
Optimization of finite-difference kernels on
multi-core architectures for seismic
applications
V. Etienne1, T. Tonellot1, K. Akbudak2, H. Ltaief2, S. Kortas3, T. Malas4, P. Thierry4, D. Keyes2

1 Saudi Aramco, EXPEC ARC
2 King Abdullah University of Science and Technology, ECRC
3 King Abdullah University of Science and Technology, KSL
4 Intel

April, 2018

© Copyright 2018, Saudi Aramco. All rights reserved.

2

Agenda

1. Introduction

2. Seismic modeling with the finite-difference method

3. Spatial blocking

4. Temporal blocking

5. Application to seismic modeling and imaging

6. Conclusions

3

Introduction

1

4

Introduction

Seismic modeling

Seismic Inversion

Seismic
data

Seismic
model

Seismic
image

Seismic modeling / Imaging / Inversion

5

Introduction

Seismic modeling

Seismic Inversion

Seismic
data

Seismic
model

Seismic
image

Seismic modeling / Imaging / Inversion

For wave equation based methods the seismic
modeling engine is a crucial element

6

Why seismic modeling is so important?

Introduction

0.01

0.1

1

10

100

1000

10000

100000

1000000

Analytic Rays Ray	
gathers

Acoustic	 Hi	Res	
Acoustic

Elastic Hi	Res	
Elastic

N
or
m
al
ize

d	
co
m
pu

ta
tio

na
l	c
os
t

Seismic	imaging	algorithms

Complex / low
relief

structures

Simple
Structures

Elastic parameters
Lithology

7

Introduction

Why seismic modeling is so important?

Typical Acquisition

Recv/Shot 207,360

Trace/Shot 23040

Source density 640 VPs/km2

Rec Time 6s @ 2ms

Area 10,000 km2

Num Shots 6.4 MM

Size per Shot 260 MB

Size per km2 166 GB

Total Size 1.6 PB

8

Introduction

Why seismic modeling is so important?

Top 500

We do need to develop seismic modeling engines that can scale
accordingly to the growth in computer resource

9

Introduction
Our goal: design a versatile platform

suitable for seismic modeling or inversion algorithms
on High Performance Computing platforms

HPC

Seismic modeling
Forward problem

Seismic inversion
Inverse problem

Model Data

10

Introduction

For our seismic modeling needs:

• We want to cover a wide range of applications

• Using well established numerical methods

• Accurate and stable

• Efficient on modern and future architectures

This leads us to:

• Finite-difference modeling operators

• Staggered grid & time explicit scheme

• CPML absorbing boundaries

• OpenMP/MPI design

• Cache blocking techniques

Requirements and technical choices

Bridge the gap between geophysics
and computer science, and combine
best practices from both disciplines
The Aramco/Kaust collaboration

12

Seismic modeling with the finite-
difference method

2

13

Seismic modeling with finite-difference

Spatial operators

The 3D wave acoustic wave equation

is discretized as follows

where is the Nth-order spatial operator to evaluate
second derivative along index i

Each grid point requires 4 manipulations:
• The computation of derivatives along x, y, and z
• The update of pressure

𝜕"#𝑝 = 𝑐# 𝜕'#𝑝 + 𝜕)#𝑝 + 𝜕*#𝑝

P𝑖𝑗𝑘
𝑛+1 − 2P𝑖𝑗𝑘

3 +𝑃𝑖𝑗𝑘
356

𝛥𝑡# =𝑐𝑖𝑗𝑘
O𝑖𝑖

: (P𝑖𝑗𝑘
3) +𝑂𝑗𝑗

: (P𝑖𝑗𝑘
3) +𝑂𝑘𝑘

: (P𝑖𝑗𝑘
3 >

Order 8 spatial operator
O??:

14

Seismic modeling with finite-difference

Simple 2D acoustic examples

Movie: pure time-domain Movie: hybrid time/frequency-domain

Complete set-up = model + kernel + boundary conditions + source + receivers

15

3D elastic – a complex mix of waves

Seismic modeling with finite-difference

16

Adaptive accuracy

Seismic modeling with finite-difference

Typical discretization rules
for optimal accuracy
O2 → 10 pt/λ
O4 → 5 pt/λ
O8 → 4 pt/λ
O12 → 3.5 pt/λ
O16 → 3.2 pt/λ

Fine gridCoarse grid

FWI

RTM

No universal scheme
Application dependent

Error versus spatial grid sampling

17

2D Acoustic
VTI

O2
Isotropic

TTI

Full tensor

Elastic3D

O4

O8

O12

O16

Follow an object oriented design
Recast seismic modeling into the objects framework

dimension physics

1st wave eq

2nd wave eq

approximation discrete equation FDM stencil

Flexible implementation

Seismic modeling with finite-difference

18

Seismic modeling with finite-difference

Scenario 1
RTM with marine acquisition

19

Seismic modeling with finite-difference

Scenario 2
FWI with land acquisition

20

Seismic modeling with finite-difference

Flexible implementation

modeling

Solve() virtual

FDM

FDM_3D

FDM_3D_ac_iso_1st

Arrays
Kernel
CPML

Solve () Impl.

