
Burst Buffer: From Alpha to
Omega

Intel Extreme Performance Users Group
Middle East Conference 2018

25 April 2018

George Markomanolis
Computational Scientist

KAUST Supercomputing Laboratory
georgios.markomanolis@kaust.edu.sa

1

Saber Feki
Computational Scientist Team Lead
KAUST Supercomputing Laboratory

saber.feki@kaust.edu.sa

Outline

� Introduction to Parallel I/O

� Understanding the I/O performance on Lustre

� Introduction to Burst Buffer

� Accelerating the performance

2

C
om

p
ut

e
Node

Processor type:
Intel Haswell

2 CPU sockets per node
@2.3GHz
16 processor cores per CPU

6174 nodes 197,568 cores

128 GB of
memory per node

Over 790 TB total memory

Power Up to 3.5MW Water cooled

Weight/Siz
e

More than 100
metrics tons

36 XC40 Compute cabinets, disk,
blowers, management nodes

Speed
7.2 Peta FLOPS
peak
performance

5.53 Peta FLOPS sustained
LINPACK and ranked 15th in the
latest Top500 list

Network

Cray Aries
interconnect with
Dragonfly
topology

57% of the maximum global
bandwidth between the 18
groups of two cabinets

S
to

ra
ge

Storage
Sonexion 2000
Lustre appliance

17.6 Peta Bytes of usable storage
Over 500 GB/s bandwidth

Burst
Buffer

DataWarp
Intel Solid Sate Devices (SSD)
fast data cache
Over 1.5 TB/s bandwidth

Archive
Tiered Adaptive
Storage (TAS)

Hierarchical storage with 200 TB
disk cache and 20 PB of tape
storage, using a spectra logic
tape library (Upgradable to 100
PB)

Shaheen II Supercomputer

3

Operations: CS Team
• Application Software

• Weather & Environment: WRF, WRF-Chem, HIRAM, MITgcm
• Big Data: Mizan (in-house)
• Biology & MD: Amber, Gromacs, LAMMPS, NAMD, VEP, BLAST, Infernal
• Combustion: NGA, S3D, KARFS
• CFD & Plasma: Ansys, Fluent, OpenFOAM, Plasmoid (in-house)
• Chemistry & Materials Science: VASP, Materials Studio, Gaussian,

WEIN2k, Quantum Espresso, ADF, CP2K
• Electromagnetism: Ansys, In-house developed code
• Oil & Gas: Madagascar, sofi2D, sofi3D, In-house developed codes
• Seismology: SORD, SeisSol, SPECFEM_3D_GLOBE

• Development Tool
• Compiler: Cray, Intel and GNU with MPICH library
• Optimized Math Library: Cray-libsci, Intel-MKL, PETSc, FFTW, ParMetis
• I/O library: HDF5, NetCDF, PNetCDF, ADIOS
• Performance tools: CrayPat, Reveal, Extrae, Allinea Map
• Debugger: Totalview, Allinea DDT

Software

4

Introduction to parallel I/O

� I/O can create bottlenecks
� I/O components are much slower than the compute parts of a

supercomputer
� If the bandwidth is saturated, larger scale of execution can not improve the

I/O performance

� Parallel I/O is needed to
� Do more science than waiting files to be read/written
� No waste of resources
� Not stressing the file system, thus affecting other users

5

I/O Performance

� There is no one magic solution

� I/O performance depends on the pattern

� Of course a bottleneck can occur from any part of an application

� Increasing computation and decreasing I/O is a good solution but not
always possible

6

Serial I/O

� Only one process performs I/O (default option for WRF)
� Data Aggregation or Duplication
� Limited by single I/O process

� Simple solution but does not scale

� Time increases with amount of data
and also with number of processes

7

Parallel I/O: File-per-Process

� All processes read/write their own separate file
� The number of the files can be limited

by file system
� Significant contention can be observed

8

Parallel I/O: Shared File

� Shared File
� One file is accessed from all the

processes
� The performance depends on

the data layout

� Large number of processes can
cause contention

9

Pattern Combinations

� Subset of processes perform I/O
� Aggregation of a group of processes data
� I/O process may access independent files
� Group of processes perform parallel I/O to a shared file

10

Lustre
� Lustre file system is made up of an underlying:

� Set of I/O servers called Object Storage Servers (OSSs)
� Disks called Object Storage Targets (OSTs), stores file data (chunk of

files). We have 144 OSTs on Shaheen

� The file metadata is controlled by a Metadata Server (MDS) and
stored on a Metadata Target (MDT)

11

Lustre Operation

12

Lessons learned from Lustre

� Important factors:
� Striping

� Aligned data

� But… how parallel is the I/O?

13

Collective Buffering – MPI I/O aggregators

� During a collective write, the buffers on the aggregated nodes are
buffered through MPI, then these nodes write the data to the I/O servers.

� Example 8 MPI processes, 2 MPI I/O aggregators

14

How many MPI processes are writing a
shared file?

� With CRAY-MPICH, we execute one application with 1216 MPI processes
and it provides parallel I/O with Parallel NetCDF and the file’s size is
360GB:

� First case (no stripping):
� mkdir execution_folder

� copy necessary files in the folder

� cd execution_folder

� run the application

� Timing for Writing restart for domain 1: 674.26 elapsed seconds

� Answer: 1 MPI process

15

How many MPI processes are writing a
shared file?

� With CRAY-MPICH, we execute one application with 1216 MPI processes
and it provides parallel I/O with Parallel NetCDF and the file’s size is
360GB:

� Second case:
� mkdir execution_folder
� lfs seststripe –c 144 execution_folder
� copy necessary files in the folder
� cd execution_folder
� Run the application
� Timing for Writing restart for domain 1: 10.35 elapsed seconds

� Answer: 144 MPI processes

16

Extract the list of the MPI I/O aggregators
nodes

� export MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1

� First case:
AGG Rank nid
---- ------ --------
0 0 nid04184

� Second case:
 AGG Rank nid

---- ------ --------
0 0 nid00292
1 8 nid00294
…
143 1144 nid04592

17

I/O performance on Lustre while
increasing OSTs

0

20

40

60

80

100

120

140

160

5 10 20 40 80 100 144

Ti
m

e
(i

n
se

co
nd

s)

OST

Lustre

Lustre

18

Declare the number of MPI I/O aggregators

� By default with the current version of Lustre, the number of MPI
I/O aggregators is the number of OSTs.

� There are two ways to declare the striping (number of OSTs).
� Execute the following command on an empty folder

� lfs setstripe -c X empty_folder
where X is between 2 and 144, depending on the size of the used files.

� Use the environment variable MPICH_MPIIO_HINTS to declare striping per files
export MPICH_MPIIO_HINTS=
"wrfinput*:striping_factor=64,wrfrst*:striping_factor=144,\
wrfout*:striping_factor=144"

19

Using Darshan tool to visualize I/O
performance

20

Using Darshan tool

� Have you ever used Darshan tool?
� If the answer is “I don’t know, probably not”, then maybe you have used it,

as it is enabled automatic on Shaheen II and Cori.

� KAUST Supercomputing Laboratory (KSL) provides a framework to
provide you easy access to performance data from Darshan:
� Visit web page https://kaust-ksl.github.io/HArshaD/ for instructions. The

framework is supported on both Shaheen and Cori, Darshan v2.x and v3.x.

