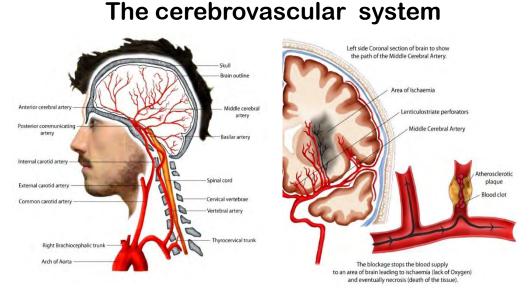


Parallel Simulation of Blood Flows in 3D Patient-specific Arteries

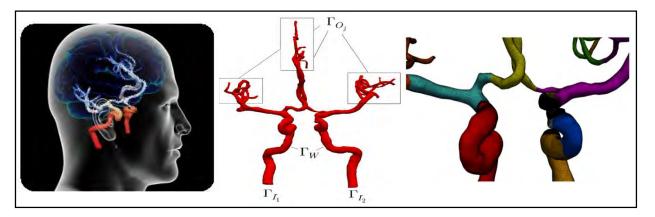

Li Luo

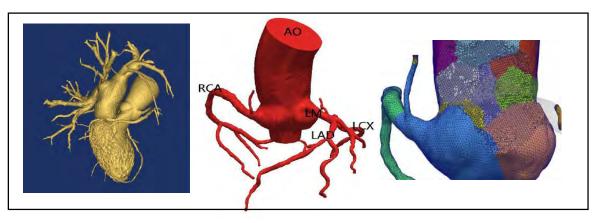
Extreme Computing Research Center King Abdullah University of Science and Technology

Joint work with Wen-Shin Shiu, Rongliang Chen, Xiao-Chuan Cai



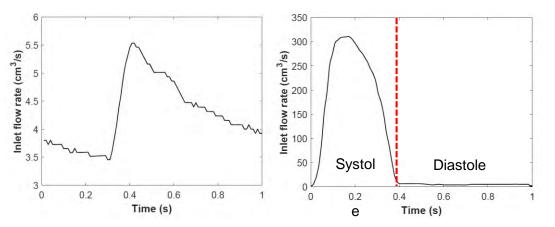
Motivation



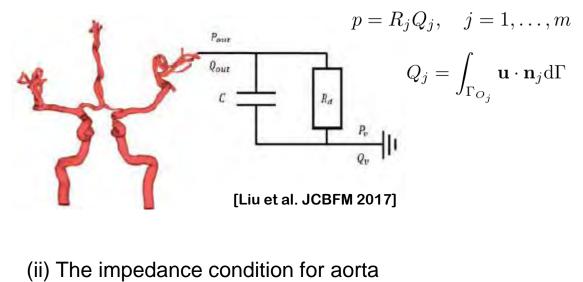

https://neuro4students.wordpress.com/pathophysiology/

The cardiovascular system

- > 3D geometries reconstructed from MRI or CTA images by Mimics[®]
- > Volume meshes generated from ANSYS[®] and partitioned by ParMETIS



Computational Techniques


The 3D time-dependent incompressible Navier-Stokes equations:

$$\begin{cases} \rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) - \nabla \cdot \boldsymbol{\sigma} = \mathbf{0}, & \text{in } \Omega, \\ \boldsymbol{\sigma} = -p\mathbf{I} + \mu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right), & \\ \nabla \cdot \mathbf{u} = 0, & \text{in } \Omega, \\ \mathbf{u} = \mathbf{0}, & \text{on } \Gamma_W, \\ \mathbf{u} = \mathbf{v}_I, & \text{on } \Gamma_I, \\ \mathbf{u}|_{t=0} = \mathbf{u}_0, & \text{in } \Omega. \end{cases}$$

Inflow rates for the cerebral artery (left) and the coronary artery (right)

(i) The resistive condition for cerebral and coronary arteries

$$p(t) = (P(0) - R_0 Q_0(0) - P_d(0)) e^{-t/\tau} + P_d(t) + R_0 Q_0 + \int_0^t \frac{e^{-(t-s)/\tau}}{C} Q_0(s) ds$$

- Temporal discretization: Implicit backward Euler finite difference method
- Spatial discretization : P1-P1 stabilized finite element method based on unstructured mesh

• Newton: Inexact Newton method with backtracking (INB)

