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This is a Cross-Organization Team Effort!



• Deep Learning (CNN, RNN, LSTM) is becoming the next “Killer” 

App

• It exhibits very regular compute patterns which can be performed 

at lower precision

• CNN even work with a couple of bits

• RNN/LSTM require a bit higher precision, but by far not FP64

• The most common kernel is GEMM and convolution which both 

map to long chains of many independent inner products

• Convolutions even exhibit greater spatial and temporal locality 

than GEMM

• Intel (->QFMA) and Nvidia (->TensorCore) have announced 

special function units to speed up matrix multiplications
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What are Deep Learning’s Compute Requirements



• Mixed Precision 

• leverage high amount of lower precision flops

• Running preconditioner with very low precision

• Evaluation if solvers can be run with FP32 instead of FP64

• Regular/GEMM type of compute in combination with low BW requirements

• High-order Methods

• GEMM-like kernels

• Good locality of order is chosen sufficiently high

• May become BW bound when being used in implicit fashion 

• Additional locality: Fused Simulations + High Order Methods (more in this 

presentation)
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What do we have to do to harvest this for HPC



Intel Xeon Phi 72x0 Core & VPU

Balanced power efficiency, single thread 

performance and parallel performance

2-wide Out-of-order core 

4 SMT threads

 72 in-flight instructions. 

 6-wide execution 

 64 SP and 32 DP Flop/cycle

 Two-level TLB. Large page support

 Gather/Scatter engine 

 Unaligned load/store

 Core resources shared or dynamically 

repartitioned between active threads

 General purpose IA core

 Cache BW: 

– 2 line read L1$, 1line write L1$

– 0.5 line read L2$, 0.25 line write L2$
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The Intel Xeon Phi 72x5 VPU (Knights Mill)

Schematic of the QFMA instruction which implements a matrix vector

multiplication, M = 16; N = 1; K = 4 with a latency of 13 cycles.
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Two Representative Codes for Seismic WP

Finite difference scheme: 4th order 

in space, 2nd order in time

Staggered-grid, velocity/stress 

formulation of elastodynamic

eqns with frequency dependent 

attenuation

Memory bandwidth bound

AWP-ODC-OS EDGE

Discontinuous Galerkin Finite 

Element Method (DG-FEM)

Unstructured tetrahedral meshes

Small matrix kernels in inner loops

Compute bound for higher orders
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Architecture Comparison

Xeon Phi KNL 7290:

2x speedup over 

NVIDIA K20X; 97% of 

NVIDIA Tesla P100

performance

Memory bandwidth 

accurately predicts 

performance of 

architectures (as 

measured by STREAM 

and HPCG-SpMv)

AWP-ODC-OS

Single node performance comparison of AWP-ODC-OS on a variety of 

architectures. Also displayed is the bandwidth of each architecture, as 

measured by a STREAM and HPCG-SpMv [ISC_17_2]. 



Algorithm: ADER DG-FEM



Connecting Two Worlds

Accurate earthquake simulations

 Unstructured tet meshes for high 

geometric complexities

 High order DG-FEM for numerical 

efficiency, face-only stencils, and low 

dispersion errors

 Many elements for resolved, high 

frequencies

Big computers

 Vectorization: SIMD

 (Shared memory parallelization for 

manycore architectures)

 (Distributed memory parallelization for 

thousands of nodes)

Cori @ NERSC, image: http://www.nersc.gov/news-publications/nersc-news/nersc-center-

news/2015/early-users-to-test-new-burst-buffer-on-cori/

Example of hypothetical seismic wave propagation with mountain topography using 

EDGE. Shown is the surface of the computational domain covering the San Jacinto fault 

zone between Anza and Borrego Springs in California. Colors denote the amplitude of 

the particle velocity, where warmer colors correspond to higher amplitudes.



Fully Discrete Form

Time

Volume

Flux

Local Update

Neighboring Update

Implemented as two functions 

(local, neighboring).

These drive the performance of 

the entire code.
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EDGE’s Compute Kernels

Small Matrix-Matrix multiplications, (convergence order 6): 9𝑥9, 56𝑥9, 56𝑥35

A priori known sparsity patterns



Illustrative example of offline code generation for an O4 (P3) elements stiffness matrix multiplication.

Shown are intrinsics for a sparse matrix-matrix multiplication and the SSE3 vector instruction set.