21

HArsaD I

� Get the Darshan performance data from your last experiment, execute:
� ./open_darshan.sh

� Get the Darshan performance data from the job id 65447, execute:
� ./open_darshan.sh 65447

� Compare Darshan perfromance data from job id 65447 and 65448,
execute:
� ./compare_darshan 65447 65448

22

HArshaD II - Comparison

� In case that you want to compare the execution of two applications, execute:
� compare_darshan.sh job1_id job2_id
� One PDF file, with the Darshan performance data of both executions, is created

23

Discussion about Lustre

� There are many parameters to optimize Lustre, one quite interesting is
the striping_unit. This declares the number of bytes to store on an OST
before moving to the next OST

� lfs setstripe -s X empty_folder where X in bytes

� export MPICH_MPIIO_HINTS=
"wrfinput*:striping_factor=64,wrfrst*:striping_factor=144:\
striping_unit=4194304,wrfout*:striping_factor=144:\
striping_unit=2097152”

24

Useful MPI environment variables
� export MPICH_ENV_DISPLAY=1

� Displays all settings used by the MPI during execution

� export MPICH_VERSION_DISPLAY=1
� Displays MPI version

� export MPICH_MPIIO_HINTS_DISPLAY=1
� Displays all the available I/O hints and their values

� export MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1
� Display the ranks that are performing aggregation when using MI-I/O collective buffering

� export MPICH_MPIIO_STATS=1
� Statistics on the actual read/write operations after collective buffering

� export MPICH_MPIIO_HINTS=“…”
� Declare I/O hints

� export MPICH_MPIIO_TIMERS=1
� Timing statistics for each phase of MPI I/O (requires MPICH v7.5.1)

25

Burst Buffer
� Shaheen II: 268 Burst Buffer nodes, 536 SSDs, totally 1.52 PB, each node has 2 SSDs

� Adds a layer between the compute nodes and the parallel file system

� Cray DataWarp (DW) I/O is the technology and Burst Buffer is the implementation

26

Burst Buffer Architecture

27

Burst Buffer Architecture

28

Burst Buffer – Use cases

� Periodic burst

� Transfer to PFS between bursts

� I/O improvements

� Accessed via POSIX I/O requests

� Stage-in/stage-out

� Shared BB allocation for multiple jobs

� Coupling applications

29

Burst Buffer - Status
• 268 DataWarp (DW) nodes, total 1.52PB with granularity 397.44GB

> dwstat most
pool units quantity free gran

wlm_pool bytes 1.52PiB 1.52PiB 368GiB

did not find any of [sessions, instances, configurations, registrations,
activations]

> dwstat nodes
node pool online drain gran capacity insts activs

nid00002 wlm_pool true false 16MiB 5.82TiB 0 0
…
nid07618 wlm_pool true false 16MiB 5.82TiB 0 0

30

Check if there are jobs using BB
> scontrol show burst
Name=cray DefaultPool=wlm_pool Granularity=406976M
TotalSpace=1636043520M UsedSpace=0

Flags=EnablePersistent
StageInTimeout=1800 StageOutTimeout=1800 ValidateTimeout=5

OtherTimeout=300
AllowUsers=…markomg…
GetSysState=/opt/cray/dw_wlm/default/bin/dw_wlm_cli

If your username is not in the list of AllowUsers while you have applied for BB
early access, send email to help@hpc.kaust.edu.sa

scontrol show burst
Name=cray DefaultPool=wlm_pool Granularity=406976M
TotalSpace=1636043520M UsedSpace=813952M
Flags=EnablePersistent

StageInTimeout=1800 StageOutTimeout=1800 ValidateTimeout=5
OtherTimeout=300
AllowUsers=…,markomg…
GetSysState=/opt/cray/dw_wlm/default/bin/dw_wlm_cli
Allocated Buffers:
JobID=2729000 CreateTime=2017-01-20T17:15:31 Pool=wlm_pool
Size=813952M State=allocated UserID=markomg(137767)
Per User Buffer Use:
UserID=markomg(137767) Used=813952M 31

Burst Buffer Nodes Allocation

• How many DW instances per node?

DW_instances_per_node = 5.82*1024/368 = 16.19

A DW node can accommodate up to 16*368/1024 = 5.75 TB

• A user requests 60TB of DW nodes, how many DW nodes is he going
to reserve (for striped mode explained later)?

We have 268 DW nodes, each nodes provides initially one DW instance
and when all of them are used, then it starts from the first DW node
again. The allocation occurs under round - robin basis

Requested_DW_nodes = 60*1024/368 = 166.95, so we will reserve 167
DW nodes.

Important: If you reserve more than 268 * 368/1024 = 96.31TB, then
some DW nodes will be used twice and this can cause I/O performance
issues

32

Burst Buffer Modes
• DW supports two access modes

• Private
Each of the compute job has its own private space on BB and it will
lot be visible to other compute jobs. For now, data is not striped over
BB nodes in private mode (not tested). Each compute node has
access to a BB allocation equal to the granularity size.

• Striped
The data will be striped over several Burst Buffer nodes. BB nodes
are allocated on a round-robin basis. We use this mode mainly

• BB supports two reservation modes
• Scratch is temporary space allocation which will be removed when

the job is finished
• Persistent is when you have many jobs that need to access the

same files, so this mode creates a DW space that persists after a
job is finished and it is available to other of your DW jobs.
Important: Persistent space is not a backup solution, you could
lose your data in case of any BB problem

33

Burst Buffer Workflow

• Initially the files are located on Lustre filesystem

• For the files that need to be accessed multiple times but also for any
big files you should move these files on BB before your job reservation.
This phase is called stage-in. You can stage-in either file or folder.

• When the job finishes, the created files will be returned to the folder
that the user declared in the script, this is called stage-out.

• The files on BB are located inside the path declared by environment
variable $DW_JOB_STRIPED (for striped mode)

Note: Stage-in and –out are not mandatory it depends what the user
needs. Maybe there are no input files or the user wants just to measure
the execution time.

34

Modify SLURM script

• Lustre reservation

#!/bin/bash
#SBATCH --partition=workq
#SBATCH -t 10:00:00
#SBATCH -A k01
#SBATCH --nodes=32
#SBATCH --ntasks=1024
#SBATCH -J slurm_test

Comment: Insert the DW commands, exactly after the SBATCH
commands, do not include any other unrelated commands between
SBATCH and DW declarations.

35

Modify SLURM script

• BB reservation (2TB of DW space)
#!/bin/bash
#SBATCH --partition=workq
#SBATCH -t 10:00:00
#SBATCH -A k01
#SBATCH --nodes=32
#SBATCH --ntasks=1024
#SBATCH -J slurm_test

#DW jobdw type=scratch access_mode=striped capacity=2TiB
#DW stage_in type=directory source=/scratch/markomg/for_bb
destination=$DW_JOB_STRIPED
#DW stage_out type=directory destination=/scratch/markomg/back_up
source=$DW_JOB_STRIPED/

cd $DW_JOB_STRIPED

chmod +x executable

Note: You can stage-in/out also files instead of directory 36

How fast is stage-in?

0

2

4

6

8

10

12

1 2 4 8 16 32 64

G
B

/s
ec

#DW nodes

Cray DataWarp - Stage-in 100GB

Lustre stripe 1 Lustre stripe 2 Lustre stripe 4 Lustre stripe 8

37

DataWarp – Restrictions

• When you stage-in executables, you need to execute a command when
you are on BB, that this file is executable (chmod +x executable)

• Symbolic links will be lost during stage-in

38

Profiling MPI I/O on BB

Question: Using 160 nodes with 1 MPI process per node and 2TB of DW space (6 DW nodes) with
MPI I/O through PnetCDF, how many MPI I/O aggregators are saving the NetCDF file on Lustre?

Answer: 6!

Table 6: File Output Stats by Filename

Write Time | Write MBytes | Write Rate | Writes | Bytes/ Call |File Name
| | MBytes/sec | | | PE

710.752322 | 988,990.668619 | 1,391.470191 | 671,160.0 | 1,545,133.62 |Total
|---
| 263.824253 | 369,720.282763 | 1,401.388533 | 46,690.0 | 8,303,272.98 |wrfrst_d01_2009-
12-18_00_30_00
||--
|| 45.299442 | 61,624.000000 | 1,360.369943 | 7,798.0 | 8,286,412.85 |pe.96
|| 44.410365 | 61,616.000000 | 1,387.423860 | 7,795.0 | 8,288,525.83 |pe.160
|| 43.762797 | 61,623.999999 | 1,408.136675 | 7,763.0 | 8,323,772.69 |pe.32
|| 43.708663 | 61,616.148647 | 1,409.701068 | 7,762.0 | 8,323,784.42 |pe.0
|| 43.532686 | 61,616.134117 | 1,415.399323 | 7,764.0 | 8,321,638.26 |pe.128
|| 43.110299 | 61,624.000000 | 1,429.449598 | 7,808.0 | 8,275,800.13 |pe.64
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.1
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.2
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.3
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.4
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.5
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.6
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.7 39

How do we choose the number of MPI I/O
aggregators on BB?

� In this example we have parallel I/O and we can adjust the number of the MPI
processes for simulating an application

� MPICH_MPIIO_HINTS
� export MPICH_MPIIO_HINTS="wrfrst*:cb_nodes=80,wrfout*:cb_nodes=40”

� In this case we select 80 MPI I/O aggregators for the files starting with the name
wrfrst*, and 40 MPI I/O aggregators for the files starting with the name wrfout*.

� Although this depends on the application, according to out experience, if you have
one MPI I/O aggregator per DW node (default behavior), the performance is not
always good. In order to stress the SSDs of the DW node, more than one MPI process
should write data per DW node, and this happens with MPI I/O aggregators.