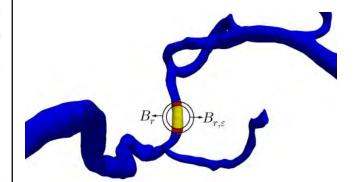
$$\mathbf{x}_{k+1}^n = \mathbf{x}_k^n + \lambda_k s_k^n$$

• Krylov: Krylov subspace method such as GMRES

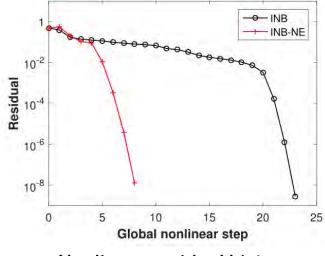
$$J_k^n s_k^n = -\mathcal{F}\left(\mathbf{x}_k^n
ight)$$
 with $s_k^n = M_{RAS}^{-1} z$

• Schwarz: Restricted additive Schwarz preconditioner $M_{RAS}^{-1} = \sum_{l=1}^{np} \left(R_l^0\right)^T (A_l)^{-1} R_l^{\delta},$ $A_l = R_l^{\delta} A \left(R_l^{\delta}\right)^T.$

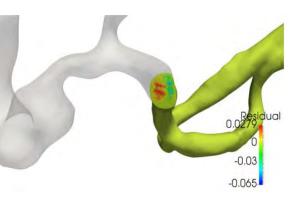
Nonlinear Elimination (NE) preconditioner

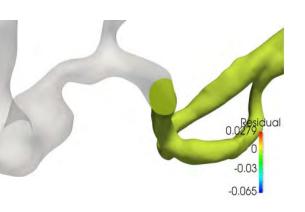

Subspace correction by

$$\mathbf{y}_{k} = G\left(\mathcal{G}, \mathbf{x}_{k}^{n}\right) = \mathcal{R}_{g}^{k,\varepsilon}(\mathbf{x}_{k}^{n}) + \mathcal{R}_{b}^{k,\varepsilon}(\mathbf{x}^{*})$$


with $\, {\bf x}^{*} \,$ as the solution of

$$\mathcal{G}(\mathbf{x}) = \mathcal{R}_{g}^{k}\left(\mathbf{x} - \mathbf{x}_{k}^{n}\right) + \mathcal{R}_{b}^{k}\left(\mathcal{F}\left(\mathbf{x}\right)\right) = \mathbf{0}$$


• Update $\mathbf{x}_k^n = \mathbf{y}_k$ before solving the global nonlinear system


The bad region B_r and its restricted part $B_{r,\varepsilon}$

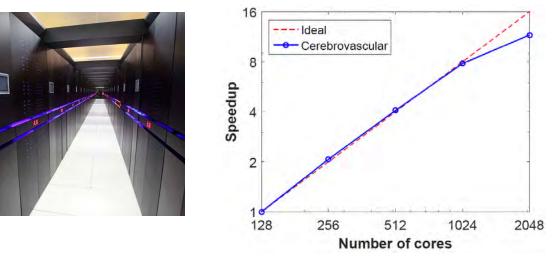
Nonlinear residual history

Before the subspace correction

After the subspace correction

Numerical Results

天河二号


Each node on Tianhe-2 supercomputer:

- Two 12-core Intel Ivy Bridge Xeon CPUs
- 24GB local memory

Comparison with different time step sizes

	The cl	assical IN	B metho	d	
Δt (s)	0.005	0.01	0.02	0.04	0.06
NI_{global}	6.33	10.50	11.66	-	-
LI_{global}	522.16	592.75	605.17	-	-
$\operatorname{Time}_{total}(s)$	253.95	458.04	537.44		
	The pre	sent INB-	NE meth	od	
Δt (s)	0.005	0.01	0.02	0.04	0.06
NIglobal	5.50	5.67	7.00	8.17	8.83
LI_{global}	410.39	403.21	357.26	320.35	314.60
N_{ne}	1.33	1.67	1.33	1,50	1.50
NIne	2.63	3.20	2.87	2.56	3.00
LI_{ne}	16.48	17.19	10.74	11.74	15.44
$\operatorname{Time}_{ne}(\mathbf{s})$	17.76	20.55	19.40	17.35	20.06
$\operatorname{Time}_{total}(s)$	214.08	225.94	254.34	277.00	299.98

"--" means the case fails to converge.

Strong scalability test for the cerebrovascular system with Dof=7,418,644

Blood density: $\rho = 1.06 \text{g/cm}^3$, blood viscosity: $\mu = 0.035 \text{g/(cm \cdot s)}$

Thank you

li.luo@kaust.edu.sa