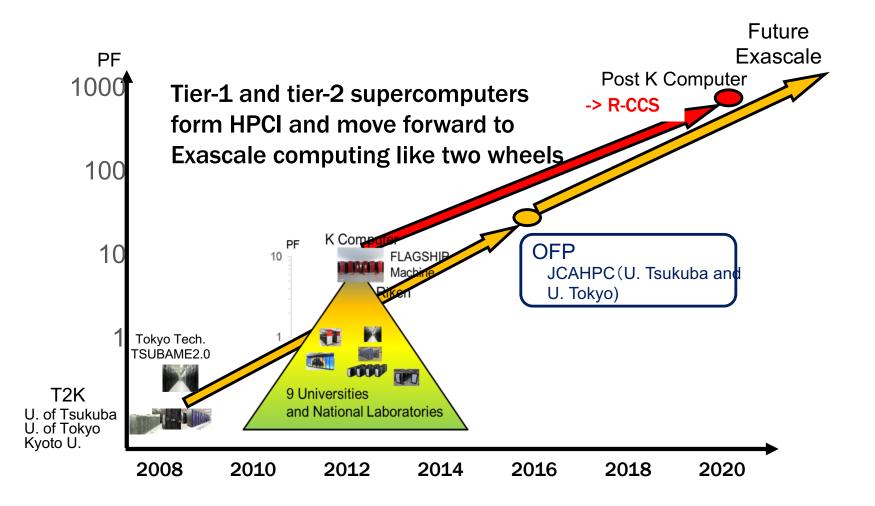
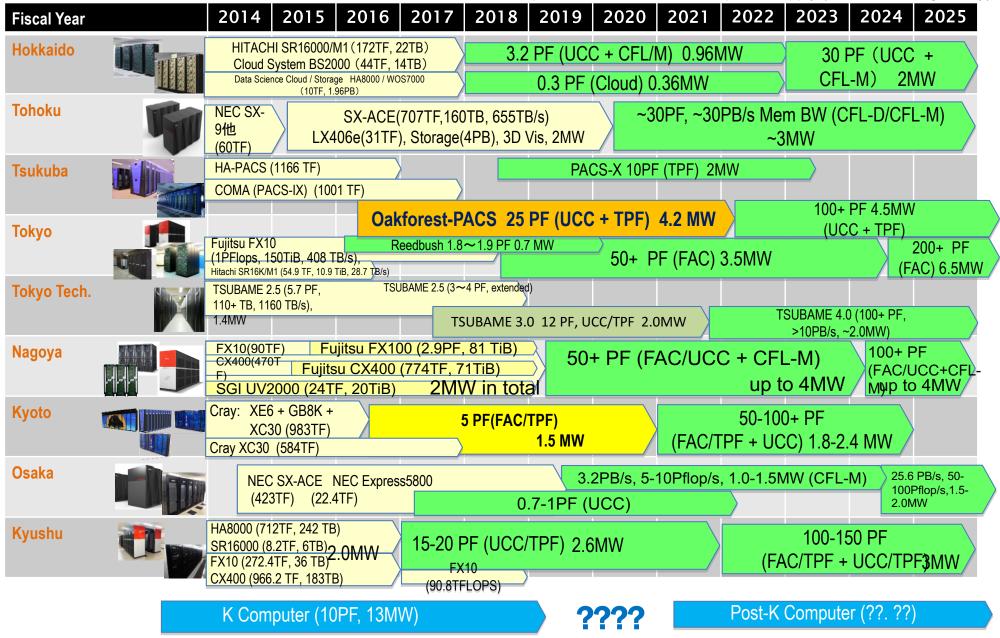
Site Update for Oakforest-PACS at JCAHPC


Taisuke Boku

Vice Director, JCAHPC University of Tsukuba

2018/04/24 IXPUG ME 2018 (Site Update)

