
Jeff Hammond
Exascale CoDesign, Data Center Group, Intel Corporation

Acknowledgements: Tim Mattson, Rob van der Wijngaart, Alex Duran, Jim Cownie, Alexey Kukanov,
Tom Scoglund and the rest of the RAJA team at LLNL, CodePlay SYCL team, …

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

2

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Additional Disclaimer

I am not an official spokesman for Intel. I do not speak for my
collaborators, whether they be inside or outside Intel.

I work on system pathfinding and workload analysis, not
software products. I am not a developer of Intel software tools.

You may or may not be able to reproduce any performance
numbers I report, but the code is on GitHub and I will provide
anything else you need to attempt to reproduce my results.

Hanlon’s Razor (blame stupidity, not malice).

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Title:

Evaluating data parallelism in C++ programming models using the Parallel Research Kernels

Abstract:

Modern C++ provides a wide range of parallel constructs in the language itself, as well as tools to implement general
and domain-specific parallel frameworks for both CPUs and accelerators. Examples include Threading Building
Blocks (TBB), RAJA, Kokkos, HPX, Thrust, SYCL, and Boost.Compute, which complement the C++17 parallel STL. This
talk will describe our attempts to systematically compare these models against lower-level models like OpenMP and
OpenCL. One goal is to understand the tradeoffs between performance, programmability and portability in these
frameworks to educate HPC programmers. The experiments are based on the Parallel Research Kernels
(https://github.com/ParRes/Kernels/), which is a collection of application proxies associated with high-performance
scientific computing applications such as partial differential equation solvers, deterministic neutron transport, 3D Fast
Fourier Transforms, and dense linear algebra.

Bio:

Jeff Hammond is Senior System Architect in the exascale co-design team at Intel. His research interests include
computational chemistry, numerical linear algebra, parallel programming models, and high-performance computing
system architecture. He contributes to the development of the open standards for parallel computing (MPI, OpenMP,
OpenSHMEM, ISO C++) and a wide range of open-source software (e.g. NWChem). He received the IEEE Technical
Committee on Scalable Computing (TCSC) Young Achiever Award for work on massively parallel scientific computing.
Prior to joining Intel, he worked at Argonne Leadership Computing Facility. He received his PhD in chemistry from the
University of Chicago, where he was a Department of Energy Computational Science Graduate Fellow (DOE-CSGF). For
more information, please see https://github.com/jeffhammond.

https://github.com/ParRes/Kernels/
https://github.com/jeffhammond

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Outline

• Background and context

• Description of C++ programming models

• OpenMP™, OpenCL™ (baselines)

• KOKKOS, RAJA, TBB, parallel STL (primary)

• SYCL™ (secondary)

• Experimental results with Parallel Research Kernels

• KNL (Intel® Xeon™ Phi 7250 processor)

• SKX (Intel® Xeon® Platinum 8180 processor)

This talk is not intended
to be a tutorial!

This talk is not about
performance tuning!

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

• To MPI or not to MPI…

• One-sided vs. two-sided?

• Does your MPI/PGAS need a +X?

• Static vs. dynamic execution model?

• What synchronization motifs
maximize performance across scales?

Application programmers can afford to
rewrite/redesign applications zero to one
times every 20 years…

HPC software design challenges (2016)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

• Intranode parallelism is growing
much fast than internode…

• Intranode parallelism is far more
diverse than internode parallelism.

• After ~20 years, internode behavior is
converged to some subset of MPI-3.

• Big Cores, Little Cores, GPU, FPGA all
require (very) different programming
models.

HPC software design challenges (2018)

How do we maximize productivity+performance+portability?

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

I study molecular dynamics, but to tell the
truth I am interested more in the dynamics
than in the molecules, and I care most about
questions of principle.

Phil Pechukas, Columbia University Chemical Physics Professor

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

I study C++ parallelism, but to tell the truth I
am interested more in the parallelism than
in the C++, and I care most about questions
of practice.

Please don’t critique my C++ - I don’t claim to be an expert. I stop when the code runs correctly.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Why C++ parallelism?

• C++ is a kitchen sink language – it has pretty much every feature that exists
in programming languages (other than simplicity and orthogonality).