� Depending on the size of the file, some times we need to use different number of MPI
I/O aggregators per file.

40

How do we choose the number of MPI I/O
aggregators on BB?

� Tips:
� The number of the MPI I/O aggregators should divide the number of total

MPI processes for better load balancing. For example, If you have 1024
MPI processes, do not declare 100 MPI I/O aggregators, but 128 or 64.

� The number of the requested DW nodes, should divide the number of the
MPI I/O aggregators for better load balancing also.

� Of course the requested DW nodes should provide enough data for all of
your experiments, thus there is a minimum amount of needed DW nodes.

� 𝑀𝑃𝐼_𝐼𝑂_𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟𝑠 = .𝐷𝑊_𝑛𝑜𝑑𝑒𝑠, 𝑖𝑓	𝑤𝑒	𝑢𝑠𝑒	𝑜𝑛𝑒	𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟	𝑝𝑒𝑟	𝐷𝑊	𝑛𝑜𝑑𝑒
𝑘 ∗ 𝐷𝑊_𝑛𝑜𝑑𝑒𝑠, 𝑤ℎ𝑒𝑟𝑒	𝑘 ∈ ℕ, 2 ≤ 𝑘 ≤ 128

� Number_of_total_MPI_processes= 𝑙 ∗ 𝑀𝑃𝐼_𝐼𝑂_𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟𝑠, 𝑤ℎ𝑒𝑟𝑒	𝑙 ∈ ℕ, 𝑙 ≥ 2
41

Compute the required DW space

� It is already mentioned that we need to have enough space for our
experiments

� If the experiments are about DW scalability and the number of the
MPI/OpenMP processes remain stable, then you could modify the MPI
I/O aggregators and the number of DW nodes. As these two numbers
should be divided you can compute how many nodes you have to
request.

� If you need for example 64 DW nodes, then you should calculate the
requested space as follows:
� Multiply with the DW granularity:

� 64*368=23552
42

Create persistent DW space I

� Create persistent DW space

#!/bin/bash -x
#SBATCH --partition=workq
#SBATCH -t 1
#SBATCH -A k01
#SBATCH --nodes=1
#SBATCH -J create_persistent_space
#BB create_persistent name=george_test capacity=600G access=striped
type=scratch
exit 0

43

Checking the status of the persistent DW
reservation

> dwstat most

sess state token creator owner created expiration nodes
985 CA--- george_test CLI 137767 2017-01-20T18:01:00 never 0

inst state sess bytes nodes created expiration intact label public confs
977 CA--- 985 736GiB 2 2017-01-20T18:01:01 never true george_test true 1

> dwstat nodes

node pool online drain gran capacity insts activs
nid01349 wlm_pool true false 16MiB 5.82TiB 1 0
nid01410 wlm_pool true false 16MiB 5.82TiB 1 0

44

Use DW persistent space I

#!/bin/bash
#SBATCH --partition=workq
#SBATCH -t 10
#SBATCH -A k01
#SBATCH --nodes=1
#DW persistentdw name=george_test
#DW stage_in type=directory source=/project/k01/markomg/wrf
destination=$DW_PERSISTENT_STRIPED_george_test

cd $DW_PERSISTENT_STRIPED_george_test/

…

exit 0

45

Use DW persistent space II

� Now, you can execute the second job on the persistent space, however, do not
stage-in the same files:
� squeue -u markomg

JOBID USER ACCOUNT NAME ST REASON START_TIME TIME TIME_LEFT NODES
2729358 markomg k01 test PD burst_buf N/A 0:00 3:00 40

� scontrol show job 2729358
…
JobState=PENDING
Reason=burst_buffer/cray:_dws_data_in:_Error_creating_staging_object_for_file_(/
scratch/markomg/burst_buffer_early_access/wrfchem/wrfchem-
3.7.1_burst/test/em_real/forburst)_-2_Staging_failures_reported_
Dependency=(null)
...

� scancel 2729358

If the problem is not solved send us email immediately! help@hpc.kaust.edu.sa, inform also
the BB users through bb_users@hpc.lists.kaust.edu.sa

46

Use DW persistent space III

� Submit another jobs by either stage-in different files, or without stage-
in

� In the case that you want to connect interactively on the compute node
to have access to BB and check the files, follow the instructions:
� Create a file, called it for example bbf.conf with the following:

� #DW persistentdw name=george_test
� Execute:

salloc -N 1 -t 00:10:00 --bbf="bbf.conf”
srun -N 1 bash -I
cd $DW_PERSISTENT_STRIPED_george_test

� markomg@nid00024:/var/opt/cray/dws/mounts/batch/george_test/ss

47

Use DW persistent space IV

� Three jobs were executed on persistent DW space and created a job folder with the job id as their
name:
nid00024:/var/opt/cray/dws/mounts/batch/george_test/ss/ ls -l 2729*

2729356:

-rw-r--r-- 1 markomg g-markomg 3053617664 Jan 20 18:49 wrfout_d01_2007-04-03_00_00_00

-rw-r--r-- 1 markomg g-markomg 3053617664 Jan 20 18:49 wrfout_d01_2007-04-03_01_00_00

2729361:

-rw-r--r-- 1 markomg g-markomg 3053617664 Jan 20 18:57 wrfout_d01_2007-04-03_00_00_00

-rw-r--r-- 1 markomg g-markomg 3053617664 Jan 20 18:57 wrfout_d01_2007-04-03_01_00_00

2729362:

-rw-r--r-- 1 markomg g-markomg 3053617664 Jan 20 19:09 wrfout_d01_2007-04-03_00_00_00

-rw-r--r-- 1 markomg g-markomg 3053617664 Jan 20 19:09 wrfout_d01_2007-04-03_01_00_00
48

Finalize DW persistent reservation

� When the experiments are finished, then stage-out the files. Do not
copy the files from the interactive mode back to Lustre as this can be
much slower, depending on the file sizes.

� Finally delete the DW space

49

Use DataWarp for Medata intensive jobs

� Real case, a user was hurting the metadata server with just one compute
node, reading/writing into the same file more than 140 million times.

� Login nodes almost could not be used, lagging for seconds. Users were
reporting slow IO.

� Moving the user to DataWarp, we were able to have many parallel
executions of the same job without influencing login nodes or other jobs.

50

Applications/Benchmarks

Data Centric Optimizations of Seismic
Natural Migration Algorithm at Scale on
Parallel File Systems and Burst Buffer

Outline

� Seismic Natural Migration

� I/O optimizations
� on parallel filesystem
� using Cray DataWarp Burst Buffer

� Summary and Future Work

53

Seismic Natural Migration

� Natural Migration is a seismic imaging tool that
maps buried faults.

� Application to Long-Beach, CA area.

Natural Migration
Image

Natural Migration (2.0
Hz slice)

2 km

Buried fault lines in the
subsurface are shown as
lineaments in the images

2 km

Unknown faults are under
populated LA areas.

Overlay on
Google Maps

54

Seismic Natural Migration

55

� Natural Migration is a seismic imaging tool that maps buried faults.

� The Algorithm uses recorded Green’s functions G(s,x,t) to compute an
image:

where the s and r denote seismic data coordinates, and x denotes image
coordinates.

� The Green’s functions are pre-computed and stored in a single file with
more than 86GB of size (for this experiment)

Computational Aspects

� Natural migration equation:

� There are N=5297 Green’s functions.

� The outer summation is distributed among MPI
processes

� All runs are configured with one MPI process per socket
using 16 OpenMP threads.

� Each MPI process loads the whole 86GB file in parts (one
Green’s function at a time) to compute the inner
summation.

� The time convolution and dot-product operations in the
equation above are computationally cheap compared to
the I/O cost for retrieving the Green’s function from
disks.

56

Natural Migration I/O Profile Before
Tuning

57

Tuning Lustre Stripe Count for Natural
Migration

58

0

200

400

600

800

1000

1200

1400

1600

1800

2000

4 10 100 144

E
xe

cu
ti

on
 T

im
e

(s
)

LFS Stripe Count

50 Nodes

100 Nodes

250 Nodes

500 Nodes

1000 Nodes

2649 Nodes

Natural Migration I/O Profile After Tuning

59

60

Tuning DataWarp Nodes Count for Natural Migration

0

500

1000

1500

2000

2500

3000

3500

4 10 40 100

E
xe

cu
ti

on
 T

im
e

(s
)

Number of DataWarp Nodes

50 Nodes

100 Nodes

250 Nodes

500 Nodes

1000 Nodes

Lustre Filesystem vs DataWarp

61

+34.09%
+28.76%

+11.29%

-31.45%

-141%

0

200

400

600

800

1000

1200

1400

50 Nodes 100 Nodes 250 Nodes 500 Nodes 1000 Nodes

E
xe

cu
ti

on
 T

im
e

(s
)

Nodes Count

BEST LFS PERF

BEST DW PERF

Summary and Future Work on Seismic
Natural Migration Algorithm

� Tuning Lustre stripe count significantly improved the seismic natural
migration code, especially at larger scale.

