EMEA RESEARCH LAB

+

.0
o
o

*
"
g
o""

et
e ot

O
ot
e ol

S DO
et

b ¢

= -
-
-

=
> =
PP B®D B

P DPPOCDPDD® DD

- -
- -
>
=
P O D&

A

~

&dbddddl JoN J &
2000000000000t
L

vY“

TELTEY

AL
)

\ g
AA‘IY

Y ""{?&A
S

A

On my travels | hear:

1 Data Movement is key

] Massive interest in flexibility and insulation/abstraction

Q Cpu/accelerator

O Memory

Q Interconnect

Q Abstraction layers to not tie into an architecture
 Technical Collaboration is a must

Q Challenges are too hard!

O Memory is 20x slower than 1980

O The complex memory hierarchy isn’t even here yet!
O When it does come, how will we use it?

 HPC + Al : yes but in more than DL frameworks
] Time-to-solution is not the only game in town

Time to solution

1/O

parallel

serial parallel

serial /0

N \

Many forms of parallelism
Algorithmic advances

Code optimization (Compiler & hand)

ISA features

Programming Models
Performance Abstraction
Systems Software / Operational
Network, memory increases

—p

Time to solution

Time to solution

>

limiting resource
#lO channels

Limiting resource
(# memory channels)

Time to scientific product / insight

=> Data F . Product
N Assimilation SHECES Generation

T|me to solutlon

Time to product

Brain Real t|me Brain
Neuro- Simulation Simulation

science: Tlme to solutlon

Time to insight

>

What does ﬁ mean?
How do we optimise ﬁ to be smaller?

\
C =AY
Q \
distrbuted > global > distrbuted > global > distrbuted > \
1 ' \
_————t s
I N === N
 Heavy lifting, N I Heavy lifting, \
1 PFS usage , I PFS usage
1 manual work / I manual work Y
B | 4 L e o om /
1,7 1,7
4 1,
® >
Time to insight
\
\
Apply Cray
Tuning Magic
here please
[>

Time to insight

How to start looking at this problem ==a~

dLacking in abstractions to tackle the problem
d No operators to minimise
a MPI, PGAS express data movement semantics inside job
Q Distinct jobs need to export credentials
ad How to represent the data, its format, its distribution

dMost importantly — parallel data needs to be

redistributed

Q Ignoring the fact that data is parallel is ignoring the general
problem

Cray Data Obiect Model

(]

[N I N I \ !
* Format

- Distribution }u CDO][[CDO][[]u

+ Dependence

e

o0 |0 |~ ([0 |

eeeeeeeeeeeeee

“Octopus” Concept and Project ='=AYf |

)
S \
\

1. Use object hierarchy to express data dependencies
(at a task level) \

2. Build a useful model of memory hierarchy
3. Resolve task graph into execution graph
4. Execute graph with data in correct resource

Octopus Concept

1. Use CDO to represent data dependencies

2. Build a useful model of memory hierarchy
3. Resolve task graph into execution graph

4. Execute graph with data in correct resource

There are no shortage of tools to execute task graph (185 of them in fact)

How many of those can manage the (parallel) data movement?

\
n = i
Universal Data Junction (UDJ) =R
e
Producer (M nodes) Consumer (N nodes)
Q Distribution (contig, none, cyclic) Q Distribution
U Format (array, HDF5, Conduit, text) Q Format

MPIIO
POSIX

MPIIO
POSIX

Q0 Transport methods :
DataSpaces
MPI (DPM)
Ceph rados
DataWarp
File-based

coooo

®
How the redistribution map onto Core Data Object Model AN
)

\

\
AV

LS

CDO

IDO | I | I
DO I [I 1 I I

O | o) o
| [EnEE |I: |

CDO |

Non-triviality of Producer-Consumer
Redistribution

e 2d data set dim r X ¢ in memory
* Distributed according to some distribution scheme D, = (G, B))

G0123

r

Re-distributed according to new distribution scheme D,=(G, B,) on same grid G
Must communicate the non-trivial intersection data (red) for every process pair

Classical Redistribution algorithm

* For each d in #dimensions
* Consider the vector of length 1,
e Divide by blocks of length by

Classical Redistribution

P=1 “ P=2 “

pP=3

P=4

* For each d in #dimensions

* Consider the vector of length 1

* Divide by blocks of length by

* Map the blocks to process rows/column

Classical Redistribution

pP=3

P=4

P=1 II P=2 "

* For each d in #dimensions

* Consider the vector of length 1

 Divide by blocks of length brrod,

* Map the blocks to process rows/column

* Divide consumer by blocks of length beons

Classical Redistribution

pP=3

P=4

P=1 " P=2 "