Remark: EDGE uses assembly kernels, obtained through just-in-time code generation, and fully 

vectorized AVX-512 instructions for sparse kernels through fused simulations [ISC17].Our solution: JIT-based coding via

LIBXSMM: 

https://github.com/hfp/libxsmm/

https://github.com/hfp/libxsmm/
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EDGE LOH.1 Benchmark Performance, all dense
9
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Mixed / Lower Precision
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What about FP32 vs. FP64 for Convergence?
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FP32 vs. FP64 for the LOH.1 Benchmark



Fused Simulations
(or how to leverage unbalanced SIMD platforms 

efficiently for scientific computing)
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Fused Simulations

Illustration of fused simulations in EDGE for the 

advection equation using line elements. Top: Single 

forward simulation, bottom: 4 fused simulations.

Illustration of the memory layout for fused simulations in EDGE. Shown 

is a third order configuration for line elements and the advection 

equation. Left: Single forward simulation, right: 4 fused simulations

Exploits inter-simulation parallelism:

 Full vector operations, even for sparse matrix 

operators

 Automatic memory alignment 

 Read-only data shared among all runs

 Lower sensitivity to latency (memory & 

network)
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Fused Simulations:

Performance
Orders: 2-6 (non-fused), 2-4 (fused)

Unstructured tetrahedral mesh: 350,264 

elements

Single node of Cori-II (68 core Intel Xeon 

Phi x200, code-named Knights Landing)

EDGE vs. SeisSol (GTS, git-tag 201511)

Speedup: 2-5x

LOH.1 Benchmark: Example mesh 

and material regions [ISC16_1]

Speedup of EDGE over SeisSol (GTS, git-tag 201511). Convergence rates O2 − O6: single 

non-fused forward simulations (O2C1-O6C1). Additionally, per-simulation speedups for 

orders O2−O4 when using EDGE’s full capabilities by fusing eight simulations (O2C8-

O4C8).  [ISC17_1]



SIMD



Code Generation Via LIBXSMM
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K1 is trivially vectorize-able and block-able, we cannot leverage any matrix 

multiplication instruction without transposing the DOF tensor, but FLOPs are 

very low, so we don’t care that much. 



K2 Kernel Code Jitter
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Platforms Tested
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Kernel Performance out of hot L1$
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FLOP-weighted average over all EDGE kernels

• KNL achieves 50% peak, (recall big GEMM is at 78% peak), 

here we do sparse*dense GEMM, overheads from 

exposed latencies (number of independent FMAs low)

• KNM is at up to 40% for FP32 and up to 80% for FP64

• SKX is at up to 70% peak



Performance for the LOH.1 benchmark in 16 nodes
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Dark grey: non-fused simulation

Light grey: fused simulation



Scaling
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Reaching 10+ PFLOPS (FP64)

Regular cubic mesh, 5 Tets

per Cube, 4th order (O4) 

and 6th order (O6)

Imitates convergence 

benchmark

276K elements per node

1-9000 nodes of Cori-II (9000 

nodes = 612,000 cores)

O6C1 @ 9K nodes: 10.4 

PFLOPS (38% of peak)

O4C8: @ 9K nodes: 5.0 

PFLOPS (18% of peak)

O4C8 vs. O4C1 @ 9K nodes:

2.0x speedup Weak scaling study on Cori-II. Shown are hardware and non-zero peak efficiencies in flat 

mode. O denotes the order and C the number of fused simulations [ISC17_1].
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Unstructured tetrahedral 

mesh: 172,386,915 

elements

32-3200 nodes of Theta 

(64 core Intel Xeon Phi 

x200,

code-named Knights 

Landing)

3200 nodes = 204,800 

cores

O6C1 @ 3.2K nodes: 3.4 

PFLOPS (40% of peak)

O4C8 vs. O4C1 @ 3.2K 

nodes:

2.0x speedup Strong scaling study on Theta. Shown are hardware and non-zero peak efficiencies 

in flat mode. O denotes the order and C the number of fused simulations [ISC17_1].

100x

50x

Strong at the Limit: 50x and 100x



• Both, FDM and DG-FEM, can be efficiently mapped to wide-SIMD 

architectures

• Keep memory movement in mind

• We need hardware aware formulation of kernels

• Expect no magic from compiler 

• Lower precision needs to play an important role in these days as it sees 

enormous increase due to deep learning!

• DG-FEM (and SEM) can leverage architectural features which are intended to 

boost Deep Learning

• Fused simulations are new direction to further keep up with increasing 

flop/byte ratios 
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Conclusions
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