� Natural migration code benefited from DataWarp burst buffer up to a
certain scale with up to 34% improvement.

� Next Steps: study the performance of algorithmic changes to minimize
I/O and use MPI communications instead.

62

Study-case NAS BTIO

Applications

NAS BTIO
“As part of the NAS parallel benchmark set an IO benchmark has been
developed which is based on one of the computational kernels. The BT
benchmark is based on a CFD code that uses an implicit algorithm to

solve the 3D compressible Navier-Stokes equations.”

64

NAS – BT I/O Benchmark - PNetCDF

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

2 4 8 16 32 64 128 256

I/
O

 B
an

d
w

id
th

 (
G

B
/s

)

DW nodes

DW - 128 compute
nodes

Lustre - 128 compute
nodes

Lustre - 512 compute
nodes

Increasing the file size from
50 GB (2 DW nodes) up to
52 TB (256 DW nodes)

65

NAS – BT I/O Benchmark - PNetCDF

0

10

20

30

40

50

60

2 4 8 16 32 64 128 256

I/
O

 e
ff

ic
ie

nc
y

(i
n

%
)

DW nodes

I/O Efficiency

I/O Efficiency

66

Applications

� NAS BT I/O

� Domain size: 1024 x 512 x 256

� 256 to 1024 MPI processes, 8 – 32 nodes

� Size of output file: 50 GB

67

Burst Buffer nodes

� A user tries to scale his application on Burst Buffer by just
increasing the BB nodes and this does not always provide the best
results.

� Increasing the BB nodes by 64 times, provide less than 8 times
better performance and the practical efficiency is less than 2%!

68

Collective Buffering – MPI I/O aggregators II

� Using optimized MPI I/O aggregators improved the performance up to 3,11 times on
just one BB node.

� We achieved best performance with 64 MPI I/O aggregators

Use 64 MPI I/O aggregators for the file btio.nc: export MPICH_MPIIO_HINTS=btio.nc:cb_nodes=64
69

Striping Unit

� The stripe units are the segments of sequential data written to or read from a
disk before the operation continues to the next disk

� For NAS BT IO, decreasing the striping unit up to 2 MB, increases the
performance by 10%.

Change striping unit of file btio.nc to 2MB:
export MPICH_MPIIO_HINTS=“btio.nc:cb_nodes=64:striping_unit=2097152”

70

NAS BT I/O - Understanding striping unit
2897 MB/s

| MPIIO write access patterns for
|/var/opt/cray/dws/mounts/batch/3129772/ss//btio.nc
| independent writes = 11
| collective writes = 40960
| independent writers = 1
| aggregators = 64
| stripe count = 1
| stripe size = 8388608
| system writes = 6411
| stripe sized writes = 6400
| total bytes for writes = 53687091532 = 51200 MiB = 50 GiB
| ave system write size = 8374214
| read-modify-write count = 0
| read-modify-write bytes = 0
| number of write gaps = 21
| ave write gap size = 23336707978

2165 MB/s
| MPIIO write access patterns for
|/var/opt/cray/dws/mounts/batch/3151099/ss//btio.nc
| independent writes = 11
| collective writes = 40960
| independent writers = 1
| aggregators = 64
| stripe count = 1
| stripe size = 1048576
| system writes = 51211
| stripe sized writes = 51200
| total bytes for writes = 53687091532 = 51200 MiB = 50 GiB
| ave system write size = 1048350
| read-modify-write count = 0
| read-modify-write bytes = 0
| number of write gaps = 21
| ave write gap size = 23297910666

Doubling the number of BB
nodes from 1 to 2, the I/O
bandwidth from 2165 MB/s
becomes 3850 MB/s,
78.2% improvement.

By decreasing the striping
unit by 8 times, the system
writes were increased by 8
times.

71

CLE comparison

� Cray provides the CLE 6 with new functionalities and performance
improvements.

� In the next slides we compare the CLE 5.2 vs 6.0.4

� We use NAS BTIO, with a domain which leads to a shared output file of
25GB.

� We use 1 BB node

72

CLE 5.2 vs 6.0.4 – default settings

With default settings, there is no significant performance difference between the
CLE 5.2 and 6.0.4 in this specific case.

73

I/O Efficiency – Default parameters

0

5

10

15

20

25

16 36 64 256 1024

I/
O

 E
ff

ic
ie

n
cy

 (
in

 %
)

MPI processes

I/O Efficiency - NAS BTIO Benchmark - Default parameters
Comparison CLE 5.2 vs CLE 6.0.4 16 MPI I/O aggregators

Shared file - 25GB

Write - CLE 5.2 Read - CLE 5.2 Write - CLE 6.0.4 Read - CLE 6.0.4

74

CLE 5.2 vs 6.0.4 – optimized parameters

By using more MPI I/O aggregators, CLE 6.0.4 achieves up to 3 times
better write speed. The performance of reading a file seems similar
between the CLE.

75

I/O Efficiency – Optimized parameters

0

10

20

30

40

50

60

70

80

90

16 36 64 256 1024

I/
O

 E
ff

ic
ie

n
cy

 (
in

 %
)

MPI processes

I/O Efficiency - NAS BTIO Benchmark - Optimized parameters
Comparison CLE 5.2 vs CLE 6.0.4 16 MPI I/O aggregators

Shared file - 25GB

Write - CLE 5.2 Read - CLE 5.2 Write - CLE 6.0.4 Read - CLE 6.0.4

76

Study-case Neuromap
Application provided for the SC17 tutorial

Neuromap - Replib

� The Neuronm(ini)app(lication) library reproduces the algorithms of the
main software of the Blue Brain Project as a collection of mini-apps For
its first release, the Neuromapp framework focuses on CoreNeuron
application.

� Replib is a miniapp that mimics the behavior of Neuron's ReportingLib.
It uses MPI I/O collective calls to write a fake report to a shared file.
The miniapp provides several options to distribute data across ranks in
different ways.

� Contact person: Judit Planas

78

International Outreach

https://insidehpc.com/2017/08/video-io-challenges-brain-tissue-simulation/

79

Neuromap – Replib on Cray Burst Buffer
Default parameters

• We have three cases, writing data in chunks of 100KB, 650KB, and 1MB
• We save the data in a shared file, each MPI process saves its own data and the

size of the output file varies from 9 GB up to 400 GB 80

Neuromap – Replib on Cray Burst Buffer
I/O Efficiency – Default parameters

The maximum I/O efficiency is less than 19% for all the cases. We will tune the parameters
for better performance. 81

MPI I/O Statistics – Default parameters

For 32 nodes with default settings:
+--+
| MPIIO write by phases, writers only, for /var/opt/cray/dws/mounts/batch/3774697/ss//out2
| min max ave
| ---------- ---------- ----------
| file write time = 22.92 23.58 23.25
| time scale: 1 = 2**7 clock ticks min max ave
| total = 523689105
| imbalance = 148522 248791 198657 0%
| local compute = 4516667 4527122 4521894 0%
| wait for coll = 1225864 7717977 4471921 0%
| collective = 1092307 1149546 1120927 0%
| exchange/write = 890825 908929 899877 0%
| data send = 90654295 96061956 93358125 17%
| file write = 412044716 423894304 417969510 79%
| other = 568026 633007 600516 0%
| data send BW (MiB/s) = 24.445
| raw write BW (MiB/s) = 2795.602
| net write BW (MiB/s) = 2231.241
+--+

The data send bandwidth is quite slow because all the MPI processes send data to just two
MPI I/O aggregators (2 BB nodes) and it takes 17% of the total time. The net write BW is
2231 MB/s because we have one MPI process per BB node that writes data. 82

Neuromap – Replib on Cray Burst Buffer
Comparison with optimized parameters

• In order to stress the SSDs, we increase the MPI I/O aggregators, according to our tests we can even disable the collective I/O.
Optimization declaration for the case of 650KB:

MPICH_MPIIO_HINTS=“$DW_JOB_STRIPED/out2*:romio_ds_write=disable:romio_cb_write=disable:striping_unit=665600”
• The performance was improved up to 3,16 times. 83

MPI I/O Statistics – Optimized parameters

+--+
| MPIIO write by phases, all ranks, for /var/opt/cray/dws/mounts/batch/3774937/ss//out2
| number of ranks writing = 1024
| number of ranks not writing = 0
| min max ave
| ---------- ---------- ----------
| open/close/trunc time = 0.02 0.04 0.03
| file write time = 0.45 6.37 4.46
| time scale: 1 = 2**5 clock ticks min max ave
| ---------- ---------- ---------- ---
| total = 707678293
| imbalance = 394311 1217998 866269 0%
| open/close/trunc = 1734852 2731840 2312575 0%
| local compute = 329159 29586804 13915952 1%
| wait for coll = 226899601 671583722 369929561 52%
| file write = 32257150 457948530 320653934 45%
| other = 0 0 0 0%
| raw write BW (MiB/s) = 14576.170
| net write BW (MiB/s) = 6604.564
+--+

The bottleneck of the data send does not exist anymore because each MPI process saves its
data independent from the other ones aggregators (collective I/O is disabled) and the net
write BW is almost 3x times faster than the default parameters.

