
Explicit Data Movement Machinery on Cray systems:
Time-to-solution is not the only game in town

Adrian Tate, Director, CERL
Utz-uwe Haus, Alessandro Rigazzi, Tim Dykes, Edward Fauchon-Jones,

Karthee Sivalingam, Harvey Richardson, Nina Mujkanovic, Aniello Esposito, Clement Foyer

q Data Movement is key
q Massive interest in flexibility and insulation/abstraction

q Cpu / accelerator
q Memory
q Interconnect
q Abstraction layers to not tie into an architecture

q Technical Collaboration is a must
q Challenges are too hard!
q Memory is 20x slower than 1980
q The complex memory hierarchy isn’t even here yet!

q When it does come, how will we use it?
q HPC + AI : yes but in more than DL frameworks
q Time-to-solution is not the only game in town

On my travels I hear:

• Many forms of parallelism
• Algorithmic advances
• Code optimization (Compiler & hand)
• ISA features
• Programming Models
• Performance Abstraction
• Systems Software / Operational
• Network, memory increases

Time to solution

Time to solution

I/O I/Oparallelparallel

Time to solution

Limiting resource
(# memory channels)

limiting resource
#IO channels

serialserial

Time to scientific product / insight

Forecast
Data

Assimilation
Product

Generation

Time to solution

Time to product

What does mean?

How do we optimise to be smaller?

Real-time
viz

Brain
Simulation

Brain
Simulation

Time to insight
Time to solution

NWP:

Neuro-
science:

Heavy lifting,
PFS usage
manual work

Time to insight

Time to insight

Heavy lifting,
PFS usage
manual work

Apply Cray
Tuning Magic
here please

distrbuted distrbuted distrbutedglobal global

How to start looking at this problem

qLacking in abstractions to tackle the problem
q No operators to minimise
q MPI, PGAS express data movement semantics inside job
q Distinct jobs need to export credentials
q How to represent the data, its format, its distribution

qMost importantly – parallel data needs to be
redistributed
q Ignoring the fact that data is parallel is ignoring the general

problem

Cray Data Object Model

LDO

CDO CDO

IDO IDO

TDO TDO ... TDO

... IDO

... CDO User-level

Framework level

• Format
• Distribution
• Dependence

“Octopus” Concept and Project

1. Use object hierarchy to express data dependencies
(at a task level)

2. Build a useful model of memory hierarchy
3. Resolve task graph into execution graph
4. Execute graph with data in correct resource

cdo
memory model

job1 job2

Octopus Concept

1. Use CDO to represent data dependencies
2. Build a useful model of memory hierarchy
3. Resolve task graph into execution graph
4. Execute graph with data in correct resource

There are no shortage of tools to execute task graph (185 of them in fact)

How many of those can manage the (parallel) data movement?

Universal Data Junction (UDJ)

Producer (M nodes)

MPIIO
POSIX

MPIIO
POSIX

Consumer (N nodes)
q Distribution (contig, none, cyclic)
q Format (array, HDF5, Conduit, text)

CDO CDO

q Distribution
q Format

Parallel file system

q Transport methods :
q DataSpaces
q MPI (DPM)
q Ceph rados
q DataWarp
q File-based

How the redistribution map onto Core Data Object Model

IDO

TDO

CDO

TDO

IDO

CDO

Work by Ed Fauchon-Jones, Centre for Doctoral Training in Data-Intensive Science (U. Cardiff)

Non-triviality of Producer-Consumer
Redistribution

• 2d data set dim r x c in memory
• Distributed according to some distribution scheme D1 = (G, B1)

r

c
0

1

2

3

0

1

2

0 1 2 3 0 1 2

0

1

2

3

3

0 1 2G B1

• Re-distributed according to new distribution scheme D2=(G, B2) on same grid G
• Must communicate the non-trivial intersection data (red) for every process pair

0

1

2

3

3

0 1 2G

r

c
0

1

2

3

0

1

0 1 2 3 0 1

Classical Redistribution algorithm

• For each d in #dimensions
• Consider the vector of length rd
• Divide by blocks of length bd

1 rd

P=4P=3P=2P=1

Classical Redistribution

• For each d in #dimensions
• Consider the vector of length rd
• Divide by blocks of length bd
• Map the blocks to process rows/column

P=4P=3P=2P=1

Classical Redistribution

• For each d in #dimensions
• Consider the vector of length rd
• Divide by blocks of length bprod

d
• Map the blocks to process rows/column
• Divide consumer by blocks of length bcons

d

P=4P=3P=2P=1

Classical Redistribution

• For each d in #dimensions
• Consider the vector of length rd
• Divide by blocks of length bprod

d
• Map the blocks to process rows/column
• Divide consumer by blocks of length bcons

d

P=2P=1 P=3

P=1 P=pP=1

Classical Redistribution

P=1 P=c

For each d in #Dimensions

On each producer rank:

For each p in length(consumer_grid(d))

For each loc in #NumLocalBlocks

local

remote

For each rem in #NumRemoteBlocks

P=1 P=pP=1

Classical Redistribution

P=1 P=c

local

remote

if MAX(loc2glob(loc),loc2glob(rem))<
MIN(loc2glob(loc+b1),loc2glob(rem+b2)) → Add to intersection

Intersection = i1 x i2 … id Complexity: O(#Dim . P . C . nlocal . nremote)
Ignores three types of periodicity!

