(int argc, char **argv)
{ char *infile, *outfile;
int stage_out;
infile = ar v[l]
outfile = argv[2]
stage_out = dw_stage_file_out(infile, outfile, DW_STAGE_IMMEDIATE);

return O;

}

- *® Execute: srun -n 1 stage_out $DW_PERSISTENT_STRIPED_george_test/filename.png
/pro t/kOl/markomg/wrfchem stage out/ﬂlename png




wm«d))' Script to plot and stage out |

* File: plot_stage_out.sh
® Execute: sbatch --dependency=after:app_job_id plot_stage_out.sh

#!/bin/bash

#SBATCH --partition=workqg
#SBATCH -t 30

#SBATCH -A kO1

#SBATCH --ntasks=32

#SBATCH --ntasks-per-node=32
#SBATCH -J PLOT_AND_STAGE_OUT
#SBATCH -0 out_%;]

#SBATCH -e err_%j

#DW persistentdw name=george_test
#DW stage_in type=directory
source=/project/k01/markomg/burstbuffer/complex/stage_in_bb/ destination=$DW_ PERSIST _ st

ENT STRIPED _george_test




(f@a\\\
=4
alllasc Ellal) o_v_al_\ )
azisillg @ »
King Abdullah University o
Science and Tvchm)lugy

Script to plot and stage out |l

module load E?/thon/Z /.11

cd $DW_PERSISTENT_STRIPED_george_test
chmod +x plot_persistent.sh

chmod +x stage_out

let i=0
\C/Ivhile [ $i-It 24 ]

kg$(printf %02d $i)

if [ -f wrfout_d01_2007-04-03_%${k}_00_ OO; then
check_Isof="lsof wrfout_d01_2007-04-03_${k}_00_00 | wc -I
\(/jvhile [ $check_Isof -eq 2 ]
0
sleep 30
J check_lsof="Isof wrfout_d01_2007-04-03_%${k}_00_00 | wc -I
one
/plot_persistent.sh wrfout_d01_2007-04-03_%${k}_00_00
srun -n 1 stage_out $DW_PERSISTENT_STRIPED_george_test/wrfout_d01_2007-04-03_%${k}_00_00.png
/prOJelc:E/kO$1/Tarkomg/wrfchem _stage_out/wrfout_ dOl _20 7 04-03_%${k}_00_00.png
et i=%i+
else
B sleep 30




Visualize images when they arrive on the
s o ‘=" Lustre

e File: wait.sh

® Execute: ./wait.sh number_of_images /path_to_Lustre_stage_out_folder/
#!/bin/bash

let i=0
while [ $i -It $1 ]

do
if [ -f $2/wrfout_dO1_2007-04-03_%$(printf "9%02d" $i)_00_00.png ]; then
display $2/wrfout_d01_2007-04-03_%$(printf "%02d" $i)_00_00.png &
let i=i+1
sleep 15
else

sleep 60




wm‘ﬁ.””’ Delete Persistent BB allocation

* File: delete_persistent.sh

® Execution: sbatch delete_persistent.sh

#!/bin/bash

#SBATCH --partition=workq
#SBATCH -t 1

#SBATCH -A kO1

#SBATCH --nodes=1

#SBATCH -J delete_persistent_space

#BB destroy_persistent name=george_test
exit O




markomg@cdl4: ||

157




Case 2: In situ processing and
visualization
(collaboration with KVL)




0

Cyclone Chapala

Extremely Severe Cyclonic Storm Chapala was the second
strongest tropical cyclone on record in the Arabian Sea, according
to the American-based Joint Typhoon Warning Center (JTWC). The
third named storm of the 2015 North Indian Ocean cyclone
season, it developed on 28 October off western India from

the monsoon trough. Fueled by record warm water temperatures,
the system quickly intensified and was named Chapala by the India
Meteorological Department (IMD). By 30 October, the storm
developed an eye in the center of a well-defined circular area of
deep convection. That day, the IMD estimated peak three-

minute sustained winds of 215 km/h (130 mph), and the JTWC
estimated one-minute winds of 240 km/h (150 mph);

only Cyclone Gonu in 2007 was stronger in the Arabian Sea.

Extremely Severe Cyclonic Storm
Chapala

Extremely severe cyclonic storm (IMD scale)

e o, . 2 N
Chapala at peak intensity on 30 October

Formed 28 October 2015
Dissipated 4 November 2015
Highest winds  3-minute sustained:
215 km/h (130 mph)
1-minute sustained:
240 km/h (150 mph)
Lowest pressure 940 hPa (mbar); 27.76 inHg
Fatalities 9 confirmed

Damage Unknown
Areas affected Oman, Somalia, Yemen

Part of the 2015 North Indian Ocean cyclone
season



e,
(&%ﬁ"»)),

] [ ]
alllasc Ellall aealy
ayi85llg @glell »
King Abdullah University
Science and Technolo

® We execute Inshimtu and WRF on the same nodes (Inshimtu uses only
the last core), one extra node for the post-process

* When a NetCDF file is written, then it is converted to VTK format but
only the area that we are interested in, so we save less data

® |n our largest case, by removing variables that we do not need and

chopping specific area, from 28.2TB of NetCDF files, we save on Lustre
97GB

® Files are downloaded and visualized




((( .,)))),

alllasc Ellall asaly
apidillg pglell ~
King Abdullah University o
Science and Ivrhnulngy

®* We use two domains, one small ( 1100x1000x34 ) and one larger
( 3500x3000x34 ).

® |n order to increase the details in the available data, we are testing two
cases, saving data every one hour and every 10 minutes.

® A post-processing tool chops from the whole area only the cyclone
region and saves this file on BB.

Videos here:
https://github.com/gmarkomanolis/bb_ |xpug18
~ folder: complex_workflo




S

Executing the
simulation on Burst
Buffer and save data
every 10 minutes
with manual tuning
(6x times more
data). Total execution
time is 5% faster
than Lustre.

Visualization




L Conclusions
® Using Burst Buffer is not difficult but achieving significant performance
requires some effort.

e Burst Buffer boosts the performance for many demonstrated
applications

® Many parameters need be investigated for the optimum performance
® CLE 6.0 solves some BB issues but still needs optimizations

* |mplementing a complex workflow has several steps and it could
combine persistent allocation, multiple applications having access to
same files, external scripts to handle same files, and DataWarp AP|

clever and innovative on how to implement your w




=

nuluu‘:iﬁxlél m .%»))),

King Abdullah University of

Thank you!
Questions?

georgios.markomanolis@kaust.edu.sa
saber.feki@kaust.edu.sa