FEM ?

FDM_2D

FDM_3D_el_iso_1st

Arrays
Kernel
CPML

Solve () Impl.

FDM_3D_ac_vti_1st

Arrays
Kernel
CPML

Solve () Impl.

The object factory
+ Template
metaprogramming

21

Seismic modeling with finite-difference

Efficient boundary implementation

model

CPML

standard FDM kernel

CPML memory variables and
computation decoupled

22

Spatial blocking

3

23

Spatial blocking

Intel Xeon E5-2600 “Haswell” specifications

SHAHEEN II at KAUST

Computing nodes
6174 Haswell nodes
• 2 socket/node
• QPI x2 between sockets
• 16 cores/socket

Computing core
Core freq. 2.3 GHz
AVX2 16 SP float/vector
2.36 Tflop/s per node

Memory
L1 cache/core 32 KB
L2 cache/core 256 KB
L3 cache shared 40 MB
RAM 128 GB

FD kernels are typically memory bounded algorithms
Computations are faster than getting data from RAM
If data reside in cache, computation speed can increase
Typical grid size: 1000x1000x500 (2 GB) can not fit into L3…

How to proceed?

24

General concept

Spatial blocking

Concept of Cache Blocking
• Divide grid into blocks that fit in CPU cache

• Enhance data reuse in cache

• Crucial on multi-core architectures

Cache blocking tuning on Shaheen II
• No cache blocking in z (AVX2 vectorization)

• Exploration in x and y (1 to 32 points)

• 1024 configurations evaluated

25

Impact of the spatial order

Spatial blocking

0
50

100
150
200
250
300
350
400
450

2 4 8 12 16

ISO 2ND Gflop/s

0
1
2
3
4
5
6
7
8

2 4 8 12 16

ISO 2ND Glup/s

Increase spatial order
higher performance (Gflop/s)

lower grid point update/sec (Glup/s)
larger spacing can be used (slide 9)

à reduced computation time for
same accuracy (with larger spatial

sampling)

Grid size 512x512x512 (for all tests) - Intel Haswell 2 sockets x 16 cores (32 threads)

0

5

10

15

20

25

1 2 3 4 5

Speedup for equivalent accuracy

2 4 8 12 16

space
order

space
order

space
order

26

Spatial blocking

Fine performance analysis with cache-aware roofline model

High speed and good cache-reuse observed for n1 and n2 derivatives
Lower speed and lower cache-reuse for n3 derivative and pressure update

There is still room for improvement

derivatives of P[ix][iy][iz]

+ pressure update 72 106
DRAM – perf. stable

n3
211 253

L3 – perf. stable

n2 79 440
L2 - highest speedup × 5.6

n1 (fast index)
317 637

L2 – highest perf.

FDM O2 FDM O8
132 Gflop/s 329 Gflop/s

Cache-aware roofline model

27

Spatial blocking
Impact of the equation

Isotropic 2nd vs 1st order wave equation
• reduced memory access and math. operations
• higher performance × 1.9 Gflop/s and × 3.2 Glup/s
Anisotropic VTI vs Isotropic
• increased memory access and math. operations
• lower performance ÷ 2.2 Gflop/s and ÷ 2.2 Glup/s

0

50

100

150

200

250

300

350

ISO 1ST ISO 2ND VTI 1ST VTI 2ND

FDM O8 Gflop/s

0

1

2

3

4

5

6

7

8

ISO 1ST ISO 2ND VTI 1ST VTI 2ND

FDM O8 Glup/s

28

Spatial blocking Impact of the equation

Increase data reuse
with temporal blocking

30

Temporal blocking

4

31

Temporal blocking

Multicore wavefront + Diamond tiling (MWD)

Key concepts of MWD

Maximize date reuse: perform several time step

updates before evicting data to main memory

Space-time domain divided into diamonds

• Diamond slope S = 1/R (stencil radius)

• Low synchronization requirements

• Allow concurrent start

• High concurrency in transient state

• Unified shape for easier implementation

Diamond tiling can be combined with multi-

thread wavefront update

Adjust concurrency and intra-diamond parallelism

for optimal work balance

MWD for 1D FDM O2 (S=1)

32

Temporal blocking

Multicore wavefront + Diamond tiling (MWD)