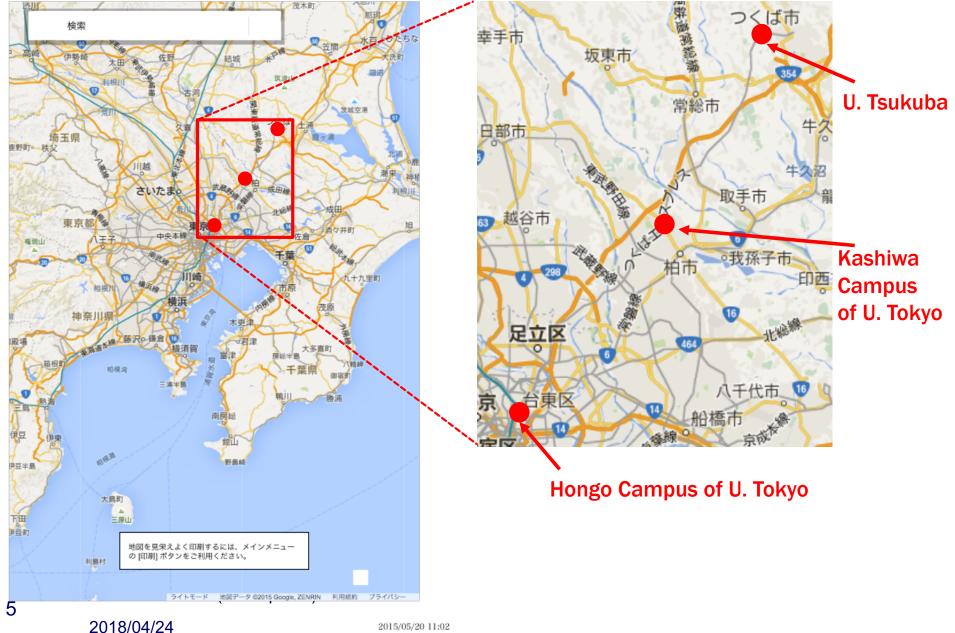

Towards Exascale Computing

IXPUG ME 2018 (Site Update) 2018/04/24

Deployment plan of 9 supercomputing center (Feb. 2017)

Power consumption indicates maximum of power supply (includes cooling facility)

JCAHPC


- Joint Center for Advanced High Performance Computing (<u>http://jcahpc.jp</u>)
- Very tight collaboration for "post-T2K" with two universities
 - For main supercomputer resources, *uniform specification* to single shared system
 - Each university is financially responsible to introduce the machine and its operation
 -> unified procurement toward single system with *largest scale in Japan*
 - To manage everything smoothly, a joint organization was established
 - -> JCAHPC

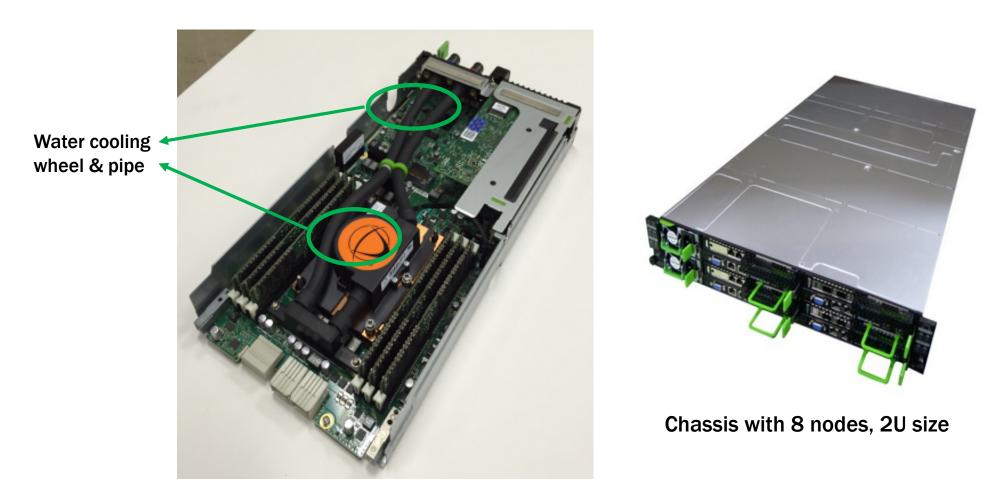
Machine location: Kashiwa Campus of U. Tokyo

