
Unstructured Computations on Knights

Landing Architecture

Mohammed A. Al Farhan and David E. Keyes

Extreme Computing Research Center
King Abdullah University of Science and Technology

Intel Extreme Performance Users Group (IXPUG)
Middle East Conference 2018 at KAUST
April 22-25, 2018 • Thuwal, Saudi Arabia

April 24, 2018

Highlights of the Contributions

Address the classical tension between unstructured data (indirect addressing) and
highly structured architectures (vector instructions)

Algorithm: nonlinearly implicit pseudo-transient Newton-Krylov-Schwarz solver

Application: computational aerodynamics (Gordon Bell winning NASA legacy code)

Architecture: Intel Xeon Phi “Knights Landing”

AVX-512CD instructions provide new solutions for conflicting objectives

Independence of writes versus memory locality

Finest-grain implementation of PETSc-FUN3D to exploit language features

Gains in wall-clock time 2.9x over scalar compilation for strong thread scaling

Distributed-memory not addressed here; proven for two decades in weak scaling

Gains in energy-to-solution for a given wall-clock time up to 1.7x

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 1 / 39

Outline

1 Application – Computational Aerodynamics

2 Shared-memory Optimizations and Tuning
Data-level Parallelism

3 Performance Evaluation and Results

4 Summary and Reflections

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 2 / 39

Fully Unstructured Navier-Stokes in 3D

An unstructured tetrahedral mesh Euler and Navier-Stokes research code, which is
closely related to the export-controlled state-of-the-practice from NASA Langley
Research Center

For over two decades FUN3D has been under active development for modeling fluid
flow, and design optimization of airplanes, automobiles, and submarines with a
number of vertices up to 10 billion

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 3 / 39

PETSc-FUN3D

1995

1999
Gordon Bell Special Prize

2005
Adaptive Linear Solver

2016
KNC/HSX/BDX

2017
KNL/SKY

2018
GPU

2001
Parallel I/O

2010
IBM BlueGene/P

2015
SNB/IVB

MIMD/SPMD

1996 2002

SIMD/SIMT

2009

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 4 / 39

Edge-based Loop Kernel – Sequential

1: for all e ∈ array of edges do
2: Get the index of the right node of e
3: Get the index of the left node of e
4: Read the flow variables from both endpoints of e
5: Compute the flux and the residual
6: Perform “write-back” operations to update the flow variables of e
7: end for

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 5 / 39

Spatial and Temporal Locality of Reference

Left endpoints of the edges are ordered in ascending order
I The right endpoints and the edges’ components are ordered accordingly

Traversing the edges index table is done through one iterator pointer that is
sequentially incremented

A kernel loop that iterates over the stencil data items is essentially transformed
from a loop over the edges into a loop over the vertices, in which the iterative
traversing is linearly based upon the left endpoints

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 6 / 39

Geometric Data Layout
Tree of Struct-of-Arrays (SoA)

*edges
(struct)

nedges (size t)

*nodes
(struct) *n0 (unsigned int)

*n1 (unsigned int)

*normals
(struct)

*x (double)

*y (double)

*z (double)

*ln (double)

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 7 / 39

Residual and Gradient Data Layout
FROM Array-of-Structs-of-Arrays (AoSoA) TO Array-of-Structs-of-Strided-Arrays

struct {
X: u v w p u v w p

(A) Y: u v w p u v w p
Z: u v w p u v w p

} Gradient;

struct {
(B) Q: u v w p u v w p

} Residual;

Alignment and padding to 64-bytes cache line boundaries

Contiguously adjust every 4 DoF next to each other (u, v, w, p)

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 8 / 39

Memory-aware Allocation

Explicit heap allocator based on how frequent the data are being accessed
I Intel memkind heap manager library and jemalloc library

F hbw posix memalign psize()

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 9 / 39

Thread-level Parallelism

Edges workloads is partitioned using multilevel k-way partitioning scheme of METIS

METIS searches for an adequate load balance across the OpenMP threads

It minimizes the aggregate cross edges’ weight (i.e., reduce the edge-cut)

Reverse Cuthill-McKee (RCM) is used for reordering the vertices

Work replication – METIS distribution conserves thread safety without the need of
atomic

Only the “master” thread is allowed to perform the write-back operation – “Owner
Compute”

The METIS strategy of redundancy in computations purges the overheads of using
global synchronizing barrier between the working threads

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 10 / 39

Edge-based Loop – Optimized and Threaded

1 #pragma omp parallel

2 {

3 const uint32_t t = omp_get_thread_num();

