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As core number grows
Launch of thousands of jobs became an option...

• Some of our users use Shaheen to run 
workflows composed of thousands of jobs 
saving thousands of temporary files

• Need a result in a guaranteed time

• Are not HPC experts, but are challenging 
problem in terms of scheduling and file 
system stress



Why is it so challenging?
A difference of nature
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Our Strategy (1/2)
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ones

 Reduce stress on 
filesystem by using 
Ramdisk and 
messages.



Our Strategy (2/2)
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What is Decimate? (1/2)
Swiss knife of many-jobs workflows

Makes It easier to 

● Generate
● Submit
● balance
● Monitor   
● Control
● Cure
● Check
● Terminate

● Many-jobs
● Dependent

                  Workflows
● Parametric
● Unstable



What is Decimate? (2/2)
A Scheduler extension easy to install

● A scheduler extension (SLURM) written in python 2.7
fully documented at http://decimate.readthedocs.org 

● Installable with no special priviledges:
pip install decimate   or   conda install -c hpc4all decimate

● Available as an open source software at 
https://github.com/KAUST-KSL/  (FreeBSD License)

● Installed on Shaheen II, Ibex, portable on any machine with SLURM

● Under development but already used heavily but some of our users. 
250 kjobs submitted in production via Decimate

● Maintained by KSL (samuel.kortas (at) kaust.edu.sa)

http://decimate.readthedocs.org/
https://github.com/KAUST-KSL/


Decimate’s Features (1/4)
Automated restart in case of failure

Each job checks 
if results are OK

Job 0 eventually rechecks
and launches a new attempt

Second attempt done
 job 0 and 3 fail again

1st retry done
 after job 0,1 and 3 fail again

dbatch   --array 1-5 --check check1.sh --max-retry 3  step1.sh

Failed job              Waiting job
Successful job       Ongoing job



Decimate’s Features (2/4)
Automated feeding of the job queue

dbatch   –max-jobs 20  --array 1-200  step1.sh

  

    

200 jobs submitted

 

20 active jobs only in the queue
Others are submitted on the fly
as chunks as dependent jobs



Decimate’s Features (3/4)
Execution on a pool of nodes

dbatch   –parallel-runs 20  --array 1-200 --nodes=3 step1.sh

    

200 jobs submitted

20 active jobs in parallel on
resources booked for a long

duration

      



nodes ntasks
   1         32
   1         16
   2         64
   4         128
#DECIM nthreads=nodes*32/ntasks
#DECIM COMBINE dim =[10,100,1000]

#SBATCH…

export OMP_NUM_THREADS=$nthreads
srun -N $nodes -n $ntasks \
        --cpu-per-tasks=$nthreads \
              my_app.exe $dim

Decimate computes every job possible, group them in 
blocks, submit them and manage them in a fault 
tolerant environment
 

Decimate’s Features (4/4)
Extended support of parametrized jobs

dbatch   –param-file params.txt my_job.sh

  params.txt my_job.sh



Use case from Ocean Modeling
PI: Pr Ibrahim Hoteit (PSE) & Habib Toye



Some example of workflow (2/2)
MITgcm/DART assimilation system
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to reroute the
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back on the
right track

fitting better
the observations
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First set of MITgcm      (1000 x 3-node runs)
  –    barrier       –
 Apply the filter (DART)   (1 x 16-node run)
 –    barrier       –
 second set of MITgcm (1000 x 3-node runs)
 –    barrier       –
 Apply the filter (DART)    (1 x 16-node run)
 –    barrier       –
 3rd  set of MITgcm        (1000 x 3-node runs)
 –    barrier       –
 Apply the filter (DART)    (1 x 16-node run)

Typical MITgcm/DART 
assimilation workflow

1000 x

1000 x

1000 x

• Some intermediate steps may break
→ dependency will break
→ the workflow will remain idle, 



Decimate is the solution!
user-define result checking function

 the user can set his own rules thanks to a 
python function.



With no manual intervention…
5 steps made in 3h30  on a crowded machine

Second step of mitgcm was 
restarted once after 1% of failure

1k 
member

s

1k 
member

s



Example of Mails sent by Decimate

Job just 
started
Job just 
started

Previous step 
failed and has 

restarted

Previous step 
failed and has 

restarted

Step is 
successful. 

Moving further!

Step is 
successful. 

Moving further!



Want to know more?

http://decimate.hpc4all.org
decimate@hpc4all.org

help@hpc.kaust.edu.sa

http://decimate.hpc4all.org/
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