P=3

* For each d in #dimensions

* Consider the vector of length 1

 Divide by blocks of length brrod,

* Map the blocks to process rows/column

* Divide consumer by blocks of length beons

Classical Redistribution o

e \
e \

S |

=1 P=c l
remote | L------------- I

On each producer rank:

For each d in #Dimensions
For each p in length(consumer_grid(d))

For each loc in #NumLocalBlocks

For each rem in #NumRemoteBlocks

Classical Redistribution o

P=1 P=1 P=p
local | | |5 — | *
I I I I l

remote

On each producer rank:
For each d in #Dimensions
For each p in length(consumer_grid(d))
For each loc in #NumLocalBlocks

For each rem in #NumRemoteBlocks

if MAX(loc2glob(loc),loc2glob(rem))<
MIN(loc2glob(loc+bl),loc2glob(rem+b2)) - Add to intersection

Intersection = i; X i, ... ig Complexity: O(#Dim . P . C . " . p "o)

Ignores three types of periodicity!

Exploit Periodicity of Intersection cRasy |

[\
| P=1 | P=p : \\
< » S
— Sy — \
» >
P=1 P=c
| | | | |

s=LCM(s,, s,)

Theorem: For a process pair (p; , p,) successive blocks of local data are separated globally by s, and

successive blocks of remote data are separated by s, then for every element i in the intersection, element
i +s=LCM(s,, s,) will also be in the intersection

Source: Guo/Nakata “A Framework for Efficient Data Redistribution on Distributed Memory Multicomputers”

Guo-Nakata / FALLS Redistribution P

P=1 P=p’ P=p y
local | | |5 — | *
| | | | |

remote ‘

On each producer rank:
For each d in #Dimensions

For each p in length(consumer_grid(d))

For each loc in #NumLocalBlocks
Seems unnecessary
For each rem in #NumRemoteBlocks

if MAX(loc2glob(loc),loc2glob(rem))<
MIN(loc2glob(loc+bl),loc2glob(rem+b2)) - Add to intersection

Intersection =i, xi,...iy, T e —=—eeal

Still ignores 2 types of periodicity!

Exploit Periodicity of Remote Data cmas,

(1Remote data is of a periodic form

(1We can remove one loop if we construct periodic
(modular) relations

Exploit Periodic Remote Data ——

P=1 P=p’ P=p y
local | | |5 — | *
| | | | |

remote \

On each producer rank:
For each d in #Dimensions
For each p in length(consumer_grid(d))

For each loc in #NumLocalBlocks

if (loc2glob(loc) % s2) <= b2 - Add to intersection

TUOUTOCT

Intersection =i, X i, ... iq

Exploit Periodic Remote Data ——

P=1 P=p’ P=p y
local | | Iy — | ‘
| | | | |

remote \ ’

On each producer rank:

For each d in #Dimensions

Loop order prevents further optimisation

For each p in length(consumer_grid(d))

For each loc in #NumLocalBlocks

if (loc2glob(loc) % s2) <= b2 - Add to intersection

Intersection =i, X i, ... iq

LA A = 2 Zrg

Exploit Periodic Nature of Grid Data cRas

local | | |5 — | *
| | | | !

remote | | Pof | | sz:’l | -
| 1 |) | [l}

Theorem: If local block l shares intersection with remote processor f, then if an adjacent block of length
b2 also exists, that block will share intersection with remote processor (f+1)% c, where c is the length of the
consumer grid

Source: Foyer and Tate, “Efficient data redistribution for Producer-Consumer Grids” (xarchiv)

Exploit Periodic Nature of Grid Data cRas

P=1 P=p’ P=p y
local | | Iy — | ‘
| | | | |
B [B E K [E B B | F B B |
q | | | g | | r | | | \

remote | | Pof _| | P+l | I P—c
| 1 | I 1 I | [T

On each producer rank:

For each d in #Dimensions
For each p in length(consumer_grid(d))
if (loc2glob(loc) % s2) <= b2 - Add to intersection

For each sub in bl / b2
— Add sub to intersection

Intersection =i, xi,...0l4, T T o€&

Results — M:N Node Redistribution

Average time (us) - 10-based log

1000 -

1x1 E2x1

2x106x2

Average time for P to C redistribution (10-based log)
Producer block size: 256x256, Consumer block size: 1024x1024

2x1 I2x1I

2x1 IIZXB
PtoC

2x1 Bx1

4x8 II2x1

4x8 Bx8

Method

. 1 - Classical

. 2 - Guo/Nakata

s Faus
. 4 - Cray/New

Results UDJ - MPI

Aggregated Bandwidth - 1:16 Total Nodes
65536 -

32768

16384 -
8192

4096 F il
2048 S /S

1024 Pl il il il

512

256
128

=] producer 1 consumer

===) producer 2 consumer

Bandwidth (MB/s)
2

_===4 producer 4 consumer

05 +

=8 producer 8 consumer
~ e——0SU

0.25
0.125

0.0625 -

0.03125

T T T T T T T T

Voo (@ a0 AV o P AC
O P A P A P A
B S S

Message Size (Bytes)