84

Neuromap – Replib on Cray Burst Buffer
I/O efficiency comparison with optimized parameters

Similar, the I/O efficiency is improved maximum by 3,16 times.
85

Neuromap – Replib on Cray Burst Buffer

• We save the data in a shared file, each MPI process saves its own data and
the size of the output file varies from 9 GB up to 12,5 TB

• We use 1 up to 268 BB nodes
• We achieve up to 0.5 TB/s with 4096 compute nodes and 268 BB nodes.

86

Neuromap – Replib on Cray Burst Buffer
I/O Efficiency – Optimized parameters

• For the case of chunks of 100KB, the I/O efficiency is between 6,54% and
24,6%

• However, for the cases of 650KB and 1MB, the I/O efficiency varies from
29,7% till 56%

87

Study-case WRF-CHEM
(on Cori)

WRF-CHEM on Burst Buffer

� Weather Research and Forecasting Model coupling with Chemistry

� Small domain: 330 x 275

� Size of input file: 804 MB

� Size of output file: 2.9GB, it is saved every one hour of simulation

� Output file quite small

� For all the WRF-CHEM experiments we use 1280 MPI processes (40 nodes),
as this is the optimum for the computation/communication

� For the default case, we stage-in all the files and we execute the simulation
from BB

89

Total execution time and I/O on BB
without MPICH_MPIIO_HINTS (default)

1

2

4

8

16

32

64

128

256

1 2 4 8

Ti
m

e
(i
n
 s

ec
on

d
s)

#DW nodes

Burst Buffer

Total time Reading input file Writing output file Lustre 64 OSTs

• The best total execution time is provided when we have 4 DW nodes
• On Lustre the best execution time is with 64 OSTs and it is 15% faster than BB 90

Darshan – WRFChem
1 BB node – default parameters

91

MPI I/O phases Statistics
(MPICH_MPIIO_TIMERS=1) I

+--+
| MPIIO read by phases, readers only, for wrfinput_d01
| min max ave
| ---------- ---------- ----------
| file read time = 1.54 1.54 1.54
| time scale: 1 = 2**6 clock ticks min max ave
| ---------- ---------- ---------- ---
| total = 773580678
| imbalance = 284814 284814 284814 0%
| local compute = 91505804 91505804 91505804 11%
| wait for coll = 2398813 2398813 2398813 0%
| collective = 3646301 3646301 3646301 0%
| read/exchange = 18196022 18196022 18196022 2%
| file read = 55222120 55222120 55222120 7%
| data receive = 588775983 588775983 588775983 76%
| other = 12888553 12888553 12888553 1%
| data receive BW (MiB/s) = 0.146
| raw read BW (MiB/s) = 1819.310
| net read BW (MiB/s) = 129.872
+--+
Timing for processing wrfinput file (stream 0) for domain 1: 21.68633 elapsed seconds

92

MPI I/O phases Statistics
(MPICH_MPIIO_TIMERS=1) II

+--+
| MPIIO write by phases, writers only, for wrfout_d01_2007-04-03_01_00_00
| min max ave
| ---------- ---------- ----------
| file write time = 2.30 2.30 2.30
| time scale: 1 = 2**7 clock ticks min max ave
| ---------- ---------- ---------- ---
| total = 532124046
| imbalance = 158972 158972 158972 0%
| local compute = 48146033 48146033 48146033 9%
| wait for coll = 855958 855958 855958 0%
| collective = 1589992 1589992 1589992 0%
| exchange/write = 9748711 9748711 9748711 1%
| data send = 418919605 418919605 418919605 78%
| file write = 41345308 41345308 41345308 7%
| other = 10140527 10140527 10140527 1%
| data send BW (MiB/s) = 0.107
| raw write BW (MiB/s) = 1262.748
| net write BW (MiB/s) = 98.114
+--+
Timing for Writing wrfout_d01_2007-04-03_01_00_00 for domain 1: 30.25151 elapsed seconds

93

MPI I/O phases Statistics
(MPICH_MPIIO_TIMERS=1) III

+--+
| MPIIO read by phases, readers only, for wrfbdy_d01
| min max ave
| ---------- ---------- ----------
| file read time = 1.31 1.31 1.31
| time scale: 1 = 2**8 clock ticks min max ave
| ---------- ---------- ---------- ---
| total = 995854066
| imbalance = 349921 349921 349921 0%
| local compute = 133146526 133146526 133146526 13%
| wait for coll = 1342000 1342000 1342000 0%
| collective = 4455424 4455424 4455424 0%
| read/exchange = 22374792 22374792 22374792 2%
| file read = 11742536 11742536 11742536 1%
| data receive = 803299250 803299250 803299250 80%
| other = 18892054 18892054 18892054 1%
| data receive BW (MiB/s) = 0.210
| raw read BW (MiB/s) = 271.116
| net read BW (MiB/s) = 3.197
+--+
Timing for processing lateral boundary for domain 1: 111.10603 elapsed seconds

94

Compare the total execution time on single DW
nodes across various MPI I/O aggregators

244

217

205

213

180

190

200

210

220

230

240

250

1 2 4 8

Ti
m

e
(i

n
se

co
nd

s)

MPI I/O aggregators

• Example for declaring 4 MPI I/O aggregators
export MPICH_MPIIO_HINTS="wrfinput*:cb_nodes=4,wrfout*:cb_nodes=4,
wrfb*:cb_nodes=4”

• Tip: You can declare different MPI I/O aggregators per file 95

Understand the MPI I/O statistics on BB
(MPICH_MPIIO_STATS=1) I

+--+
| MPIIO read access patterns for wrfinput_d01
| independent reads = 1
| collective reads = 527360
| independent readers = 1
| aggregators = 4
| stripe count = 1
| stripe size = 8388608
| system reads = 762
| stripe sized reads = 108
| total bytes for reads = 2930104643 = 2794 MiB = 2 GiB
| ave system read size = 3845281
| number of read gaps = 2
| ave read gap size = 0
| See "Optimizing MPI I/O on Cray XE Systems" S-0013-20 for explanations.
+--+

We have 4 MPI I/O aggregators
We use one BB node (stripe count)
Default stripe size 8 MB
Only 14.17% of the reads are striped (100*108/762)

The average system read size is less than 4MB,
the stripe size should be close to the average system read size

96

Understand the MPI I/O statistics on BB
(MPICH_MPIIO_STATS=1) II

+--+
| MPIIO write access patterns for wrfout_d01_2007-04-03_00_00_00
| independent writes = 2
| collective writes = 552960
| independent writers = 1
| aggregators = 4
| stripe count = 1
| stripe size = 8388608
| system writes = 797
| stripe sized writes = 114
| aggregators active = 234240,0,0,318720 (1, <= 1, > 1, 2)
| total bytes for writes = 3045341799 = 2904 MiB = 2 GiB
| ave system write size = 3821006
| read-modify-write count = 0
| read-modify-write bytes = 0
| number of write gaps = 2
| ave write gap size = 4194300
| See "Optimizing MPI I/O on Cray XE Systems" S-0013-20 for explanations.
+--+

Similar 14.3% of the writes are striped (100*114/797)

