Oakforest-PACS: Japan's Fastest Intel Xeon Phi Supercomputer and its Applications

Taisuke Boku

Vice Director, JCAHPC &

Deputy Director, Center for Computational Sciences

University of Tsukuba

(with courtesy of JCAHPC members)

JCAHPC

- Joint Center for Advanced HPC
- A virtual organization with U. Tsukuba and U. Tokyo
 - for joint procurement on Japan's largest university supercomputer
 - for joint operation of the system
 - to provide the largest resource for HPCI (HPC Infrastructure) program under government
- Two universities contribute for all budget to procure and operate the machine
 - Tokyo : Tsukuba ratio = 2 : 1
- Official operation of the system starts on April 2017 under the name of "Oakforest-PACS"

Deployment plan of 9 supercomputing center (Feb. 2017)

Power consumption indicates maximum of power supply (includes cooling facility)

😂 ЈСАНРС

Oakforest-PACS (OFP)

U. Tokyo convention U. Tsukuba convention

⇒ Don't call it just "Oakforest" ! "OFP" is much better

- 25 PFLOPS peak
- 8208 KNL CPUs
- FBB Fat-Tree by OmniPath
- HPL 13.55 PFLOPS #1 in Japan (acting) #6→#9
- HPCG #3→#6
- Green500 #6→#22
- Full operation started Dec. 2016
- Official Program started
 on April 2017

TOP500 list on Nov. 2017 (#50)

#	Machine	Architecture	Country	Rmax (TFLOPS)	Rpeak (TFLOPS)	MFLOPS/W
1	TaihuLight, NSCW	MPP (Sunway, SW26010)	China	93,014.6	125,435.9	6051.3
2	Tianhe-2 (MilkyWay-2), NSCG	Cluster (NUDT, CPU + KNC)	China	33,862.7	54,902.4	1901.5
3	Piz Daint, CSCS	MPP (Cray, XC50: CPU + GPU)	Switzerland	19,590.0	25,326.3	10398.0
4	Gyoukou, JAMSTEC	MPP (Exascaler, PEZY-SC2)	Japan	19,125.8	28,192.0	14167.3
5	Titan, ORNL	MPP (Cray, XK7: CPU + GPU)	United States	17,590.0	27,112.5	2142.8
6	Sequoia, LLNL	MPP (IBM, BlueGene/Q)	United States	17,173.2	20,132.7	2176.6
7	Trinity, NNSA/ LABNL/SNL	MPP (Cray, XC40: MIC)	United States	14,137.3	43,902.6	3667.8
8	Cori, NERSC-LBNL	MPP (Cray, XC40: KNL)	United States	14,014.7	27,880.7	3556.7
9	Oakforest-PACS, JCAHPC	Cluster (Fujitsu, KNL)	Japan	13,554.6	25,004.9	4985.1
10	K Computer, RIKEN AICS	MPP (Fujitsu)	Japan	10,510.0	11,280.4	830.2

HPCG on Nov. 2016

Rank	Site	Computer	Cores	Rmax Pflops	HPCG Pflops	HPCG /HPL	% of Peak
1	RIKEN Advanced Institute for Computational Science	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect	705,024	10.5	0.603	5.7%	5.3%
2	NSCC / Guangzhou	Tianhe-2 NUDT, Xeon 12C 2.2GHz + Intel Xeon Phi 57C + Custom	3,120,000	33.8	0.580	1.7%	1.1%
3	Joint Center for Advanced High Performance Computing Japan	Oakforest-PACS – PRIMERGY CX600 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel OmniPath, Fujitsu	557,056	24.9	0.385	2.8%	2.8%
4	National Supercomputing Center in Wuxi, China	Sunway TaihuLight – Sunway MPP, SW26010 260C 1.45GHz, Sunway, NRCPC	10,649,600	93.0	0.3712	0.4%	0.3%
5	DOE/SC/LBNL/NERSC USA	Cori – XC40, Intel Xe Cray Aries, Cray	HPC	G			
6	DOE/NNSA/LLNL USA	Sequoia – IBM Blue 16C 1.6GHz, 5D Toru	<u>په در او</u>	ADMINISTIN 2016			
7	DOE/SC/Oak Ridge Nat Lab	Titan - Cray XK7 , Op 2.200GHz, Cray Gem NVIDIA K20x	ALAREP 3 SUTEN DAKTORS	P-PACS ACHEVED 0.500 bisanced the Computing		-	A
8	DOE/NNSA/LANL/SNL	Trinity - Cray XC40, I custom, Cray	A CONTRACTOR OF A CONTRACTOR A				
9	NASA / Mountain View	Pleiades - SGI ICE X, 2680v2, E5-2680v3, FDR, HPE/SGI		HIPE			
10	DOE/SC/Argonne National Laboratory	Mira - BlueGene/Q, 1.60GHz, 5D Torus, I					
2018/04	4/24	IXPUG M		Le le			