Google マップ

https://www.google.com/maps/@?dg=dbrw&newdg=1

🗘 ЈСАНРС

Oakforest-PACS (OFP)


U. Tokyo convention U. Tsukuba convention

⇒ Don't call it just "Oakforest" ! "OFP" is much better

- 25 PFLOPS peak
- 8208 KNL CPUs
- FBB Fat-Tree by OmniPath
- HPL 13.55 PFLOPS #1 in Japan #6→#7
- HPCG #3→#5
- Green500 #6→#21
- Full operation started Dec. 2016
- Official Program started on April 2017

Computation node & chassis

Computation node (Fujitsu next generation PRIMERGY) with single chip Intel Xeon Phi (Knights Landing, 3+TFLOPS) and Intel Omni-Path Architecture card (100Gbps)

7

IXPUG ME 2018 (Site Update) 2018/04/24

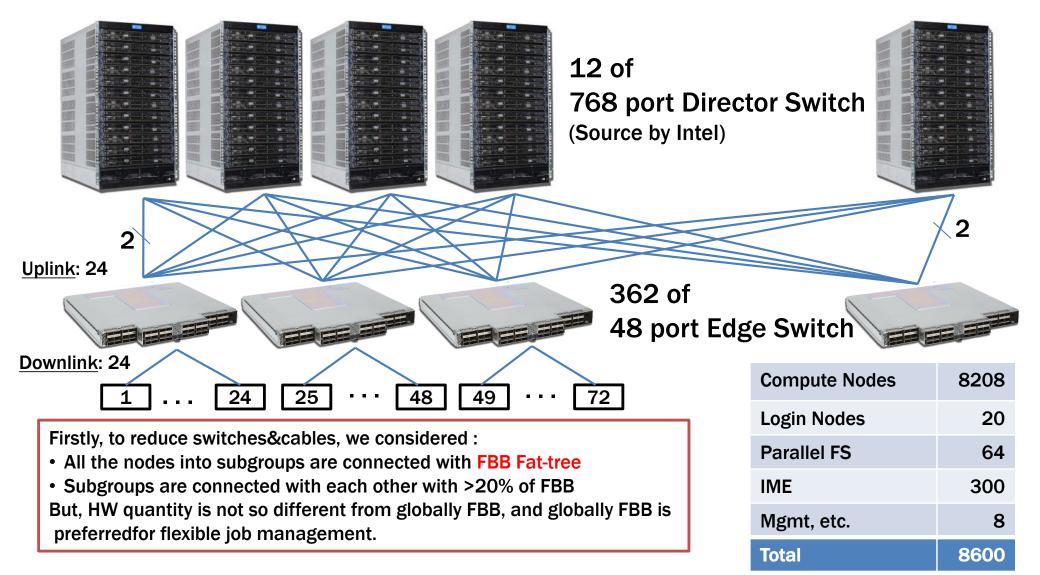
Water cooling pipes and rear panel radiator

Direct water cooling pipe for CPU

Rear-panel indirect water cooling for others

Specification of Oakforest-PACS

Total peak performance			25 PFLOPS	
Total number of compute nodes			8,208	
Compute node	Product		Fujitsu Next-generation PRIMERGY server for HPC (under development)	
	Processor		Intel® Xeon Phi™ (Knights Landing) Xeon Phi 7250 (1.4GHz TDP) with 68 cores	
	Memory	High BW	16 GB , > 400 GB/sec (MCDRAM, effective rate)	
		Low BW	96 GB, 115.2 GB/sec (DDR4-2400 x 6ch, peak rate)	
Inter-	Product		Intel® Omni-Path Architecture	
connect	Link speed		100 Gbps	
	Topology		Fat-tree with full-bisection bandwidth	
Login node	Product		Fujitsu PRIMERGY RX2530 M2 server	
	# of servers		20	
	Processor		Intel Xeon E5-2690v4 (2.6 GHz 14 core x 2 socket)	
	Memory		256 GB, 153 GB/sec (DDR4-2400 x 4ch x 2 socket)	