97

Understand the MPI I/O statistics on BB
(MPICH_MPIIO_STATS=1) III

+--+
| MPIIO read access patterns for wrfbdy_d01
| independent reads = 2
| collective reads = 2338560
| independent readers = 1
| aggregators = 2
| stripe count = 1
| stripe size = 8388608
| system reads = 1876
| stripe sized reads = 0
| total bytes for reads = 371398962 = 354 MiB
| ave system read size = 197973
| number of read gaps = 6
| ave read gap size = 0
| See "Optimizing MPI I/O on Cray XE Systems" S-0013-20 for explanations.
+--+

All the reads are not striped which mean this I/O is
not efficient.
The average system read size is 197973 bytes

98

Declaring MPICH MPIIO HINTS
parameters based on the previous data

MPICH_MPIIO_HINTS="wrfinput*:cb_nodes=4:striping_unit=2097152,
wrfout*:cb_nodes=4:striping_unit=2097152,
wrfb*:cb_nodes=4:striping_unit=197973"

The execution time was decreased by almost 30%
99

Understand the MPI I/O statistics on BB
(MPICH_MPIIO_STATS=1) IV

+--+
| MPIIO read access patterns for wrfinput_d01
| independent reads = 1
| collective reads = 527360
| independent readers = 1
| aggregators = 4
| stripe count = 1
| stripe size = 2097152
| system reads = 1810
| stripe sized reads = 1141
| total bytes for reads = 2930104643 = 2794 MiB = 2 GiB
| ave system read size = 1618842
| number of read gaps = 2
| ave read gap size = 0
| See "Optimizing MPI I/O on Cray XE Systems" S-0013-20 for explanations.
+--+

Timing for processing wrfinput file (stream 0) for domain 1: 9.56521 elapsed seconds

We have 4 MPI I/O aggregators
We use one BB node (stripe count)
New stripe size 2 MB
Only 63% of the reads are striped
The number of the operations increase (1810 reads)

100

Understand the MPI I/O statistics on BB
(MPICH_MPIIO_STATS=1) V

+--+
| MPIIO write access patterns for wrfout_d01_2007-04-03_00_00_00
| independent writes = 2
| collective writes = 552960
| independent writers = 1
| aggregators = 4
| stripe count = 1
| stripe size = 2097152
| system writes = 1886
| stripe sized writes = 1183
| aggregators active = 208640,33280,0,311040 (1, <= 2, > 2, 4)
| total bytes for writes = 3045341799 = 2904 MiB = 2 GiB
| ave system write size = 1614709
| read-modify-write count = 0
| read-modify-write bytes = 0
| number of write gaps = 2
| ave write gap size = 1048572
| See "Optimizing MPI I/O on Cray XE Systems" S-0013-20 for explanations.
+--+
Timing for Writing wrfout_d01_2007-04-03_00_00_00 for domain 1: 12.99924 elapsed seconds

62.7% of the writes are striped

101

Understand the MPI I/O statistics on BB
(MPICH_MPIIO_STATS=1) VI

+--+
| MPIIO read access patterns for wrfbdy_d01
| independent reads = 2
| collective reads = 2338560
| independent readers = 1
| aggregators = 4
| stripe count = 1
| stripe size = 197973
| system reads = 3705
| stripe sized reads = 114
| total bytes for reads = 371398962 = 354 MiB
| ave system read size = 100242
| number of read gaps = 5
| ave read gap size = 444575572
| See "Optimizing MPI I/O on Cray XE Systems" S-0013-20 for explanations.
+--+

Timing for processing lateral boundary for domain 1: 83.90572 elapsed seconds

3% of the reads are striped

102

Looking for the optimum parameters

� We executed more experiments and tested various parameters
according to the MPI IO statistics data.

� If the performance does not increase while we decrease the value of
the striping unit, increase the number of the MPI I/O aggregators.

� While we decrease the value of the striping unit, the number of
reads/writes is increasing. Maybe there is a need to use more BB
nodes to achieve better performance.

103

WRF-CHEM – Final results

The execution time was decreased by 57% on just one BB node!

Optimum parameters
MPICH_MPIIO_HINTS="wrfinput*:cb_nodes=16:striping_unit=262144,\
wrfout*:cb_nodes=16:striping_unit=262144,\
wrfb*:cb_nodes=16:striping_unit=50482" 104

Studying MPI I/O aggregators and striping
size

Parameters I/O duration for
wrfinput (in sec.)

I/O duration for wrfout
(in sec.)

I/O duration for
wrbdy_d01 (in sec.)

Default 21,68 30,25 111,10

Optimized 5,51 7,27 32,8

The I/O bandwidth was improved between 3.4 and 4.1 times

105

Comparison between BB and Lustre on
Shaheen

188

97

114 112

0

20

40

60

80

100

120

140

160

180

200

Default parameters Optimized parameters

BB Lustre

The total execution time on BB is 13.4% faster than Lustre for one hour of
simulation of WRF-CHEM. For 24 hours of simulation the execution time on BB is
faster than Lustre by 14.8%
We achieved better performance with BB by using one single BB node in
comparison to 64 OSTs of Lustre

106

WRF-CHEM – Split output to one file per
process

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64

Ti
m

e
(i
n
 s

ec
on

d
s)

DW nodes

Reported “I/O” time from WRF-CHEM

File 2.9GB

107

WRF-CHEM – Split output to one file per
process II

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32 64

P
er

ce
n
ta

ge
 (

in
 %

)

DW nodes

I/O efficiency using reported “I/O” time from WRF-CHEM

File 2.9GB

108

WRF – Split output to one file per process
– Large cases

0

2

4

6

8

10

12

14

16

18

20

4 8 16 32 64 128

Ti
m

e
(i
n
 s

ec
on

d
s)

DW nodes

Reported “I/O” time from WRF

File 81GB File 361GB

WRF – Alaska domain 1km 6075 x 6075 x 28, 256 compute nodes
109

WRF – Split output to one file per process II

0

20

40

60

80

100

120

4 8 16 32 64 128

P
er

ce
n
ta

ge
 (

in
 %

)

DW nodes

I/O efficiency using reported “I/O” time from WRF

File 81GB File 361GB

110

Multiple runs

� Submitting 3 jobs of 20 compute nodes and requesting 64 DW nodes
each one
� used_bb_nodes.sh

192 BB nodes are used with at least one BB job
0 BB nodes are used from more than one BB job

� Variation 2-3%

� Variation can be significant when the system is mpre than 60-70%
used

111

DataWarp vs Lustre for same number of
nodes (OSTs)

0

20

40

60

80

100

120

140

160

5 10 20 40 80 100 144

Ti
m

e
(i

n
se

co
nd

s)

#OSTs or DW nodes

I/O time for the WRF restart file, size 361 GB

Lustre

DataWarp

WRF reports I/O time but it includes other functionalities which is beyond I/O

112

DataWarp vs Lustre, percentage of
performance difference

-5

0

5

10

15

20

25

30

35

40

45

5 10 20 40 80 100 144

DataWarp vs Lustre,
same number of nodes

113

WRF – Lustre vs DW

500

550

600

650

700

750

800

850

900

4 8 16 32 64 128

To
ta

l e
xe

cu
ti

on
 t

im
e

(i
n

se
c.

)

DW nodes

Lustre

DW

114

Study-case Seissol

SeisSol I

� SeisSol is a software package for simulating wave propagation and
dynamic rupture based on the arbitrary high-order accurate derivative
discontinuous Galerkin method

� Using 128 DataWarp nodes with 256 compute nodes. Developer
provided an I/O kernel benchmark called checkpoint and it is available
in the corresponding github repository.

� Many back-ends to be tests, MPI I/O, POSIX, HDF5, the SIONLIB had
some issues.

116

SeisSol II

The developers have already integrated many advanced parameters such
as:

SEISSOL_CHECKPOINT_ALIGNMENT=8388608
SEISSOL_CHECKPOINT_BLOCK_SIZE=8388608
SEISSOL_CHECKPOINT_SION_BACKEND=ansi
SEISSOL_CHECKPOINT_SION_NUM_FILES=1
SEISSOL_CHECKPOINT_SION_COLL_SIZE=0
SEISSOL_CHECKPOINT_CB_NODES=256
SEISSOL_CHECKPOINT_ROMIO_CB_WRITE=disable
SEISSOL_CHECKPOINT_ROMIO_DS_WRITE=disable
SEISSOL_CHECKPOINT_MPIO_LARGE_BUFFER=0

117

SeisSol Results

Filesystem Back-end I/O write performance (GB/s)

Lustre MPI I/O 100

DataWarp MPI I/O 472

DataWarp POSIX 503

DataWarp HDF5 449

In this case, DataWarp is 4.72 times faster than Lustre and around to 60% I/O
efficiency

118

DataWarp API

� Libatawarp

� dw_get_stripe_configuration

� dw_query_directory_stage

� dw_query_file_stage

� dw_set_stage_concurrency

� dw_stage_file_out

� dw_wait_directory_stage

119

ExpBB: An auto-tuning framework to
explore the Performance of Burst Buffer

(Cray DataWarp)

Motivation

� Burst Buffer (BB) does not provide the expected performance… or
we do not know how to use it?