CO JCAHPC

Specification of Oakforest-PACS

Total peak performance			25 PFLOPS		
Total number of compute nodes			8,208		
Compute node	Product		Fujitsu Next-generation PRIMERGY server for HPC (unde development)		
	Processor		Intel® Xeon Phi™ (Knights Landing) Xeon Phi 7250 (1.4GHz TDP) with 68 cores		
	Memory	High BW	16 GB , > 400 GB/sec (MCDRAM, effective rate)		
		Low BW	96 GB, 115.2 GB/sec (DDR4-2400 x 6ch, peak rate)		
Inter-	Product		Intel® Omni-Path Architecture		
connect	Link speed		100 Gbps		
	Topology		Fat-tree with full-bisection bandwidth		
Login	Product		Fujitsu PRIMERGY RX2530 M2 server		
node	# of servers		20		
	Processor		Intel Xeon E5-2690v4 (2.6 GHz 14 core x 2 socket)		
	Memory		256 GB, 153 GB/sec (DDR4-2400 x 4ch x 2 socket)		

CO JCAHPC

Specification of Oakforest-PACS (I/O)

Parallel File	Туре		Lustre File System		
System	Total Capacity		26.2 PB		
	Meta	Product	DataDirect Networks MDS server + SFA7700X		
	data	# of MDS	4 servers x 3 set		
		MDT	7.7 TB (SAS SSD) x 3 set		
	Object	Product	DataDirect Networks SFA14KE		
	storage	# of OSS (Nodes)	10 (20)		
		Aggregate BW	~500 GB/sec		
Fast File	Туре		Burst Buffer, Infinite Memory Engine (by DDN)		
Cache System	Total capacity		940 TB (NVMe SSD, including parity data by erasure coding)		
	Product		DataDirect Networks IME14K		
	# of servers (Nodes)		25 (50)		
	Aggregat	e BW	~1,560 GB/sec		

IXPUG ME 2018

2018/04/24

8

Large Scal Applications on Oakforest-PACS

Atmosphere-Ocean Coupling on OFP by NICAM/COCO/ppOpen-MATH/MP

- High-resolution global atmosphere-ocean coupled simulation by NICAM and COCO (Ocean Simulation) through ppOpen-MATH/MP on the K computer is achieved.
 - ppOpen-MATH/MP is a coupling software for the models employing various discretization method.
- An O(km)-mesh NICAM-COCO coupled simulation is planned on the Oakforest-PACS system (3.5km-0.10deg., 5+B Meshes).
 - A big challenge for optimization of the codes on new Intel Xeon Phi processor
 - New insights for understanding of global climate dynamics

10

[C/O M. Satoh (AORI/UTokyo)@SC16]

Earthquake Simulations Prof. Ichimura (ERI, U.Tokyo)

GOJIRA/GAMERA

- FEM with Tetrahedral Elements (2nd Order)
- Nonlinear/Linear, Dynamic/Static
 Solid Mechanics
- Mixed Precision, EBE-based Multigrid
- SC14, SC15: Gordon Bell Finalist
- SC16: Best Poster
- GHYDRA
 - Time-Parallel Algorithm
 - Oakforest-PACS (on-going)

Simulation example: Earthquake simulation of 10.25 km x 9.25 km area of central Tokyo using full K computer. Response of 328 thousand buildings are evaluated using three-dimensional ground data and building data. Analyzed using a 133 billion degrees-of-freedom nonlinear finiteelement model.

Center for Computational Sciences, Univ. of Tsukuba

IXPUG ME 2018 2018/04/24

Xeon Phi tuning on ARTED (with Y. Hirokawa under

collaboration with Prof. K. Yabana, CCS) → SALMON now

- ARTED Ab-initio Real-Time Electron Dynamics simulator
- Multi-scale simulator based on RTRSDFT developed in CCS, U. Tsukuba to be used for Electron Dynamics Simulation
 - RSDFT : basic status of electron (no movement of electron)
 - RTRSDFT : electron state under external force
- In RTRSDFT, RSDFT is used for ground state
 - RSDFT : large scale simulation with 1000~10000 atoms (ex. K-Computer)
 - RTRSDFT : calculate a number of unit-cells with 10 ~ 100 atoms

supported by JST-CREST and Post-K important field development program (field-7)