Specification of Oakforest-PACS (I/O)

Parallel File	Туре		Lustre File System		
System	Total Capacity		26.2 PB		
	Meta data	Product	DataDirect Networks MDS server + SFA7700X		
		# of MDS	4 servers x 3 set		
		MDT	7.7 TB (SAS SSD) x 3 set		
	Object	Product	DataDirect Networks SFA14KE		
	storage	# of OSS (Nodes)	10 (20)		
		Aggregate BW	~500 GB/sec		
Fast File	Туре		Burst Buffer, Infinite Memory Engine (by DDN)		
Cache System	Total capacity		940 TB (NVMe SSD , including parity data by erasure coding)		
	Product		DataDirect Networks IME14K		
	# of servers (Nodes)		25 (50)		
	Aggregate BW		~1,560 GB/sec		

Full bisection bandwidth Fat-tree by Intel® Omni-Path Architecture

Facility of Oakforest-PACS system

Power consumption			4.2 MW (including cooling) → actually around 3.0 MW		
# of racks			102		
Cooling system	Compute Node	Туре	Warm-water cooling Direct cooling (CPU) Rear door cooling (except CPU)		
		Facility	Cooling tower & Chiller		
	Others	Туре	Air cooling		
		Facility	PAC		

JCAHPC

Software of Oakforest-PACS

	Compute node	Login node			
OS	CentOS 7, McKernel	Red Hat Enterprise Linux 7			
Compiler	gcc, Intel compiler (C, C++, Fortran)				
MPI	Intel MPI, MVAPICH2				
Library	iry Intel MKL				
	LAPACK, FFTW, SuperLU, PETSc, METIS, Scotch, ScaLAPACK, GNU Scientific Library, NetCDF, Parallel netCDF, Xabclib, ppOpen-HPC, ppOpen-AT, MassiveThreads				
Application	mpijava, XcalableMP, OpenFOAM, ABINIT-MP, PHASE system, FrontFlow/blue, FrontISTR, REVOCAP, OpenMX, xTAPP, AkaiKKR, MODYLAS, ALPS, feram, GROMACS, BLAST, R packages, Bioconductor, BioPerl, BioRuby				
Distributed FS	Globus Toolkit, Gfarm				
Job Scheduler	Fujitsu Technical Computing Suite				
Debugger	Allinea DDT				
Profiler Intel VTune Amplifier, Trace Analyzer & Collector					

JCAHPC

TOP500 list on Nov. 2017 (#50)

#	Machine	Architecture	Country	Rmax (TFLOPS)	Rpeak (TFLOPS)	MFLOPS/W
1	TaihuLight, NSCW	MPP (Sunway, SW26010)	China	93,014.6	125,435.9	6051.3
2	Tianhe-2 (MilkyWay-2), NSCG	Cluster (NUDT, CPU + KNC)	China	33,862.7	54,902.4	1901.5
3	Piz Daint, CSCS	MPP (Cray, XC50: CPU + GPU)	Switzerland	19,590.0	25,326.3	10398.0
4	Gyoukou, JAMSTEC	MPP (Exascaler, PEZY-SC2)	Japan	19,125.8	28,192.0	14167.3
5	Titan, ORNL	MPP (Cray, XK7: CPU + GPU)	United States	17,590.0	27,112.5	2142.8
6	Sequoia, LLNL	MPP (IBM, BlueGene/Q)	United States	17,173.2	20,132.7	2176.6
7	Trinity, NNSA/ LABNL/SNL	MPP (Cray, XC40: MIC)	United States	14,137.3	43,902.6	3667.8
8	Cori, NERSC-LBNL	MPP (Cray, XC40: KNL)	United States	14,014.7	27,880.7	3556.7
9	Oakforest-PACS, JCAHPC	Cluster (Fujitsu, KNL)	Japan	13,554.6	25,004.9	4985.1
10	K Computer, RIKEN AICS	MPP (Fujitsu)	Japan	10,510.0	11,280.4	830.2

IXPUG ME 2018 (Site Update)