� A user should be familiar with some technical details and most of
them are science-focus researchers.

� We need a tool that a user can execute and extract the optimized
parameters for his application and the used domain.

121

Framework preparation I

� Fill in the required information in the beginning of the ExPBB
script

� export executable="btio"

� #Declare option for the executable (leave empty if no arguments)

export arguments="inputbt1.data"

� #Declare the minimum requested Burst Buffer size in GB

export min_bb_size=1

122

Framework preparation II

� #Declare stage-in folder, full path

export stage_in="/project/k01/markomg/development/expbb"

� #Declare stage-out folder, full path

export stage_out="/project/k01/markomg/back2"

� The executable is required to have been compiled with the
Darshan profiling tool

� The framework works for parallel I/O on shared file

123

Important MPI environment variables

� export MPICH_ENV_DISPLAY=1
� Displays all settings used by the MPI during execution

� export MPICH_VERSION_DISPLAY=1
� Displays MPI version

� export MPICH_MPIIO_HINTS_DISPLAY=1
� Displays all the available I/O hints and their values

� export MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1
� Display the ranks that are performing aggregation when using MI-I/O collective buffering

� export MPICH_MPIIO_STATS=1 or 2
� Statistics on the actual read/write operations after collective buffering

� export MPICH_MPIIO_HINTS=“…”
� Declare I/O hints

124

Execution of ExPBB

� If your submission script is called btio.sh, then execute:

./expbb btio.sh

� Then the following will happen:
� A parser will extract the compute resources from the original script and it will add

the corresponding #DW commands in a copy of the original script. From the
requested GBs the number of minimum BB nodes will be calculated.

� The previous important MPI environment variables are added to all the new
generated submission scripts

� Two executions will take place, one on Lustre and one on BB. This happens for two
reasons, first to extract the basic execution time for comparison reasons, and
second to extract the default striping unit and buffer for each case.

125

Execution of ExPBB II

� Then the tool will create a new submissions script depending on the number
of the BB nodes, for example on Shaheen II we have 268 BB nodes, if we
need 4 BB nodes minimum, then there will be scripts for 4, 8, 16, 32, 64,
128, and 256 BB nodes.

� Each of the script includes extra code before and after the srun command,
where loops change the values of the parameters, where their range depends
on the default values extracted on the first BB execution.

� After the srun command a parser is called, where it reads the Darshan
performance data and acts accordingly

� The first script will be submitted with the minimum requested nodes and it
will start investigating the results.

� All the results will be written in txt files that are easily accessible
126

ExPBB example – Original script

Original script

127

ExPBB example – Converted script
Script converted with ExpBB
Code not final, to be modified in the
released version

128

Rules

� If the performance becomes worse while we decrease the striping unit
and the number of system write/reads is significant large, then
increase the MPI I/O aggregators. If the I/O is slower again, then restart
with the used number of MPI I/O aggregators but initial parameters
values.

� When the exploration of specific number BB nodes finish, submit
another job with double BB nodes and compare with the previous best
performance result

129

Results I

The total execution time is improved 1,7 times with ExPBB and the
I/O is improved up to 3,8 times for 1 BB node. Finally, the total
execution time is 13.4% faster than Lustre with 64 OSTs. 130

Results II

The I/O was improved with ExPBB between 1,28 till 3,8 times.
The execution on 16 BB nodes with ExPBB is faster than 64 BB nodes without ExpBB
MPICH_MPIIO_HINTS=“wrfi*:cb_nodes=128:striping_unit=4194304,
wrfo*:cb_nodes=256:striping_unit=4194304, wrfr*:cb_nodes=256:striping_unit=4194304”

131

Results III

We observe that for 8 BB nodes, with ExPBB framework, we have better performance
than every other configuration. The maximum speedup compared to default BB
execution, is 4,84. Moreover, 8 BB nodes have better performance than 64 OSTs.
The ROI in this case is significant higher with Cray DataWarp. 132

0

5

10

15

20

25

1 2 4 8 16 32 64

G
B

/s
ec

DW/OST

NAS BTIO Benchmark - Writing a file of 100GB

Lustre - Default* Lustre - Optimized DataWarp - Default DataWarp - ExpBB*

I/O - Efficiency

133

0

10

20

30

40

50

60

1 2 4 8

I/
O

 e
ff

ic
ie

n
cy

 (
in

 %
)

DW nodes

Cray - DataWarp - I/O Efficiency

DataWarp - Default DataWarp - ExpBB

ExpBB – Output I

./expbb btio.sh

Preparing and executing default script on Lustre

I/O duration for the file btio.mpi on Lustre with 1 OSTs is 155.26 seconds

I/O duration for the file btio.mpi on Lustre with 2 OSTs is 69.87 seconds

I/O duration for the file btio.mpi on Lustre with 4 OSTs is 35.27 seconds

I/O duration for the file btio.mpi on Lustre with 8 OSTs is 18.57 seconds

I/O duration for the file btio.mpi on Lustre with 16 OSTs is 10.12 seconds

I/O duration for the file btio.mpi on Lustre with 32 OSTs is 5.93 seconds

I/O duration for the file btio.mpi on Lustre with 64 OSTs is 5.59 seconds

I/O duration for the file btio.mpi on Lustre with 128 OSTs is 6.10 seconds

134

ExpBB – Output II

Preparing and executing default script on Burst Buffer

The I/O duration for the file btio.mpi on Burst Buffer with default parameters is 96.62 seconds

Starting auto-tuning execution on 1 Burst Buffer nodes

I/O duration for the file btio.mpi on 1 Burst Buffer with optimized parameters is 23.617 seconds

The new submission file with optimized parameters is named expbb_1_btio.sh

MPICH_MPIIO_HINTS=$DW_JOB_STRIPED/btio.mpi:cb_nodes=32:striping_unit=1048576:cb_buffer_size=4194304

…

Starting auto-tuning execution on 8 Burst Buffer nodes

I/O duration for the file btio.mpi on 8 Burst Buffer with optimized parameters is 4.99633 seconds

The new submission file with optimized parameters is named expbb_8_btio.sh

MPICH_MPIIO_HINTS=$DW_JOB_STRIPED/btio.mpi:cb_nodes=128:striping_unit=2097152:cb_buffer_size=8388608

135

New submission script for 1 BB node

136

Study-case PIDX

PIDX

� PIDX is an efficient parallel I/O library that reads and writes
multiresolution IDX data files

� It can provide high scalability up to 768k cores

� Successful integration with several simulation codes
� KARFS (KAUST Adaptive Reacting Flow Solvers) on Shaheen II
� Uintah with production runs on Mira
� S3D

https://www.sci.utah.edu/software/pidx.html

138

PIDX description

139

0

100

200

300

400

500

600

700

800

900

1000

16 32 64 128 144 256

W
ri

te
 I

/O
 b

an
d

w
id

th
 (

G
B

/s
)

BB nodes/OST

PIDX on BB

BB

Lustre

The library achieves up to 900 GB/s on Burst Buffer, while
we save 64 MB (2x32) per MPI process 140

0
10
20
30
40
50
60
70
80
90

100

16 32 64 128 144 256

P
er

ce
nt

ag
e

of
 e

ff
ic

ie
nc

y

BB nodes

Efficiency based on IOR peak

141

Complex Workflows

Case 1: WRF-CHEM

143

Outline

� Motivation

� In-depth explanation

� Demo - video

144

Motivation

� Using compute resources, while producing wrong results, costs time
and money (even in electricity)

� Spending core-hours from team project

� You are not sure if the simulation has any issue

145

Study case – WRF-CHEM

� This is a real case of a ShaheenII user at KAUST.

� 40 compute nodes are used

� Around to 3GB of data are saved for specific time-steps.

146

Methodology

� First, we declare the required Burst Buffer (BB) space in persistent mode (create_persistent.sh).