Stencil code (original)

```
integer, intent(in) :: IDX(-4:4,NL),IDY(-4:4,NL),IDZ(-4:4,NL)
! NL = NLx*NLv*NLz
do i=0,NL-1
  ! x-computation
  v(1)=Cx(1)*(E(IDX(1,i))+E(IDX(-1,i))) \dots
  w(1)=Dx(1)*(E(IDX(1,i))-E(IDX(-1,i))) \dots
  ! y-computation
  v(2)=Cy(1)*(E(IDY(1,i))+E(IDY(-1,i))) \dots
  w(2)=Dy(1)*(E(IDY(1,i))-E(IDY(-1,i))) \dots
  ! z-computation
  v(3)=Cz(1)*(E(IDZ(1,i))+E(IDZ(-1,i))) ...
  w(3)=Dz(1)*(E(IDZ(1,i))-E(IDZ(-1,i))) \dots
  ! update
  F(i) = B(i) * E(i) + A * E(i) - 0.5d0 * (v(1) + v(2) + v(3)) - zI * (w(1) + w(2) + w(3))
end do
```

Original code just compiled on KNC with "-O3" option \rightarrow less than 5% of peak!

Stencil code (original)

vector length=4, for DP-complex vector calculation-> 512-bit AVX fittable

IXPUG ME 2018 14 2018/04/24

For automatic vectorization

Hand vectorization – unit-stride memory access optimization (how to utilize AVX-512 SIMD load and operation)

 (1) reading nearest neighboring points from 3-D domain array E by 512-bit vector load to store in v0, v1 and v2

IXPUG ME 20 2018/04/24

16

Stencil computation (3D) performance

>2x faster than KNC (at maximum) -> up to 25% of theoretical peak of KNL

2018/04/24

Weak scaling on OFP full system

18

IXPUG ME 2018

KNL vs GPU for ARTED (3D stencil part)

Si case	GFLOPS	vs. Peak perf.
Xeon E5-2670v2 x2 (IVB)	232.1	58.0%
Xeon Phi 7110P x2 (KNC)	592.3	27.6%
OFP: Xeon Phi 7250 (KNL)	758.0	24.8 %
Tesla K40 x2 (Kepler)	476.0	33.3%
Tesla P100 (Pascal)	788.2	14.9%

	Peak performance (DP)	Actual memory bandwidth	Actual B/F
Xeon Phi 7110P (KNC)	1074 GFLOPS	177.1 GB/s	0.16
Xeon Phi 7250 (KNL)	2998 GFLOPS	456.2 GB/s	0.15
Tesla K40 (Kepler)	1430 GFLOPS	180.5 GB/s	0.13
Tesla P100 (Pascal)	5300 GFLOPS	514.8 GB/s	0.10

Update will be presented as ISC2018 at Frankfurt

2018/04/24

Performance variant between nodes

normalized to best case

- most of time is consumed for Hamiltonian calculation
 - not including communication time
 - domain size is equal for all nodes
 - root cause of strong scaling saturation
 - performance gap exists on any materials
- Non-algorithmic load-imbalancing
 - > dynamic clock adjustment (DVFS) on turbo boost is applied individually on all processors
 - it is observed on under same condition of nodes
 - > on KNL, more sensitive than Xeon
 - serious performance degradation on synchronized large scale system

IXPUG ME 2018

20

2018/04/24

Lattice QCD

- Xeon Phi tuning under IPCC (Intel Parallel Computing Center) program at CCS, U. Tsukuba
 - PI: T. Boku
 - members: K. Ishikawa (Hiroshima U.), M. Umemura, Y. Kuramashi
 - Intel: L. Meadows, M. D'Mello, M. Troute, R. Vemuri
- CCS-QCD benchmark
 - has been developed in CCS for more than 10 years
 - selected as one of key programs for Post-K project, next national flagship supercomputer in Japan
 - we need many-core ready version of code and OFP is the largest target
- Performance of CCS-QCD
 - mainly bottlenecked by memory bandwidth for stencil computing
 - key: how to reduce the communication overhead

IXPUG ME 2018 2018/04/24

CCS-QCD on OFP (before tuning)

- We measured the performance of the CCS-QCD using the full system of Oakforest-PACS system
- Weak scaling test (1000 nodes -> 8000 nodes)