2018/04/24

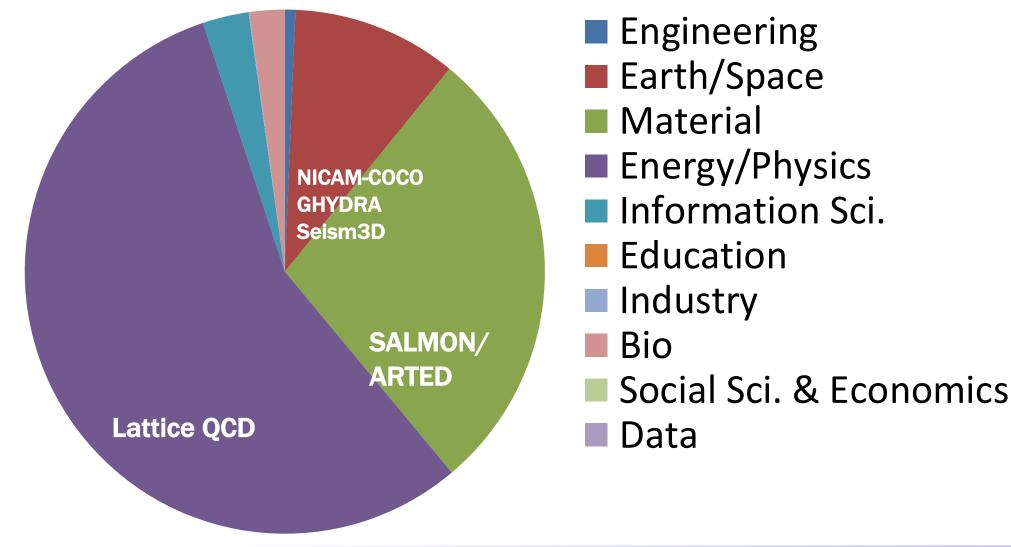
🗘 ЈСАНРС

Post-K Computer and OFP

- OFP fills gap between K Computer and Post-K Computer
 - Post-K Computer is planned to install 2020-2021 time frame
 - K Computer will be shutdown around 2018-2019 ??
- Two system software developed in AICS RIKEN for Post-K Computer
 - McKernel
 - OS for Many-core era, for a number of thin-cores without OS jitter and core binding
 - Primary OS (based on Linux) on Post-K, and application development goes ahead
 - XcalableMP (XMP) (in collaboration with U. Tsukuba)
 - Parallel programming language for directive-base easy coding on distributed memory system
 - Not like explicit message passing with MPI

OFP resource sharing program (nation-wide)

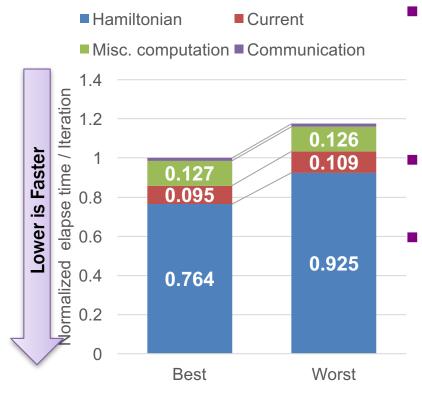
- JCAHPC (20%)
 - HPCI HPC Infrastructure program in Japan to share all supercomputers (free!)
 - Big challenge special use (full system size) opportunity to use entire 8208 CPUs by just one project for 24 hours, every end of month
- U. Tsukuba (23.5%)
 - Interdisciplinary Academic Program (free!)
 - Large scale general use
- U. Tokyo (56.5%)
 - General use
 - Industrial trial use
 - Educational use
 - Young & Female special use
- Ordinary job can use up to 2048 nodes/job



IXPUG ME 2018 (Site Update)

2018/04/24

16


Research Area based on CPU Hours Oakforest-PACS in FY.2017 (TENTATIVE: 2017.4~2017.9)