� Then we start the execution of the model, using the BB persistent space

� Then we start the execution of the tool plot_and_stage_out.sh that does the following:
� Check the existence of any output file (we know the filename pattern)
� When an output file exists (NetCDF format), we use a script in Python with NetCDF and Matplotlib libraries to

read the output file and save one variable to an image file (with same filename pattern)
� Then a tool which uses DataWarp API, stages out only the image into the Lustre parallel filesystem.

� The same moment with the plot_stage_out.sh, we execute the wait.sh script which runs on the login
node. This script recognizes when an image has been stage-out and it visualizes it for the user. Then,
the user observes if the simulation is correct or not and can stop the simulation if it is required.

Instructions here:
https://github.com/gmarkomanolis/bb_ixpug18

folder: complex_workflow/persistent_vis
147

Creating Persistent BB allocation

� File: create_persistent.sh

� Execution: sbatch create_persistent.sh

#!/bin/bash –x
#SBATCH --partition=workq
#SBATCH -t 1
#SBATCH -A k01
#SBATCH --nodes=1
#SBATCH -J create_persistent_space

#BB create_persistent name=george_test capacity=600G access=striped
type=scratch
exit 0

148

Executing the main application I

� File: wrfchem_bb_persistent.sh

� Execution: sbatch wrfchem_bb_persistent.sh (check the job id)

#SBATCH --partition=workq
#SBATCH -t 60
#SBATCH -A k01
#SBATCH --ntasks=1280
#SBATCH --ntasks-per-node=32
#SBATCH -J WRF_CHEM_PERSISTENT
#SBATCH -o out_%j
#SBATCH -e err_%j

#DW persistentdw name=george_test
#DW stage_in type=directory
source=/project/k01/…/forburst destination=$DW_PERSISTENT_STRIPED_george_test

export MPICH_ENV_DISPLAY=1
export MPICH_VERSION_DISPLAY=1
export MPICH_MPIIO_HINTS_DISPLAY=1
export MPICH_STATS_DISPLAY=1

149

Executing the main application II

export MPICH_MPIIO_HINTS="$DW_PERSISTENT_STRIPED_george_test/
wrfinput*:cb_nodes=40:striping_unit=131072,
$DW_PERSISTENT_STRIPED_george_test/wrfout*:cb_nodes=40:striping_unit=65536”
export MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1
export MPICH_MPIIO_STATS=2

cd $DW_PERSISTENT_STRIPED_george_test
chmod +x wrf.exe

time srun -n 1280 --hint=nomultithread wrf.exe

150

Create an image of the output NetCDF file

� File: plot_persistent.sh

� Execute: ./plot_persistent.sh filename_netcdf

#!/…/python
import matplotlib
matplotlib.use('Agg')

import matplotlib.pyplot as plt
import netCDF4
import sys
nc = netCDF4.Dataset(str(sys.argv[1]))

read all the data
topo = nc.variables['T2'][::1,::1]

make image
plt.figure(figsize=(10,10))
plt.imshow(topo.squeeze(),origin='lower')

#plt.title(nc.title)
output=str(sys.argv[1])+'.png’
plt.savefig(output, bbox_inches=0)

151

Stage out using DataWarp API

� File: stage_out.c

� Compile:
� module load datawarp
� cc –o stage_out stage_out.c

#include <stdio.h>
#include <datawarp.h>

int main(int argc, char **argv)
{ char *infile, *outfile;

int stage_out;
infile = argv[1];
outfile = argv[2];
stage_out = dw_stage_file_out(infile, outfile, DW_STAGE_IMMEDIATE);
return 0;

}

� Execute: srun -n 1 stage_out $DW_PERSISTENT_STRIPED_george_test/filename.png
/project/k01/markomg/wrfchem_stage_out/filename.png

152

Script to plot and stage out I

� File: plot_stage_out.sh

� Execute: sbatch --dependency=after:app_job_id plot_stage_out.sh

#!/bin/bash

#SBATCH --partition=workq
#SBATCH -t 30
#SBATCH -A k01
#SBATCH --ntasks=32
#SBATCH --ntasks-per-node=32
#SBATCH -J PLOT_AND_STAGE_OUT
#SBATCH -o out_%j
#SBATCH -e err_%j

#DW persistentdw name=george_test
#DW stage_in type=directory
source=/project/k01/markomg/burstbuffer/complex/stage_in_bb/ destination=$DW_PERSIST
ENT_STRIPED_george_test

153

Script to plot and stage out II

module load python/2.7.11
cd $DW_PERSISTENT_STRIPED_george_test
chmod +x plot_persistent.sh
chmod +x stage_out

let i=0
while [$i -lt 24]
do
k=$(printf %02d $i)

if [-f wrfout_d01_2007-04-03_${k}_00_00]; then
check_lsof=`lsof wrfout_d01_2007-04-03_${k}_00_00 | wc -l`

while [$check_lsof -eq 2]
do

sleep 30
check_lsof=`lsof wrfout_d01_2007-04-03_${k}_00_00 | wc -l`

done
./plot_persistent.sh wrfout_d01_2007-04-03_${k}_00_00

srun -n 1 stage_out $DW_PERSISTENT_STRIPED_george_test/wrfout_d01_2007-04-03_${k}_00_00.png
/project/k01/markomg/wrfchem_stage_out/wrfout_d01_2007-04-03_${k}_00_00.png

let i=$i+1
else

sleep 30
fi
done

154

Visualize images when they arrive on the
Lustre

� File: wait.sh

� Execute: ./wait.sh number_of_images /path_to_Lustre_stage_out_folder/

#!/bin/bash

let i=0
while [$i -lt $1]
do

if [-f $2/wrfout_d01_2007-04-03_$(printf "%02d" $i)_00_00.png]; then
display $2/wrfout_d01_2007-04-03_$(printf "%02d" $i)_00_00.png &

let i=i+1
sleep 15

else
sleep 60

fi
done

155

Delete Persistent BB allocation

� File: delete_persistent.sh

� Execution: sbatch delete_persistent.sh

#!/bin/bash
#SBATCH --partition=workq
#SBATCH -t 1
#SBATCH -A k01
#SBATCH --nodes=1
#SBATCH -J delete_persistent_space

#BB destroy_persistent name=george_test
exit 0

156

Video - Demo

https://www.youtube.com/watch?v=C2g9SCX5fBo

157

Case 2: In situ processing and
visualization

(collaboration with KVL)

158

Cyclone Chapala

Extremely Severe Cyclonic Storm Chapala was the second
strongest tropical cyclone on record in the Arabian Sea, according
to the American-based Joint Typhoon Warning Center (JTWC). The
third named storm of the 2015 North Indian Ocean cyclone
season, it developed on 28 October off western India from
the monsoon trough. Fueled by record warm water temperatures,
the system quickly intensified and was named Chapala by the India
Meteorological Department (IMD). By 30 October, the storm
developed an eye in the center of a well-defined circular area of
deep convection. That day, the IMD estimated peak three-
minute sustained winds of 215 km/h (130 mph), and the JTWC
estimated one-minute winds of 240 km/h (150 mph);
only Cyclone Gonu in 2007 was stronger in the Arabian Sea.

159

Description

� We execute Inshimtu and WRF on the same nodes (Inshimtu uses only
the last core), one extra node for the post-process

� When a NetCDF file is written, then it is converted to VTK format but
only the area that we are interested in, so we save less data

� In our largest case, by removing variables that we do not need and
chopping specific area, from 28.2TB of NetCDF files, we save on Lustre
97GB

� Files are downloaded and visualized

160

Results
� We use two domains, one small (1100x1000x34) and one larger

(3500x3000x34).

� In order to increase the details in the available data, we are testing two
cases, saving data every one hour and every 10 minutes.

� A post-processing tool chops from the whole area only the cyclone
region and saves this file on BB.

Videos here:
https://github.com/gmarkomanolis/bb_ixpug18

folder: complex_workflow/cyclone_vis
161

Visualization

� Executing the
simulation on Burst
Buffer and save data
every 10 minutes
with manual tuning
(6x times more
data). Total execution
time is 5% faster
than Lustre.

162

Conclusions

� Using Burst Buffer is not difficult but achieving significant performance
requires some effort.

� Burst Buffer boosts the performance for many demonstrated
applications

� Many parameters need be investigated for the optimum performance

� CLE 6.0 solves some BB issues but still needs optimizations

� Implementing a complex workflow has several steps and it could
combine persistent allocation, multiple applications having access to
same files, external scripts to handle same files, and DataWarp API

� Think clever and innovative on how to implement your workflow
163

Thank you!
Questions?

georgios.markomanolis@kaust.edu.sa
saber.feki@kaust.edu.sa

164