4 for(uint32_t i = ie[t]; i < ie[t+1]; i++){

5 /*Load and compute*/

6 if(parts[n0[i]] == t){/*Write-back into v[n0[i]]*/}

7 if(parts[n1[i]] == t){/*Write-back into v[n1[i]]*/}

8 }

9 }

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 11 / 39

Intel AVX-512 Instruction Set Architecture

Knights Landing

Skylake

AVX512F: Foundation

AVX512CD: Conflict Detection

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 12 / 39

Intel AVX-512 Instruction Set Architecture

Knights Landing

Skylake

AVX512ER: Exponential and Reciprocal

AVX512PF: Prefetching

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 13 / 39

Intel AVX-512 Instruction Set Architecture

Knights Landing

Skylake

AVX512VL: Vector Length

AVX512DQ: Doubleword and Quadword

AVX512BW: Byte and Word

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 14 / 39

Vectorizing Edge-based Loop Kernels

Read: Load and gather instructions

Arithmetic: FMA (vfmadd/vfmsub/vfnmadd)

Control-flow to Data-flow: Masking instructions

Square Root/Division: Reciprocal instructions
I
√
x: mm512 mul pd(mm512 rsqrtXX pd(x),x)

I c
x : mm512 mul pd(mm512 rcpXX pd(x),c)

Prefetching: Software gather prefetching instructions

Write-back: Conflict detection and scatter instructions

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 15 / 39

Conflict Detection Instructions

0
1
2
3
4
5
6
7

Conflict-free Array

0
0
0
1
1
1
2
2

Array with Conflicts

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 16 / 39

Conflict Detection Instructions

0
1
2
3
4
5
6
7

Conflict-free Array

0
0
0
1
1
1
2
2

Array with Conflicts

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 17 / 39

Conflict Detection Instructions

0
1
2
3
4
5
6
7

Conflict-free Array

0 0 0
0 0 1
0 0 2
1 1 0
1
→

1
→

1
1 1 2
2 2 0
2 2 1

Array with Conflicts

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 18 / 39

Conflict Detection Instructions
1 Generate an initial mask based on the thread ID and node index

2 Scan the SIMD lane to identify the conflicted data

3 Generate a mask that separates a conflict-free data subset

4 Perform a safe gather mask operation (load) to generate registers with contiguous
data items

5 Update the operands with multiple FMA instructions (number of double precision
arithmetics)

6 Perform a safe scatter mask operation (write-back) to sprinkle the updated data
items over the memory addresses based on their indices

7 Perform SIMD boolean operation to “mask out” the already written indices from
the mask (swizzling)

8 Repeat the aforementioned steps again on all of the remaining subsets within the
SIMD lane

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 19 / 39

Vectorized Edge-based Loop Kernel
1 #pragma omp parallel

2 {

3 const uint32_t t = omp_get_thread_num();

4 const uint32_t l = ie[t+1] - ((ie[t+1]-ie[t]) % 8);

5 for(uint32_t i = ie[t]; i < l; i += 8){

6 /*Load and compute on the SIMD lane elements*/

7

8 /*The Write-back inner loop*/

9 _mm512_cmpeq_epi32_mask(/*...*/);

10 do {

11 _mm512_mask_conflict_epi32(/*...*/);

12 _mm512_broadcastmw_epi32(/*...*/);

13 _mm512_mask_testn_epi32_mask(/*...*/);

14 /*Gather, compute, and scatter*/

15 _mm512_kxor(/*...*/);

16 } while(/*...*/);

17 }

18 /*Peel and remainder loop*/

19 for(uint32_t i = l; i < ie[t+1]; i++){

20 /*load and compute*/

21 if(parts[n0[i]] == t){/*Write-back into v[n0[i]]*/}

22 if(parts[n1[i]] == t){/*Write-back into v[n1[i]]*/}

23 }

24 }

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 20 / 39

Fine-grained Data Partitioning

Improve the vectorization efficiency and increase the size of the independent data
subset within a SIMD lane

Bucket sort routine based on a variant of the edge coloring algorithm

Aim to:
I Extract independent subsets of the edges
I Prune the overhead of the innermost CD loop

Extract at most 8 independent edges within a bucket
I To avoid a potential disruption of the initial ordering for cache locality efficiency

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 21 / 39

Bucket Sort Based on Partial Coloring

Edges Bitmap
0 1 2 3 4 5 6 7

0 0 1
1 0 2 1 1 1 1 1 1 0 0 Bucket 1
2 0 3
3 1 0 1 1 1 1 0 0 0 0 Bucket 2
4 1 2
5 1 3 1 1 1 1 0 0 0 0 Bucket 3
6 2 3
7 5 4 1 1 0 0 0 0 0 0 Bucket 4

