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Highlights of the Contributions

Address the classical tension between unstructured data (indirect addressing) and
highly structured architectures (vector instructions)

Algorithm: nonlinearly implicit pseudo-transient Newton-Krylov-Schwarz solver

Application: computational aerodynamics (Gordon Bell winning NASA legacy code)

Architecture: Intel Xeon Phi “Knights Landing”

AVX-512CD instructions provide new solutions for conflicting objectives

Independence of writes versus memory locality

Finest-grain implementation of PETSc-FUN3D to exploit language features

Gains in wall-clock time 2.9x over scalar compilation for strong thread scaling

Distributed-memory not addressed here; proven for two decades in weak scaling

Gains in energy-to-solution for a given wall-clock time up to 1.7x
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Fully Unstructured Navier-Stokes in 3D

An unstructured tetrahedral mesh Euler and Navier-Stokes research code, which is
closely related to the export-controlled state-of-the-practice from NASA Langley
Research Center

For over two decades FUN3D has been under active development for modeling fluid
flow, and design optimization of airplanes, automobiles, and submarines with a
number of vertices up to 10 billion
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Edge-based Loop Kernel – Sequential

1: for all e ∈ array of edges do
2: Get the index of the right node of e
3: Get the index of the left node of e
4: Read the flow variables from both endpoints of e
5: Compute the flux and the residual
6: Perform “write-back” operations to update the flow variables of e
7: end for
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Spatial and Temporal Locality of Reference

Left endpoints of the edges are ordered in ascending order
I The right endpoints and the edges’ components are ordered accordingly

Traversing the edges index table is done through one iterator pointer that is
sequentially incremented

A kernel loop that iterates over the stencil data items is essentially transformed
from a loop over the edges into a loop over the vertices, in which the iterative
traversing is linearly based upon the left endpoints
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Geometric Data Layout
Tree of Struct-of-Arrays (SoA)

*edges
(struct)

nedges (size t)

*nodes
(struct) *n0 (unsigned int)

*n1 (unsigned int)

*normals
(struct)

*x (double)

*y (double)

*z (double)

*ln (double)
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Residual and Gradient Data Layout
FROM Array-of-Structs-of-Arrays (AoSoA) TO Array-of-Structs-of-Strided-Arrays

struct {
X: u v w p ......... u v w p

(A) Y: u v w p ......... u v w p
Z: u v w p ......... u v w p

} Gradient;

struct {
(B) Q: u v w p ......... u v w p

} Residual;

Alignment and padding to 64-bytes cache line boundaries

Contiguously adjust every 4 DoF next to each other (u, v, w, p)
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Memory-aware Allocation

Explicit heap allocator based on how frequent the data are being accessed
I Intel memkind heap manager library and jemalloc library

F hbw posix memalign psize()
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Thread-level Parallelism

Edges workloads is partitioned using multilevel k-way partitioning scheme of METIS

METIS searches for an adequate load balance across the OpenMP threads

It minimizes the aggregate cross edges’ weight (i.e., reduce the edge-cut)

Reverse Cuthill-McKee (RCM) is used for reordering the vertices

Work replication – METIS distribution conserves thread safety without the need of
atomic

Only the “master” thread is allowed to perform the write-back operation – “Owner
Compute”

The METIS strategy of redundancy in computations purges the overheads of using
global synchronizing barrier between the working threads
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Edge-based Loop – Optimized and Threaded

1 #pragma omp parallel

2 {

3 const uint32_t t = omp_get_thread_num();

4 for(uint32_t i = ie[t]; i < ie[t+1]; i++){

5 /*Load and compute*/

6 if(parts[n0[i]] == t){/*Write-back into v[n0[i]]*/}

7 if(parts[n1[i]] == t){/*Write-back into v[n1[i]]*/}

8 }

9 }
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Intel AVX-512 Instruction Set Architecture

Knights Landing

Skylake

AVX512F: Foundation

AVX512CD: Conflict Detection
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Intel AVX-512 Instruction Set Architecture

Knights Landing

Skylake

AVX512ER: Exponential and Reciprocal

AVX512PF: Prefetching
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Intel AVX-512 Instruction Set Architecture

Knights Landing

Skylake

AVX512VL: Vector Length

AVX512DQ: Doubleword and Quadword

AVX512BW: Byte and Word
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Vectorizing Edge-based Loop Kernels

Read: Load and gather instructions

Arithmetic: FMA (vfmadd/vfmsub/vfnmadd)

Control-flow to Data-flow: Masking instructions

Square Root/Division: Reciprocal instructions
I
√
x: mm512 mul pd( mm512 rsqrtXX pd(x),x)

I c
x : mm512 mul pd( mm512 rcpXX pd(x),c)

Prefetching: Software gather prefetching instructions

Write-back: Conflict detection and scatter instructions
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Conflict Detection Instructions
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1
2
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Conflict Detection Instructions

0
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Conflict Detection Instructions
1 Generate an initial mask based on the thread ID and node index

2 Scan the SIMD lane to identify the conflicted data

3 Generate a mask that separates a conflict-free data subset

4 Perform a safe gather mask operation (load) to generate registers with contiguous
data items

5 Update the operands with multiple FMA instructions (number of double precision
arithmetics)

6 Perform a safe scatter mask operation (write-back) to sprinkle the updated data
items over the memory addresses based on their indices

7 Perform SIMD boolean operation to “mask out” the already written indices from
the mask (swizzling)

8 Repeat the aforementioned steps again on all of the remaining subsets within the
SIMD lane
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Vectorized Edge-based Loop Kernel
1 #pragma omp parallel

2 {

3 const uint32_t t = omp_get_thread_num();