IXPUG ME 2018 (Site Update) 2018/04/24

Performance variant between nodes

normalized to best case

- most of time is consumed for Hamiltonian calculation
 - not including communication time
 - domain size is equal for all nodes
 - root cause of strong scaling saturation
 - performance gap exists on any materials
- Non-algorithmic load-imbalancing
 - dynamic clock adjustment (DVFS) on turbo
 boost is applied individually on all processors
 - it is observed on under same condition of nodes
 - > on KNL, more sensitive than Xeon
 - serious performance degradation on synchronized large scale system

CC JCAHPC

IXPUG ME 2018 (Site Update)

18

2018/04/24

🗘 ЈСАНРС

Operation summary

Memory model

- basically 50:50 for cache:flat modes
- started to watch the queue condition for "gently" changing the ratio ~ ±15%
- planning to introduce "dynamic on-demand switching" in job by job manner
- KNL CPU
 - almost good and failure rate is enough under estimation by Fujitsu
 - enough stability to support up to 2048 node job
- OPA network
 - at first there was a problem at booting up time, but now it's fixed almost
 -> it was the main reason against to the dynamic memory mode change
 - hundreds of links have been changed by initial failure, but now stable
- Special operation
 - every month, 24hours operation for just one project to occupy entire system

New machine planned at CCS, U. Tsukuba "PACS-X" with GPU+FPGA

2018/04/24 IXPUG ME 2018 (Site Update)

CCS at University of Tsukuba

- Center for Computational Sciences
- Established in 1992
 - 12 years as Center for Computational Physics
 - Reorganized as Center for Computational Sciences in 2004
- Daily collaborative researches with two kinds of faculty researchers (about 35 in total)
 - Computational Scientists who have NEEDS (applications)
 - Computer Scientists who have SEEDS (system & solution)

IXPUG ME 2018 (Site Update)

21

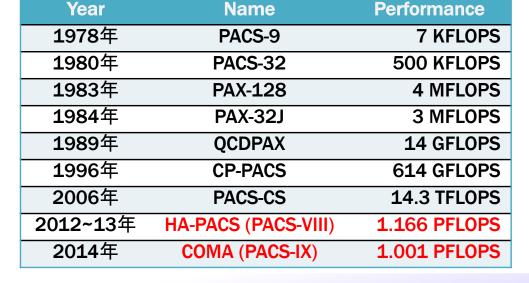
PAX (PACS) series history in U. Tsukuba

- Started in 1977 (by Hoshino and Kawai)
- 1st generation PACS in 1978 with 9 CPUs
- 6th generation CP-PACS awarded #1 in TOP500

5th QCDPAX

1989

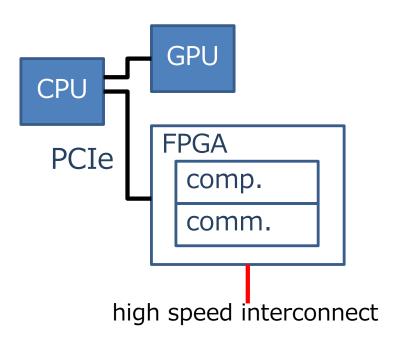
1996 6th CP-PACS #1 in the world


2006 PACS-CS (7th) first PC cluster solution

2012~2013 HA-PACS (8th) introducing GPU/FPGA

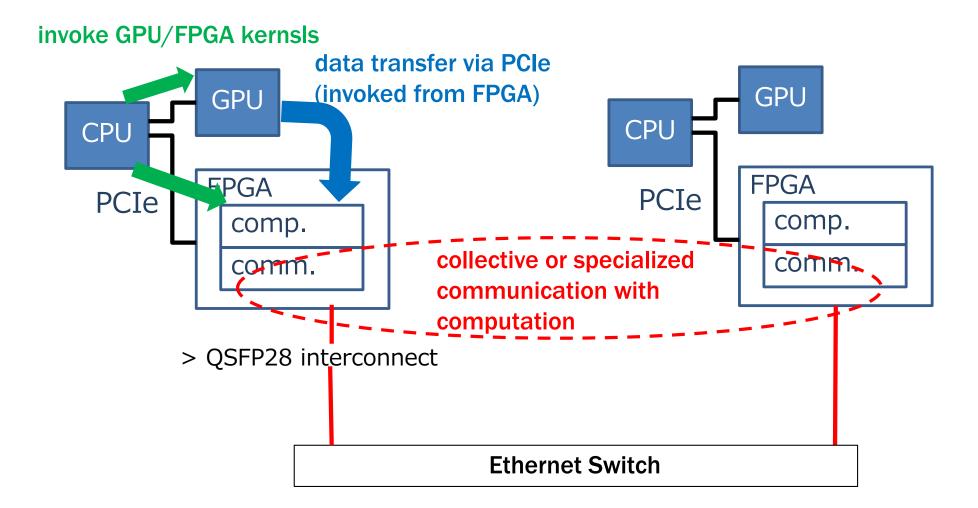
co-design by computational scientists and computer scientists