• Used across essentially all markets/domains where parallelism or
performance matter.

• Fortran and Rust usage domain-specific.

• Interpreted languages do not satisfy performance requirements.

• C++ can be extended to do all sorts of things within the language itself.
Variadic templates for fun and profit!

• Mattson’s Law: No new languages!

* Named for Tim Mattson. I’m the only one who refers to this as such.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Overview of Parallel C++ models

• TBB (Intel OSS) - parallel threading abstraction for CPU*.

• KOKKOS (Sandia) – parallel execution and data abstraction for CPU and GPU
architectures (OpenMP, Pthreads, CUDA, …).

• RAJA (Livermore) – parallel execution for CPU and GPU architectures
(OpenMP, TBB, CUDA, …). CHAI adds GPU data abstraction.

• PSTL (ISO standard) – parallel execution abstraction for CPU architectures;
designed for future extensions for GPU, etc. (e.g. Thrust and HPX).

• SYCL (Khronos standard) - parallel execution and data abstraction that
extends the OpenCL model (supports CPU, GPU, FPGA, …).

PSTL = Parallel STL, meaning C++17 plus executor extensions (proposed for standard)
* We exclude TBB flowgraph support for OpenCL nodes for the purposes of this study.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14OpenMP TR6 is 671 pages (compare to MPI 3.1, which is 868).

New Stuff (5)

Tasks (3,4), Taskloop (4)
Target-Teams-Distribute (4)

SIMD (4)
Atomics (3)

Parallel, For, Sections,
Single, Critical, Flush,

Barrier (2)

OpenMP

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

sync
okay

sync

OpenCL 2 is a bit more
complicated, but doesn’t change

the execution model.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Simple data parallelism

// OpenMP
#pragma omp parallel for simd
for (size_t i=0; i<length; i++) {

A[i] += B[i] + scalar * C[i];
}

// OpenCL
__kernel void axpy(int length, double scalar, __global double * A …) {

int i = get_global_id(0);
if (i<length) {

A[i] += B[i] + scalar * C[i];
}

}

We use std::vector unless otherwise noted.

Fun fact: STL containers cannot support
NUMA in their current definition. This must

be fixed to address NUMA before we can
consider accelerator data.

The host C/C++ code required to invoke OpenCL
kernels is nontrivial, which discourages usage,
although it is essential for runtime portability.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

STL – sequential and parallel

auto b = std::begin(range);
auto e = std::end(range);

// Sequential STL
std::for_each(b, e, [&] (size_t i) {

A[i] += B[i] + scalar * C[i];
});

// Parallel STL: par_unseq = threads+vector
std::for_each(pstl::execution::par_unseq, b, e, [&] (size_t i) {

A[i] += B[i] + scalar * C[i];
});

We capture by reference because
that is required to modify A when

using an STL vector. Value capture
works with raw pointers.

Parallel STL with ranges TS is in the
works, which will eliminate b and e.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

TBB

// affinity control
tbb::static_partitioner tbb_partitioner;

// specify a block size rather than relying on recursive bisection
tbb::blocked_range<size_t> range(0, length);

tbb::parallel_for(range, [&](decltype(range)& r) {
for (auto i=r.begin(); i!=r.end(); ++i) {

A[i] += B[i] + scalar * C[i];
}

}, tbb_partitioner); Note that TBB currently exposes the inner loop(s) explicitly,
which gives the programmer control over SIMD. The inner

loop can be hidden (and is in tbb::for_each).

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

KOKKOS and RAJA

Kokkos::View<double*, Kokkos::OpenMP> A("A", length);
Kokkos::parallel_for(length, KOKKOS_LAMBDA(const size_t i) {

A[i] += B[i] + scalar * C[i];
});

typedef RAJA::omp_parallel_for_exec thread_exec;
RAJA::forall<thread_exec>(0, length, [&] (RAJA::Index_type i) {

A[i] += B[i] + scalar * C[i];
});