4 const uint32_t l = ie[t+1] - ((ie[t+1]-ie[t]) % 8);

5 for(uint32_t i = ie[t]; i < l; i += 8){

6 /*Load and compute on the SIMD lane elements*/

7

8 /*The Write-back inner loop*/

9 _mm512_cmpeq_epi32_mask(/*...*/);

10 do {

11 _mm512_mask_conflict_epi32(/*...*/);

12 _mm512_broadcastmw_epi32(/*...*/);

13 _mm512_mask_testn_epi32_mask(/*...*/);

14 /*Gather, compute, and scatter*/

15 _mm512_kxor(/*...*/);

16 } while(/*...*/);

17 }

18 /*Peel and remainder loop*/

19 for(uint32_t i = l; i < ie[t+1]; i++){

20 /*load and compute*/

21 if(parts[n0[i]] == t){/*Write-back into v[n0[i]]*/}

22 if(parts[n1[i]] == t){/*Write-back into v[n1[i]]*/}

23 }

24 }
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Fine-grained Data Partitioning

Improve the vectorization efficiency and increase the size of the independent data
subset within a SIMD lane

Bucket sort routine based on a variant of the edge coloring algorithm

Aim to:
I Extract independent subsets of the edges
I Prune the overhead of the innermost CD loop

Extract at most 8 independent edges within a bucket
I To avoid a potential disruption of the initial ordering for cache locality efficiency
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Bucket Sort Based on Partial Coloring

Edges Bitmap
0 1 2 3 4 5 6 7

0 0 1
1 0 2 1 1 1 1 1 1 0 0 Bucket 1
2 0 3
3 1 0 1 1 1 1 0 0 0 0 Bucket 2
4 1 2
5 1 3 1 1 1 1 0 0 0 0 Bucket 3
6 2 3
7 5 4 1 1 0 0 0 0 0 0 Bucket 4
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Bucket Sort Based on Partial Coloring

1: Create an nedges per color array to track the colors
2: Create a bitmap to track the endpoints coloring scheme
3: for c← 0, k ← 0, i← 0 to nndges do
4: Clear all of the bitmap bits
5: for j ← i to nndges do
6: Read n0[j], n1[j] bits from the bitmap → b0, b1
7: if b0 ∨ b1 is TRUE then
8: CONTINUE
9: end if

10: if nedges per color[c] = 8 then
11: BREAK
12: end if
13: Set n0[j], n1[j] bits in bitmap
14: Swap edge data from index j to k and vice versa
15: Increment k and nedges per color[c] by 1
16: end for
17: Increment c by 1
18: i ← k
19: end for
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Mesh size1

Vertices: 2,761,774

DoFs: 11,047,096

Edges: 18,945,809

1In 1999 Gordon Bell prize paper, this was considered to be a large mesh but it is hosted
conveniently today within a single node
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Experimental Design

Sample space: 20 independent experiments

Runtime:
I API: RDSTC instructions and POSIX timestamps
I Results summary: arithmetic mean

Memory bandwidth and FLOPS:
I Bandwidth: MC/EDC RPQ and WPQ inserts
I Flops: count the arithmetic operations manually
I Results summary: harmonic mean

For every experiment, the source code is recompiled, and the memory and cache
are completely flushed

+/- standard deviation of the mean for each experimental sample
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Hardware Specifications

KNL-A KNL-B KNL-C HSX BDX SKY
Family x200 x200 x200 E5V3 E5V4 Scalable
Model 7210 7210 7290 2699 2680 8176
Socket(s) 1 1 1 2 2 2
Cores 64 64 72 36 28 56
GHz 1.30 1.30 1.50 2.30 2.40 2.10
Watts/socket 215 215 245 145 120 165
DDR4 (GB) 96 96 192 264 132 264
Freq. Driver* I A A A I A
Max GHz 1.50 1.30 1.50 2.30 3.30 2.10
Governor** P C C O P O
Turbo Boost × X X X X X
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Flux Performance with Different KNL Modes
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Optimizations of the Flux Kernel
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Optimizations of the Gradient Kernel
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Strong Thread Scalability
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Strong Thread Scalability (Flux Kernel)
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Strong Thread Scalability (Gradient Kernel)
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Performance Speedup
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Amdahl’s Law
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Memory Bandwidth and Flops Performance
Flux Kernel Gradient Kernel

Threads 72 144 288 72 144 288
GFlop/s 117 144 123 21 24 25

Flux Kernel Gradient Kernel
Threads 72 144 288 72 144 288

D
D

R Read: GB/s 14 17 17 8 10 12
Write: GB/s 7 9 9 0.2 0.4 1

H
B

W Read: GB/s 40 51 45 43 53 54
Write: GB/s 0.1 0.1 0.1 18 22 25

GFlop/s: 5% out of 3 TFlop/s
GB/s:

I DRAM: 25% out of STREAM (77 GB/s (R), 36 GB/s (W))
I MCDRAM: 17% out of STREAM (314 GB/s (R), 171 GB/s (W))
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Flux Performance on x86 Hardware
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Gradient Performance on x86 Hardware
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PETSc-FUN3D Performance on x86 Hardware
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Conclusion

Demonstrate several shared-memory optimizations to extract:
1 Thread-level parallelism – Careful workload distributions and load balancing
2 Data-level parallelism – Utilizing the capabilities of AVX-512 ISA

Achieve 2.9x speedup in the performance of the flux kernel relative to the baseline
code

Exhibit almost linear scalability up to the full core count of KNL (64 cores), and
continued scalability with SMT

Maintain on Skylake roughly similar speedup with less power consumption [KNL:
245 Watts; SKX: 330 Watts]

Future Direction −→ Port PETSc-FUN3D onto GPU
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