- Application-driven development
- Accumulation of experiences by continuous development

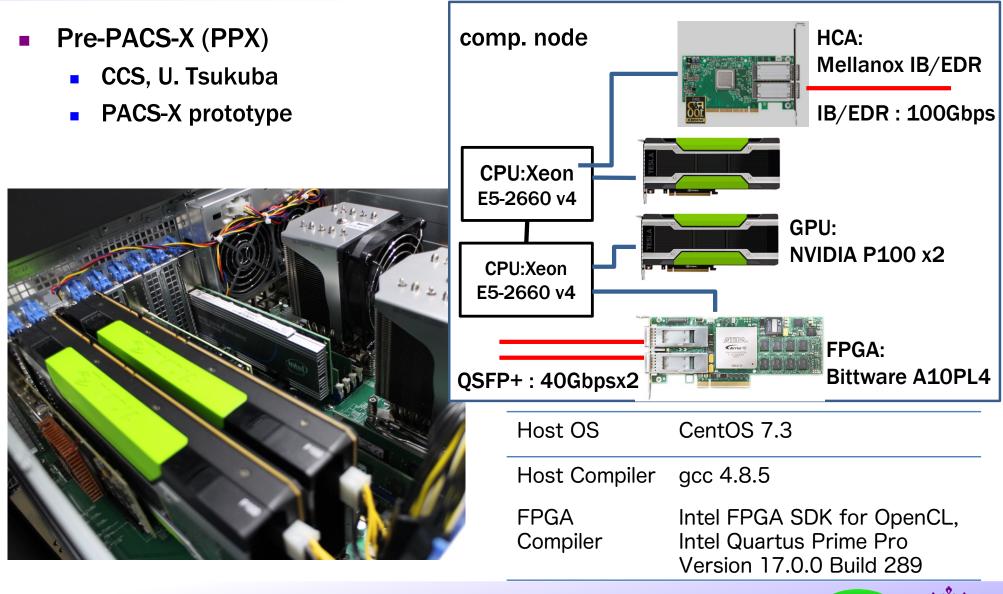

IXPUG ME 2018 (Site Update)

2018/04/24

AiS


AiS: Accelerator in Swtich

- Using FPGA not only for computation offloading but also for communication
- Combining computation offloading and communication among FPGAs for ultralow latency on FPGA computing
- Especially effective on communicationrelated small/medium computation (such as collective communication)
- Covering GPU non-suited computation by FPGA
- OpenCL-enable programming for application users


AiS computation model

IXPUG ME 2018 (Site Update) 2018/04/24

Evaluation test-bed

Center for Computational Sciences, Univ. of Tsukuba

IXPUG ME 2018 (Site Update) 2018/04/24

Time Line

- Feb. 2018: Request for Information
- Apr. 2018: Request for Comment (followings are just requirement)
 - basic specification: AiS-based large cluster with up to 256 nodes
 - V100 class of GPU x2
 - Stratix10 or UltraScale class of FPGA x1 (25% of total count of nodes)
 - OPA x2 or InfiniBand HDR class interconnection
- Aug. 2018: Request for Proposal
 - Bidding closed on begin of Sep. 2018
- Mar. 2019: Deployment

2018/04/24

Apr. 2019: Starting official operation

26