KOKKOS_LAMBDA enforces value capture and requirements of device compilation.
This is unnecessary for CPU execution. RAJA has something similar for GPUs.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SYCL

sycl::cpu_selector device_selector; // host, cpu, gpu (default), acc
sycl::queue q(device_selector);
sycl::buffer<double> d_A { h_A.data(), h_A.size() };
..
q.submit([&](sycl::handler& h) {

auto A = d_A.get_access<sycl::access::mode::read_write>(h);
..
h.parallel_for<class foo>(sycl::range<1>{length}, [=] (sycl::item<1> i) {

A[i] += B[i] + scalar * C[i];
});

}); q.wait();

SYCL is based on the OpenCL 1.2 specification, which
is limiting. This is an area of active development.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

TBB (matrix reduction)

tbb::blocked_range2d<int> range(0, order, tile_size, 0, order, tile_size);

norm2 = tbb::parallel_reduce(range, double(0),
[&](decltype(range)& r, double temp) -> double {

for (auto i=r.rows().begin(); i!=r.rows().end(); ++i) {
for (auto j=r.cols().begin(); j!=r.cols().end(); ++j) {

temp += std::fabs(A[i*order+j]);
}

}
return temp;

},
[] (const double x1, const double x2) { return x1+x2; },
tbb_partitioner);

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

KOKKOS (matrix reduction)

double norm2(0);
Kokkos::parallel_reduce(team_policy(order, Kokkos::AUTO),

KOKKOS_LAMBDA(const member_type & teamMember,
double & update) {

const int i = teamMember.league_rank();
double temp(0);
Kokkos::parallel_reduce(Kokkos::TeamThreadRange(teamMember, order),

[&](const int j, double & inner) {
inner += std::fabs(A(i,j));

}, temp);
Kokkos::single(Kokkos::PerTeam(teamMember), [&] () {

update += temp;
});

}, norm2);

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

RAJA (matrix reduction)

template <typename loop_policy, typename reduce_policy>
double Norm2(int order, std::vector<double> & A)
{

// seq_exec disables vectorization in the inner loop
typedef RAJA::NestedPolicy<RAJA::ExecList<loop_policy, RAJA::seq_exec>> exec_policy;

RAJA::ReduceSum<reduce_policy, double> abserr(0.0);

RAJA::forallN<exec_policy>(range(0, order), range(0, order), [=,&A](indx i, indx j) {
norm2 += std::fabs(A[i*order+j]);

});
return norm2;

}

auto norm2 = Norm2<RAJA::omp_parallel_for_exec, RAJA::omp_reduce>(order,B);

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26http://sc16.supercomputing.org/sc-archive/src_poster/poster_files/spost120s2-file1.pdf

Advanced RAJA

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

Model for forN reduce scan Hierarchy/Composition
TBB::parallel Y Y Y Y Threads
C++17 PSTL Y N^ Y Y Threads+SIMD
RAJA Y Y Y Y Threads+SIMD; CUDA
KOKKOS Y Y Y Y Team+Thread+SIMD
Boost.Compute Y N*^ Y Y N
SYCL Y 3 N N N
OpenCL 1.x Y 3 N N N
OpenMP 5 Y Y Y 5 Y**

* Boost.Compute supports embedded OpenCL, which in turn exposes 3D loop nests.
** OpenMP nested parallelism is unpleasant. You can nest “parallel for” or switch paradigms

to “taskloop” and give up on accelerator support.
^ One can always implement a collapsed N-d loop but that adds div/mod to loop body.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

• TBB

• Nested, blocked forall w/ affinity
control and load-balancing

• RAJA

• Nested, blocked, permuted forall w/
fine-grain policy control.

• KOKKOS

• Nested, blocked, permuted forall.

• C++17 (parallel STL)

• Parallel STL evolving towards GPU etc.

• Boost.Compute

• Effectively parallel STL over OpenCL.

• SYCL

• OpenCL execution model

• Parallel STL over SYCL exists*.

HPC-like vs STL-like vs OpenCL-like

* https://github.com/KhronosGroup/SyclParallelSTL

STL-like

OpenCL-like

HPC-like

The HPC-like models capture the popular OpenMP idioms while hiding complexity.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

https://github.com/ParRes/Kernels/tree/master/Cxx11

Star-
shaped
stencil

https://github.com/ParRes/Kernels/tree/master/Cxx11

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

PRK stencil: C++ implementations on KNL

https://github.com/intel/parallelstl

0

50000

100000

150000

200000

250000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000

Pe
rf

or
m

an
ce

 (M
F/

s)

Grid Dimension

C++11/Kokkos

C++11/OpenMP

C++11/RAJA

C++11/Taskloop

C++11/TBB

C++17/PSTL

TBB wins because of blocking.