TR R R S
& S e 4

T T T T T T T T 1

Results UDJ - Lustre

1024

0.5

0.25

0.125
0.0625
0.03125
0.015625
0.0078125
0.0039063
0.0019531
0.0009766
0.0004883

Bandwidth (MB/s)

0.0001221

3.052E-05

UDJ FS-Lustre Aggregated Bandwidth 1:16 nodes, 1 rank per node

—

/;—7’

-
S =~

@] Producer 1 Consumer

esmm? Producers 2 Consumers

w4 Producers 4 Consumers

0.0002441 -

8 Producers 8 Consumers

6.104E-05 -

T

Y 9 L O > D D A D o O AV > P Ao &L © N > o o >
R AL G PSS SR AP S R . AN g g i PO P L e
A M G A SR SR U A SR AN S AR R R . I S

N W PSS W E A

»%@,;9‘,»@6,%@’\

Size (Bytes)

Results — UDJ DataSpaces

8192

Dataspaces Aggregated Bandwidth: 1:8 Total Nodes & 1 Server Node

4096

2048

1024

===1 producer 1 consumer Put

=1 producer 1 consumer Get

=== producers 2 consumer Put

=== producer 2 consumer Get

===4 producer 4 consumer Put

«=4 producer 4 consumer Get

Bandwidth (MB/s)

===8 producer 8 consumer Put

===8 producer 8 consumer Get

0.25

o > @ © VRS & £ v » > A
¢ ¢ & & @ 3 % 5 $ N A
® é g o 3 &
v B & 3 & & &

Message Size (Bytes)

Results UDJ — Ceph RADOS

Bandwidth (MB/s)

2048
1024

0.125 +

0.0625

0.03125

0.015625
0.0078125
0.0039063
0.0019531
0.0009766
0.0004883
0.0002441

e \
Ceph-RADOS Aggregated Bandwidth: 1 Producer Node, 1 Consumer Node, 1:64 ranks per Node) \
\
e N
= —~ \

/ : .,/ ” / e1v] Put
ll / / —1v] Get
S 7 ——"
v 7 s———qv4 Put
4vd Get
8v8 Put
8v8 Get

w—16v16 Put

—16v16 Get

32v32 Put

32v32 Get

e—t4v64 Put

64v64 Get

DOS BENCH WRITE
=== RADOS BENCH READ
@ o &P PGS S P
& P & ’&,6" Wé\” &v‘-" g?’# é\,(\’\- ég),_;? p & ,;_9-".'6\

Message Size (Bytes)

UbDJ

on DataWarp

FS Datawarp Transport : 1 Producer Node, 1 Consumer node, 1:28 ranks per node A \

4096
2048
1024

0.5
0.25
0.125
0.0625

Bandwidth (MB/s)

0.03125
0.015625
0.0078125

0.0019531
0.0009766
0.0004883
0.0002441

0.0039063

@] Producer 1 Consumer

e Producers 2 Consumers

e/ Producers 4 Consumers

e===8 Producers 8 Consumers

@14 Producers 14 Consumers

=) 8 Producers 28 Consumers

v

S S S Y S s M S S © O > @ Ao & SR S >
WA EFI PP I TS ST TSI TSP E PSS
AT T T Y G P F N P W
A g S P AN RS nR UL AP
S SR AN PR A S
A IR

Size (Bytes)

Where Next? gt
MAESTRO

DATA ORCHESTRATION \\

d Memory-and data-Aware workflow middleware
PIULCH cmas CECMWF @lecsocs Dircars sgamete (B0

(J Memory Hierarchy Abstraction Programming

‘ epCC ‘ ETH:i cCRANY Z Fraunhofer

ITwMm

 Asynchronous Task models with data migration

KAUST Cray Centre of Excellence O|Qm nNes
0 Implicit usage of NVRAM &

O Redistribution programming abstraction

O Customised workflow management on Shaheen?

Acknowledgement and Call cRas

Q \
e \
\

1 Special thanks to CERL team and collaborators for UDJ

O Funding bodies @,3 |
a HBP-PCP : UDJ development i

Human Brain Project

Q Plandres EU project : Data Model ®
Q https://www.plan4res.eu/ DlOeS

O MCSA-ITN EXPERTISE : data redistribution approaches
O www.msca-expertise.eu/ EXPERTISE

O Centre for Doctoral Training in Data-Intensive Science (U. Cardiff)

[Contribute to UDJ and Octopus (BSD license)
O Contact adrian@cray.com for access pre-release