Lattice size	# of nodes	SOLVE	MULT(w/o comm.)	MULT(w/ comm.)	YCOPY	MPI_Allreduce
$200^{3} \times 800$	1000	90.109 [s]	50.874 [s]	51.002 [s]	0.031 [s]	14.627 [s]
$400 \times 200^2 \times 800$	2000	92.340	51.067	51.187	0.025	16.531
$400^2 \times 200 \times 800$	4000	94.481	50.991	51.145	0.057	18.887
$400^3 \times 800$	8000	98.794	50.420	50.543	0.031	23.554
Lattice size	# of nodes	SOLVE [GFLOPS/node]	MULT(w/o comm.) [GFLOPS/node]	MULT(w/ comm.) [GFLOPS/node]	-	32)
$200^{3} \times 800$	1000	356.2	561.6	560.2		
$400 \times 200^2 \times 800$	2000	347.6	559.5	558.1		
$400^2 \times 200 \times 800$	4000	339.7	560.3	558.6		
$400^{3} \times 800$	8000	324.9	566.6	565.2		

- Communication overhead was almost hidden in MULT.
- MPI_Allreduce was the bottleneck for the good performance and scaling.
- MULT performance reaches 560GF/node [=280GF/MPI].
- SOLVE(single precision solver) reaches 325-356 GF.
- Using 16000 MPI procs on 8000 nodes, the total performance reached 2.6 PFLOPS sustained and was ~ 10% of the peak 26PF of OFP.

IXPUG ME 2018 2018/04/24

22

CCS-QCD with multiple endpoints (Multi-EP)

More improvements achieved in FY2017

- Test the Multiple Endpoints facility of the 2019 Technical Preview release of Intel MPI library.
 - No MPI offloading
 - MPI_THREAD_MULTIPLE enabled.
 - Computation threads and MPI threads using thread scheduler.
 - Split the COMMUNICATOR (MPI_COMM_WORLD) to several communicators for each threads handing MPI-communication.

 L. Meadows and K.-I.I., "OpenMP Tasking and MPI in a Lattice QCD Benchmark", In: Scaling OpenMP for Exascale Performance and Portability. IWOMP 2017. Lecture Notes in Computer Science, vol 10468. Springer, Cham, (2017) 77-91.

 L. Meadows, K.-I.I., T. Boku, M. Horikoshi, "Multiple Endpoints for Improved MPI Performance on a Lattice QCD Code", Proceedings of Workshops of HPC Asia, HPC Asia '18, (2018) 67--70.

Center for Computational Sciences, Univ. of Tsukuba

IXPUG ME 2018 2018/04/24

CCS-QCD with multiple endpoints (Multi-EP)

More improvements achieved in FY2017

- Test the Multiple Endpoints facility of the 2019 Technical Preview release of Intel MPI library.
 - No MPI offloading
 - MPI_THREAD_MULTIPLE enabled.
 - Computation threads and MPI threads using thread scheduler.
 - Split the COMMUNICATOR (MPI_COMM_WORLD) to several communicators for each threads handing MPI-communication.

CCS-QCD with multiple endpoints (Multi-EP)

More improvements achieved in FY2017

- Performance comparison :
 - **Previous implementation vs New Multi-EP version**
- Communication Timing Comparison
- 16^3 x 64 Lattice
 - Prev. ver.: 4x2x2x1 MPI (16MPI), 2 MPI/node, 32 Threads/MPI
 - Multi-EP ver.: 2x2x2x1 MPI(8MPI), 1 MPI/node, 64 Threads/MPI

Version	Num. of Threads for Comm.	Solve [sec]	Mult [sec]	Mult_PRE [sec]	Mult_IN [sec]	Mult_PST [sec]	COMM [sec]
Previous	NA	13.8	5.94	0.881	2.14	2.90	5.64
	1	16.2	4.08	0.427	2.26	1.40	10.4
	2	12.5	4.04	0.429	2.16	1.45	6.37
Multi-EP	4	10.3	4.23	0.435	2.28	1.51	4.45
	6	8.42	4.14	0.450	2.02	1.67	2.51
	8	8.46	4.01	0.443	1.94	1.63	2.53

IXPUG ME 2018

2018/04/24

25

Summary

- JCAHPC is a joint resource center for advanced HPC by U.
 Tokyo and U. Tsukuba as the first case in Japan
- Full system scale applications including fundamental physics, global science, disaster simulation, material science, etc. are under development with extreme scale and getting new results
- Two JCAHPC universities lead the advanced performance tuning on many scientific codes
- ARTED (in SALMON) is an application with the highest sustained performance of Oakforect-PACS
- CCS-QCD optimization leads to Post-K supercomputer key program development