PSTL @ TBB* is not using blocking because it isn‘t expressable.

OpenMP taskloop dynamic scheduling is worse than TBB.

OpenMP wins because
of static scheduling, affinity.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
36

Improved PRK stencil on KNL (MCDRAM flat)

0

50000

100000

150000

200000

250000

1000 4000 7000 10000 13000 16000

pe
rf

or
m

an
ce

 (M
F/

s)

grid dimension

OpenMP no affinity

OpenMP scatter

OpenMP compact

TBB

Taskloop(1)

TBB wins because of scheduling affinity.
OpenMP wins because

of static scheduling, affinity.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
40

PRK stencil - Intel Core i7-5960X

35
26

4.
7

33
07

0

27
49

3.
9

35
44

2.
7

83
33

.4

33
38

0 37
96

9.
1

33
39

3.
1

29
91

2.
6

3000

PE
RF

O
RM

AN
CE

 (M
F/

S)
Kokkos OpenCL OpenMP 32 OpenMP 128 SYCL 2D SYCL 1D RAJA PSTL TBB

SYCL indexing makes a huge difference on performance.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
43

Summary

• KOKKOS and RAJA are zero-overhead abstractions on top of OpenMP.

• KOKKOS and RAJA provide a path to portability across architectures.

• TBB offers productive performance advantages relative to OpenMP on CPUs.

• PSTL (based on TBB in Intel’s implementation) works well on CPUs but is
limited by STL semantics.

• SYCL unifies STL and single-source with OpenCL execution model.

• PSTL portability requires evolution of C++ towards HPX, Thrust…

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
44

References
• R. F. Van der Wijngaart, A. Kayi, J. R. Hammond, G. Jost, T. St. John, S.

Sridharan, T. G. Mattson, J. Abercrombie, and J. Nelson. ISC 2016. Comparing
runtime systems with exascale ambitions using the Parallel Research Kernels.

• E. Georganas, R. F. Van der Wijngaart and T. G. Mattson. IPDPS 2016. Design
and Implementation of a Parallel Research Kernel for Assessing Dynamic
Load-Balancing Capabilities.

• R. F. Van der Wijngaart, S. Sridharan, A. Kayi, G. Jost, J. Hammond, T.
Mattson, and J. Nelson. PGAS 2015. Using the Parallel Research Kernels to
study PGAS models.

• R. F. Van der Wijngaart and T. G. Mattson. HPEC 2014. The Parallel Research
Kernels.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

46

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
48

Standard methods

• NAS Parallel Benchmarks

• Mini Applications
(e.g. Mantevo, LULESH)

• HPC Challenge

There are numerous examples of
these on record, covering a wide range
of programming models, but is source
available and curated*?

What is measured?

• Productivity (?), elegance (?)

• Implementation quality
(runtime or application)

• Asynchrony/overlap

• Semantics:

• Automatic load-balancing (AMR)

• Atomics (GUPS)

• Two-sided vs. one-sided, collectives

Programming model evaluation

* PRK curation is currently active. - no future commitment, but you can GitHub fork and carry the torch.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
49

Goals of the Parallel Research Kernels
1. Universality: Cover broad range of performance critical application patterns.

2. Simplicity: Concise pencil-and-paper definition and transparent C reference
implementation. No domain knowledge required.