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 22 / 39

Bucket Sort Based on Partial Coloring

1: Create an nedges per color array to track the colors
2: Create a bitmap to track the endpoints coloring scheme
3: for c← 0, k ← 0, i← 0 to nndges do
4: Clear all of the bitmap bits
5: for j ← i to nndges do
6: Read n0[j], n1[j] bits from the bitmap → b0, b1
7: if b0 ∨ b1 is TRUE then
8: CONTINUE
9: end if

10: if nedges per color[c] = 8 then
11: BREAK
12: end if
13: Set n0[j], n1[j] bits in bitmap
14: Swap edge data from index j to k and vice versa
15: Increment k and nedges per color[c] by 1
16: end for
17: Increment c by 1
18: i ← k
19: end for

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 23 / 39

Mesh size1

Vertices: 2,761,774

DoFs: 11,047,096

Edges: 18,945,809

1In 1999 Gordon Bell prize paper, this was considered to be a large mesh but it is hosted
conveniently today within a single node

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 24 / 39

Experimental Design

Sample space: 20 independent experiments

Runtime:
I API: RDSTC instructions and POSIX timestamps
I Results summary: arithmetic mean

Memory bandwidth and FLOPS:
I Bandwidth: MC/EDC RPQ and WPQ inserts
I Flops: count the arithmetic operations manually
I Results summary: harmonic mean

For every experiment, the source code is recompiled, and the memory and cache
are completely flushed

+/- standard deviation of the mean for each experimental sample

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 25 / 39

Hardware Specifications

KNL-A KNL-B KNL-C HSX BDX SKY
Family x200 x200 x200 E5V3 E5V4 Scalable
Model 7210 7210 7290 2699 2680 8176
Socket(s) 1 1 1 2 2 2
Cores 64 64 72 36 28 56
GHz 1.30 1.30 1.50 2.30 2.40 2.10
Watts/socket 215 215 245 145 120 165
DDR4 (GB) 96 96 192 264 132 264
Freq. Driver* I A A A I A
Max GHz 1.50 1.30 1.50 2.30 3.30 2.10
Governor** P C C O P O
Turbo Boost × X X X X X

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 26 / 39

Flux Performance with Different KNL Modes

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

64 128 256

T
im

e
 (

S
e
c
o
n
d
)

Number of Threads

Chip: KNL-B

All2All/C
All2All/F

Quadrant/C
Quadrant/F

Hemisphere/C
Hemisphere/F

SNC-2/C
SNC-2/F
SNC-4/C
SNC-4/F

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 27 / 39

Optimizations of the Flux Kernel

 0

 80

 160

 240

 320

 400

64 128 256

T
im

e
 (

S
e
c
o
n
d
)

Number of Threads

Chip: KNL-A

Baseline
Optimized/HBW
-AVX512/HBW

Intrinsics
Intrinsics/HBW

Reordering/HBW

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 28 / 39

Optimizations of the Gradient Kernel

 0

 80

 160

 240

 320

64 128 256

T
im

e
 (

S
e
c
o
n
d
)

Number of Threads

Chip: KNL-A

Baseline
Optimized/HBW
-AVX512/HBW

Intrinsics
Intrinsics/HBW

Reordering/HBW
Restructuring/HBW

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 29 / 39

Strong Thread Scalability

 0

 4000

 8000

 12000

 16000

 20000

1 2 4 8 16 32 64 128 256

T
im

e
 (

S
e
c
o
n
d
)

Number of Threads

Chip: KNL-B

PETSc Routines
Flux Kernel

Gradient Kernel
Jacobian Matrix Construction

Preprocessing and Setup
Pseudo Time Step Kernel

Aerodynamics Forces Computation

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 30 / 39

Strong Thread Scalability (Flux Kernel)

 16

 64

 256

 1024

 4096

 1 2 4 8 16 32 64 128 256

T
im

e
 (

S
e
c
o
n
d
)

Number of Threads

Chip: KNL-B

100%

100%

100%

98%

98%

94%

88%
54% 24%

1.0

2.1

4.0

7.8

15.7

30.1

56.1
68.5 61.8

Flux Routine

Ideal Scaling

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 31 / 39

Strong Thread Scalability (Gradient Kernel)

 16

 64

 256

 1024

 4096

 1 2 4 8 16 32 64 128 256

T
im

e
 (

S
e
c
o
n
d
)

