

Tile Low-Rank Approximation of Maximum Large-Scale Likelihood Estimation on Manycore Architectures

ExaGeoStat: A Framework for Large-Scale Weather and Climate Prediction using Machine Learning

SAMEH ABDULAH, HATEM LTAIEF, YING SUN, MARC GENTON AND DAVID KEYES

EXTREME COMPUTING RESEARCH CENTER, KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY.

Motivation

- Maximum Likelihood Function
 - An important statistical technique for predicting unknown measurements in climate and environmental applications
- Weather and climate data are usually big!
 - Prohibitive computational Cost and memory requirements
 - Two real examples: Soil Moisture and Wind Speed
- Exascale GeoStatistics (ExaGeoStat)
 - A framework which exploits machine learning, statistical modeling and forecasting, and the state-of-the-art linear algebra techniques to handle large-scale geostatistics data

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

ExaGeoStat

Machine Learning

 Maximum Likelihood Estimation (MLE).

• Supervised Learning.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Big Data

Linear Algebra • Dense Computation. • Tile Low-Rank Approximation

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

ExaGeoStat Components

• Synthetic Dataset Generator

 Generate large-scale geospatial datasets which can be separately used as benchmark datasets for other software packages

• Maximum Likelihood Estimator (MLE)

- Evaluate the maximum likelihood function on large-scale geospatial datasets
- Support full machine precision accuracy (full-matrix) and Tile Low-Rank (TLR) approximation

ExaGeoStat Predictor

 Predict unknown measurements on known geospatial locations by leveraging the MLE estimated parameters

Outcomes

- Hardware-agnostic framework
- 2M spatial locations (160 TB memory requirement)
- 96 % prediction accuracy on real datasets
- Large synthetic spatial data generation tool
- R-Wrapper package

intel

ExaGeoStat Under the Microscope

- ExaGeoStat is an open-source software which is available at <u>https://github.com/ecrc/exageostat</u>
- ExaGeoStat 0.1.0 (Nov. 9th 2017)
 - Support exact Computation using Chameleon dense Linear algebra library and StarPU runtime system
 - Support real and synthetic geospatial datasets
 - Soil moisture dataset at Mississippi basin area
- Today:
 - ExaGeoStat supports
 - Tile-Low Rank approximation (TLR) using HiCMA TLR approximation library and StarPU runtime system
 - Performance results of TLR-based computations on shared and distributed-memory systems attain up to 13X and 5X speedups
 - Support NetCDF Format
 - Win Speed dataset at Middle-East

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