3. Portability: Should be implementable in any sufficiently general
programming model.

4. Extensibility: Parameterized to run at any scale. Other knobs to adjust
problem or algorithm included.

5. Verifiability: Automated correctness checking and built-in performance
metric evaluation.

6. Hardware benchmark: No! Use HPCChallenge, Xyz500, etc. for this.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
50

• Dense matrix transpose
• Synchronization: global
• Synchronization: point to point
• Scaled vector addition
• Atomic reference counting
• Vector reduction
• Sparse matrix-vector multiplication
• Random access update
• Stencil computation
• Dense matrix-matrix multiplication
• Branch
• Particle-in-cell (new)
• (more in progress)

Outline of PRK Suite

tra
nsp

ose

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

Star-
shaped
stencil

Static kernels

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
51

PRK implementations - part 1
• Serial (C89)
• OpenMP (C89)
• MPI1 – MPI two-sided
• Also support FG-MPI (UBC) and AMPI (UIUC)

• MPIOMP – MPI two-sided with local OpenMP
• MPISHM – MPI two-sided with MPI-3 shared-memory
• MPIRMA – MPI one-sided communication (multiple flavors)
• SHMEM (C89)
• UPC
• Grappa (C++)
• Charm++ (C++)
• Chapel
• Fortran 2008 coarrays

Serial C, OpenMP, and MPI
support most of the PRKs.
Synch_p2p, Stencil and
Transpose are primary
targets for evaluation.

In progress (?):
Legion (Stanford)

HPX (LSU & IU)
OCR (Rice/Intel)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
52

• Fortran, C, C++
• Serial
• OpenMP
• OpenMP taskloop
• OpenMP target

• Fortran
• pretty (intrinsics/colon notation)
• OpenACC

• C++
• (P)STL (C++17)
• TBB
• RAJA
• Kokkos
• OpenCL
• Async (transpose only)
• CUDA (transpose only)

• C, C++
• Cilk
• Threads (transpose only)

PRK implementations - part 2

Stencil and Transpose are both
data-parallel and are implemented
in a wide range of models using
parallel loops using TOVI (Thread
Outer, Vector Inner).

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
53

Inner-loop / anti-diagonals
§ All: Serial, OpenMP
§ Fortran: OpenACC
§ C++: TBB, OpenCL, RAJA

Task-based
§ All: OpenMP tasks
§ C++: TBB (in-progress)

Wavefront loops
§ All: OpenMP doacross (bad impls.)

All = C, C++, Fortran

PRK implementations - part 3

Synch_p2p exemplifies the
wavefront pattern, which is
amenable to task parallelism,
inefficient data parallelism, etc.

sequential sweep

Parallel loop
Task dependency

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
54

• Python
• Native
• Numpy (intrinsics or colon notation)

• Julia
• Loops

• Octave (Matlab)
• Loops
• Pretty (intrinsics or colon notation)

• Rust

PRK implementations - part 4

Both Python and Julia support
ParallelAccelerator, but this is not
implemented yet.

Rust is a hard language to learn.
The PRK implementation is the
first and only Rust code I’ve ever
written.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
55

for i in range(1,m):
for j in range(1,n):

grid[i][j] = grid[i-1][j]
+ grid[i][j-1]
- grid[i-1][j-1]

grid[0][0] = -grid[m-1][n-1]

• Proxy for discrete ordinates
neutron transport (e.g. PARTSN);
much simpler than SNAP proxy.

• Proxy for dynamic programming,
which is used in sequence
alignment (i.e. bioinformatics).

• Wraparound to create dependency
between iterations.

Synch point-to-point

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

56

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
57

B[2:n-2,2:n-2] += W[2,2] * A[2:n-2,2:n-2]
+ W[2,0] * A[2:n-2,0:n-4]
+ W[2,1] * A[2:n-2,1:n-3]
+ W[2,3] * A[2:n-2,3:n-1]
+ W[2,4] * A[2:n-2,4:n-0]
+ W[0,2] * A[0:n-4,2:n-2]
+ W[1,2] * A[1:n-3,2:n-2]
+ W[3,2] * A[3:n-1,2:n-2]
+ W[4,2] * A[4:n-0,2:n-2]

• Proxy for structured mesh
codes. 2D stencil to
emphasize non-compute.

• Supports arbitrary radius
star and square stencils via
code generator for C11 and
C++ models, which was
inspired by OpenCL.

Stencil

Star-
shaped
stencil

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
58

for i in range(order):
for j in range(order):

B[i][j] += A[j][i]
A[j][i] += 1.0

• Proxy for 3D FFT, bucket sort…

• Local transpose of square tiles
supports blocking to reduce TLB
pressure.

Transpose

tra
nsp

ose