For each rem in #NumRemoteBlocks

For each d in #Dimensions

On each producer rank:

For each p in length(consumer_grid(d))

For each loc in #NumLocalBlocks

P=pP=1

Exploit Periodicity of Intersection

P=1 P=c

Theorem: For a process pair (p1 , p2) successive blocks of local data are separated globally by s1l and
successive blocks of remote data are separated by s2 then for every element i in the intersection, element
i + s = LCM(s1, s2) will also be in the intersection

Source: Guo/Nakata “A Framework for Efficient Data Redistribution on Distributed Memory Multicomputers”

s1
s2

s = LCM(s1, s2)

P=p’ P=pP=1

Guo-Nakata / FALLS Redistribution

P=1 P=c

local

remote

For each loc in #NumLocalBlocks

Intersection = i1 x i2 … id
Complexity : O(#Dim . P . C .𝑛"#$%&#	𝑛"()*$+))

Still ignores 2 types of periodicity!

For each rem in #NumRemoteBlocks
Seems unnecessary

if MAX(loc2glob(loc),loc2glob(rem))<
MIN(loc2glob(loc+b1),loc2glob(rem+b2)) → Add to intersection

For each d in #Dimensions

On each producer rank:

For each p in length(consumer_grid(d))

qRemote data is of a periodic form

qWe can remove one loop if we construct periodic
(modular) relations

Exploit Periodicity of Remote Data

P=p’ P=pP=1

Exploit Periodic Remote Data

P=1 P=c

local

remote

Intersection = i1 x i2 … id

Complexity: O (#Dim . P . C .𝑛"#$%&#)

if (loc2glob(loc) % s2) <= b2 → Add to intersection

For each d in #Dimensions

On each producer rank:

For each p in length(consumer_grid(d))

For each loc in #NumLocalBlocks

P=p’ P=pP=1

Exploit Periodic Remote Data

P=1 P=c

local

remote

Intersection = i1 x i2 … id
Complexity: O(#Dim . P . C .𝑛"#$%&#)

Loop order prevents further optimisation

if (loc2glob(loc) % s2) <= b2 → Add to intersection

For each d in #Dimensions

On each producer rank:

For each p in length(consumer_grid(d))

For each loc in #NumLocalBlocks

P=f+1

P=p’ P=pP=1

Exploit Periodic Nature of Grid Data

P=f P=c

local

remote

Theorem: If local block l shares intersection with remote processor f, then if an adjacent block of length
b2 also exists, that block will share intersection with remote processor (f+1)% c, where c is the length of the
consumer grid

Source: Foyer and Tate, “Efficient data redistribution for Producer-Consumer Grids” (xarchiv)

P=f+1

P=p’ P=pP=1

Exploit Periodic Nature of Grid Data

P=f P=c

local

remote

Intersection = i1 x i2 … id
Complexity: O(#Dim . P .𝑛"#$%&# . b1/b2)

if (loc2glob(loc) % s2) <= b2 → Add to intersection

For each sub in b1 / b2
→ Add sub to intersection

For each d in #Dimensions

On each producer rank:

For each p in length(consumer_grid(d))

Results – M:N Node Redistribution

10

1000

1x1 � 2x1 2x1 � 16x2 2x1 � 2x1 2x1 � 4x8 2x1 � 8x1 4x8 � 2x1 4x8 � 4x8
P to C

Av
er

ag
e

tim
e

(µ
s)

 -
10

-b
as

ed
 lo

g

Method
1 - Classical

2 - Guo/Nakata

3 - FALLS

4 - Cray/New

Producer block size: 256x256, Consumer block size: 1024x1024
Average time for P to C redistribution (10-based log)

Results UDJ - MPI

Results UDJ - Lustre

Results – UDJ DataSpaces

Results UDJ – Ceph RADOS

UDJ on DataWarp

q Memory-and data-Aware workflow middleware

q Memory Hierarchy Abstraction Programming

q Asynchronous Task models with data migration

q Implicit usage of NVRAM

q Redistribution programming abstraction

q Customised workflow management on Shaheen?

Where Next?

KAUST Cray Centre of Excellence

Acknowledgement and Call
qSpecial thanks to CERL team and collaborators for UDJ

qFunding bodies
q HBP-PCP : UDJ development

q Plan4res EU project : Data Model
q https://www.plan4res.eu/

q MCSA-ITN EXPERTISE : data redistribution approaches
q www.msca-expertise.eu/

q Centre for Doctoral Training in Data-Intensive Science (U. Cardiff)

qContribute to UDJ and Octopus (BSD license)
q Contact adrian@cray.com for access pre-release