Number of Threads

Chip: KNL-B

100%

100%

100%

100%

98%

88%
72% 42% 22%

1.0

2.3

4.3

8.3

15.7

28.3
45.8 53.7 57.2

Gradient Routine

Ideal Scaling

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 32 / 39

Performance Speedup

 0

 10

 20

 30

 40

 50

 60

 70

1
6
4

1
2
8

2
5
6 1

6
4

1
2
8

2
5
6 1

6
4

1
2
8

2
5
6 1

6
4

1
2
8

2
5
6 1

6
4

1
2
8

2
5
6 1

6
4

1
2
8

2
5
6

S
p

e
e
d

u
p

Number of Threads

Chip: KNL-B

ForcesTSSetupJacoGradFlux

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 33 / 39

Amdahl’s Law

 0

 1

 2

 3

 4

1 2 4 8 16 32 64 128 256

S
p
e
e
d
u
p

Number of Threads

Chip: KNL-B

Amdahl's Law
Actual Speedup

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 34 / 39

Memory Bandwidth and Flops Performance
Flux Kernel Gradient Kernel

Threads 72 144 288 72 144 288
GFlop/s 117 144 123 21 24 25

Flux Kernel Gradient Kernel
Threads 72 144 288 72 144 288

D
D

R Read: GB/s 14 17 17 8 10 12
Write: GB/s 7 9 9 0.2 0.4 1

H
B

W Read: GB/s 40 51 45 43 53 54
Write: GB/s 0.1 0.1 0.1 18 22 25

GFlop/s: 5% out of 3 TFlop/s
GB/s:

I DRAM: 25% out of STREAM (77 GB/s (R), 36 GB/s (W))
I MCDRAM: 17% out of STREAM (314 GB/s (R), 171 GB/s (W))

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 35 / 39

Flux Performance on x86 Hardware

 0

 40

 80

 120

 160

 200

 240

 280

 320

 360

1
8

3
6

7
2

1
4

2
8

5
6

6
4

1
2
8

2
5
6

7
2

1
4
4

2
8
8

2
8

5
6

1
1
2

T
im

e
 (

S
e
c
o
n

d
)

Number of Threads
SKXKNL-CKNL-BBDXHSX

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 36 / 39

Gradient Performance on x86 Hardware

 0

 40

 80

 120

 160

 200

 240

1
8

3
6

7
2

1
4

2
8

5
6

6
4

1
2
8

2
5
6

7
2

1
4
4

2
8
8

2
8

5
6

1
1
2

T
im

e
 (

S
e
c
o
n

d
)

Number of Threads
SKXKNL-CKNL-BBDXHSX

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 37 / 39

PETSc-FUN3D Performance on x86 Hardware

 0

 1000

 2000

 3000

 4000

 5000

 6000

1
8

3
6

7
2

1
4

2
8

5
6

6
4

1
2
8

2
5
6

7
2

1
4
4

2
8
8

2
8

5
6

1
1
2

T
im

e
 (

S
e
c
o
n

d
)

Number of Threads
SKXKNL-CKNL-BBDXHSX

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 38 / 39

Conclusion

Demonstrate several shared-memory optimizations to extract:
1 Thread-level parallelism – Careful workload distributions and load balancing
2 Data-level parallelism – Utilizing the capabilities of AVX-512 ISA

Achieve 2.9x speedup in the performance of the flux kernel relative to the baseline
code

Exhibit almost linear scalability up to the full core count of KNL (64 cores), and
continued scalability with SMT

Maintain on Skylake roughly similar speedup with less power consumption [KNL:
245 Watts; SKX: 330 Watts]

Future Direction −→ Port PETSc-FUN3D onto GPU

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 39 / 39

Conclusion

Demonstrate several shared-memory optimizations to extract:
1 Thread-level parallelism – Careful workload distributions and load balancing
2 Data-level parallelism – Utilizing the capabilities of AVX-512 ISA

Achieve 2.9x speedup in the performance of the flux kernel relative to the baseline
code

Exhibit almost linear scalability up to the full core count of KNL (64 cores), and
continued scalability with SMT

Maintain on Skylake roughly similar speedup with less power consumption [KNL:
245 Watts; SKX: 330 Watts]

Future Direction −→ Port PETSc-FUN3D onto GPU

M. A. Al Farhan (KAUST) Unstructured Computations on KNL April 24, 2018 39 / 39

Q/A

	Application – Computational Aerodynamics
	Shared-memory Optimizations and Tuning
	Data-level Parallelism

	Performance Evaluation and Results
	Summary and Reflections

