
Decimate: a portable and
fault-tolerant scheduler.

Application to big ensembles
data assimilation and
forecasting in the Red Sea
Circulation

Samuel Kortas, Habib Toye, Peng Zhan,
Ibrahim Hoteit
KAUST IXUPG Middle East Conference 2018

As core number grows
Launch of thousands of jobs became an option...

• Some of our users use Shaheen to run
workflows composed of thousands of jobs
saving thousands of temporary files

• Need a result in a guaranteed time

• Are not HPC experts, but are challenging
problem in terms of scheduling and file
system stress

Why is it so challenging?
A difference of nature

File 2

File 1

Capability

Capacity

X 1000…

X 1, 2
 Resources are

Shaped/Tuned for
one of these two
cases:
 Capability (big job,

big files)
 Capacity (numerous

jobs, small files)

Our Strategy (1/2)

File 2

File 1

Capability

Capacity

X 1000…

X 1, 2
 Pack 'many jobs'

together to make
them appear as big
ones

 Reduce stress on
filesystem by using
Ramdisk and
messages.

Our Strategy (2/2)

File 2

File 1

Capability

Capacity

X 1000…

X 1, 2
 Extend the

scheduler with tools
transparent to
users

 Allow them to tune
easily part of
workflow with
parametric sweep
on number of
threads

What is Decimate? (1/2)
Swiss knife of many-jobs workflows

Makes It easier to

● Generate
● Submit
● balance
● Monitor
● Control
● Cure
● Check
● Terminate

● Many-jobs
● Dependent

 Workflows
● Parametric
● Unstable

What is Decimate? (2/2)
A Scheduler extension easy to install

● A scheduler extension (SLURM) written in python 2.7
fully documented at http://decimate.readthedocs.org

● Installable with no special priviledges:
pip install decimate or conda install -c hpc4all decimate

● Available as an open source software at
https://github.com/KAUST-KSL/ (FreeBSD License)

● Installed on Shaheen II, Ibex, portable on any machine with SLURM

● Under development but already used heavily but some of our users.
250 kjobs submitted in production via Decimate

● Maintained by KSL (samuel.kortas (at) kaust.edu.sa)

http://decimate.readthedocs.org/
https://github.com/KAUST-KSL/

Decimate’s Features (1/4)
Automated restart in case of failure

Each job checks
if results are OK

Job 0 eventually rechecks
and launches a new attempt

Second attempt done
 job 0 and 3 fail again

1st retry done
 after job 0,1 and 3 fail again

dbatch --array 1-5 --check check1.sh --max-retry 3 step1.sh

Failed job Waiting job
Successful job Ongoing job

Decimate’s Features (2/4)
Automated feeding of the job queue

dbatch –max-jobs 20 --array 1-200 step1.sh

200 jobs submitted

20 active jobs only in the queue
Others are submitted on the fly
as chunks as dependent jobs

Decimate’s Features (3/4)
Execution on a pool of nodes

dbatch –parallel-runs 20 --array 1-200 --nodes=3 step1.sh

200 jobs submitted

20 active jobs in parallel on
resources booked for a long

duration

nodes ntasks
 1 32
 1 16
 2 64
 4 128
#DECIM nthreads=nodes*32/ntasks
#DECIM COMBINE dim =[10,100,1000]

#SBATCH…

export OMP_NUM_THREADS=$nthreads
srun -N $nodes -n $ntasks \
 --cpu-per-tasks=$nthreads \
 my_app.exe $dim

Decimate computes every job possible, group them in
blocks, submit them and manage them in a fault
tolerant environment

Decimate’s Features (4/4)
Extended support of parametrized jobs

dbatch –param-file params.txt my_job.sh

 params.txt my_job.sh

Use case from Ocean Modeling
PI: Pr Ibrahim Hoteit (PSE) & Habib Toye

Some example of workflow (2/2)
MITgcm/DART assimilation system

Ocean
model

Observations
taken from satelites

Kalman Filter
to reroute the

simulation
back on the
right track

fitting better
the observations

Some example of workflow (2/2)
MITgcm/DART assimilation system

Ocean
model

Observations
taken from satelites

Kalman Filter
to reroute the

simulation
back on the
right track

fitting better
the observations

Step 1: Prediction

Some example of workflow (2/2)
MITgcm/DART assimilation system

Ocean
model

Observations
taken from satelites

Kalman Filter
to reroute the

simulation
back on the
right track

fitting better
the observations

Some example of workflow (2/2)
MITgcm/DART assimilation system

Ocean
model

Observations
taken from satelites

Kalman Filter
to reroute the

simulation
back on the
right track

fitting better
the observations

Step 2: Filter &
Correction

Some example of workflow (2/2)
MITgcm/DART assimilation system

Ocean
model

Observations
taken from satelites

Kalman Filter
to reroute the

simulation
back on the
right track

fitting better
the observations

Some example of workflow (2/2)
MITgcm/DART assimilation system

Ocean
model

Observations
taken from satelites

Kalman Filter
to reroute the

simulation
back on the
right track

fitting better
the observations

Step 1: Prediction

Some example of workflow (2/2)
MITgcm/DART assimilation system

Ocean
model

Observations
taken from satelites

Kalman Filter
to reroute the

simulation
back on the
right track

fitting better
the observations

Some example of workflow (2/2)
MITgcm/DART assimilation system

Ocean
model

Observations
taken from satelites

Kalman Filter
to reroute the

simulation
back on the
right track

fitting better
the observations

Step 1: Prediction

Some example of workflow (2/2)
MITgcm/DART assimilation system

Ocean
model

Observations
taken from satelites

Kalman Filter
to reroute the

simulation
back on the
right track

fitting better
the observations

Step 1: Prediction
Step 1: Prediction

Step 1: Prediction

Step 1: Prediction

Step 1: Prediction

First set of MITgcm (1000 x 3-node runs)
 – barrier –
 Apply the filter (DART) (1 x 16-node run)
 – barrier –
 second set of MITgcm (1000 x 3-node runs)
 – barrier –
 Apply the filter (DART) (1 x 16-node run)
 – barrier –
 3rd set of MITgcm (1000 x 3-node runs)
 – barrier –
 Apply the filter (DART) (1 x 16-node run)

Typical MITgcm/DART
assimilation workflow

1000 x

1000 x

1000 x

• Some intermediate steps may break
→ dependency will break
→ the workflow will remain idle,

Decimate is the solution!
user-define result checking function

 the user can set his own rules thanks to a
python function.

With no manual intervention…
5 steps made in 3h30 on a crowded machine

Second step of mitgcm was
restarted once after 1% of failure

1k
member

s

1k
member

s

Example of Mails sent by Decimate

Job just
started
Job just
started

Previous step
failed and has

restarted

Previous step
failed and has

restarted

Step is
successful.

Moving further!

Step is
successful.

Moving further!

Want to know more?

http://decimate.hpc4all.org
decimate@hpc4all.org

help@hpc.kaust.edu.sa

http://decimate.hpc4all.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