3D implementation of MWD

Efficient combination

• x-axis (n1/fast index) left unchanged for

efficient vectorization

• Diamond tiling along y-axis (n2)

• Multi-thread wavefront along z-axis (n3)

Synchronization between diamonds

• FIFO queue with completed diamonds

• Critical OpenMP section for queue update

Optimal diamond size and number of threads

for the wavefront update are determined by a

auto-tuning procedure

Important notes
• No extra memory needed by MWD
• Wavefront allows local and

simultaneous updates at various
time steps

• Need to design specific data
management when fixed time steps
required (snapshots for RTM)

33

Temporal blocking

MWD vs pure spatial blocking

MWD configuration

• 4 threads per diamond

• 8 concurrent diamonds in parallel

• Diamond width = 32, height = 2

Pure spatial blocking configuration

• Cache blocs size = 16-5 (xy)

• No cache blocking in z

x1.5 speedup obtained with MWD

• Max 10.29 Glup/s with MWD

• Max 6.91 Glup/s with spatial blocking

Parallelism efficiency 60 % for both

approaches on 32 OpenMP threads

Scalability analysis from 1 to 32 threads

Intel Haswell 2 sockets x 16 cores

34

Application to seismic modeling and
imaging

5

35

Seismic modeling in Offshore Saudi Arabia

Model and acquisition

36

Seismic modeling in Offshore Saudi Arabia

Wave propagation movie

37

Seismic modeling in Offshore Saudi Arabia

On this application, we reached a peak performance
of 1.2 Pflop/s on Shaheen

Output data

38

3X Resolution

Seismic migration in Offshore Saudi Arabia

Benefit of supercomputers for seismic imaging

An industry first: 100 Hz reverse time migration

39

Conclusions

6

40

Summary
We presented highly optimized finite difference kernels integrated within a versatile
platform tailored for seismic applications

The findings of this work concerning cache blocking:

• Pure spatial blocking allow for high performance but some bottlenecks do exist

• Spatial and temporal blocking (MWD) partially alleviate those issues and allow for a
x1.5 speedup compared to pure spatial blocking

Achievements
• Application on large scale seismic surveys

• Acoustic modeling

• Acoustic reverse time migration at 100 Hz

• Excellent scalability on Shaheen up to full machine

• Peak performance 1.2 Pflop/s

Conclusions

41

Conclusions

Future work
Changing the wave equation from acoustic 3D…

𝜕"#𝑝 = 𝑐# 𝜕'#𝑝 + 𝜕)#𝑝 + 𝜕*#𝑝 7 GLUP/s

42

Conclusions

Future work
Changing the wave equation from acoustic 3D…

…to elastic 3D

𝜕"#𝑝 = 𝑐# 𝜕'#𝑝 + 𝜕)#𝑝 + 𝜕*#𝑝 7 GLUP/s

0.5 GLUP/s

43

Conclusions

Future work
Changing the wave equation from acoustic 3D…

…to elastic 3D

𝜕"#𝑝 = 𝑐# 𝜕'#𝑝 + 𝜕)#𝑝 + 𝜕*#𝑝 7 GLUP/s

0.5 GLUP/s

The benefit of cache
blocking technics is
crucial to increase

efficiency

44

Acknowledgment and references

We would like to thank Saudi Aramco and KAUST for permission to present this work

Computations were done on KAUST’s Shaheen II supercomputer

REFERENCES
Browne, S., Deane, C., Ho, G. and Mucci, P. [1999] PAPI: A Portable Interface to Hardware Performance Counters.
Proceedings of Department of Defense HPCMP Users Group Conference.

Etienne, V., Tonellot, T., Thierry, P., Berthoumieux, V. and Andreolli, C. [2014] Optimization of the Seismic Modeling
with the Time-Domain Finite-Difference Method. SEG Annual Meeting, Expanded Abstracts, 3536-3540.

Imbert, D., Imadoueddine, K., Thierry, P., Chauris, H. and Borges, L. [2011] Tips and tricks for finite difference and
I/O-less FWI. SEG Annual meeting, Expanded Abstracts, 3174-3178.

Ilic, A., Pratas, F. and Sousa, L. [2014] Cache-aware Roofline model: Upgrading the loft. IEEE Computer Architecture
Letters, vol. 13, n. 1, pp. 21-24.

Treibig, J., Hager, G. and Wellein, G. [2010]. Likwid: A lightweight performance-oriented tool suite for x86 multi-
core environments. 39th International Conference on Parallel Processing Workshops. IEEE.

Malas, T., Hager, G., Ltaief, H., Stengel, H., Wellein, G. and Keyes, D. [2015]. Multicore-optimized wavefront
diamond blocking for optimizing stencil updates. SIAM Journal on Scientific Computing 37 (4), C439-C464.

