Jp Sy poial Extreme Computing IPUG
S i | Research Center

INTEL EXTREME PERFORMANCE USERS GROUP

BEMFMM: An FMM-Accelerated Boundary Element
Method-Based Solver for the 3D Helmholtz Equation

Mustafa Abduljabbar, Mohammed Al Farhan, Noha Al-Harthi, Rui Chen, Rio Yokota, Hakan
Bagci, and David Keyes

April 24, 2018

King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Tokyo Institute of Technology, Tokyo, Japan

Highlights

- FMM-based solver for BEM discretizations of oscillatory operators.

e Demonstrated for acoustics in Helmholtz formulation.

e Scattering from a sphere (exact solution available).

- Three levels of parallelism: MPl + X + VY.
- Three contemporary Intel architectures: Haswell, Skylake, KNL.
- Up to 2 billion Degrees-of-Freedom and up to 0.2 million cores of Shaheen XC40.

INTRODUCTION AND BACKGROUND

EXTREME SCALE IMPLEMENTATION AND OPTIMIZATIONS
Shared-memory Optimizations
Distributed-memory Optimizations

EVALUATION AND DISCUSSION
Shared-memory Optimizations

Distributed-memory Optimizations

CONCLUDING REMARKS AND FUTURE WORK

- Validating FMM-based horizontal and vertical parallelism techniques on modern
many/multi-core architectures and 196,608 hardware cores of Shaheen XC40
supercomputer.

- Propose a performance model to estimate a near optimal granularity of recursive task
creation during tree traversal.

- Describing the tradeoffs of using various modes of singularity treatment in the BEM.

Problem Statement and Formulation [1/3]

e The time-dependent form of the wave equation is governed by the Helmholtz
equation.

0
Q@U(hf)—o (1)

e The time-harmonic form as a result of plugging U(r,t) = Re[Uy(r)e "] in Eq. 1

V2U(r,t) —

IS:
V2Uo(r) + k*>Up(r) =0 (2)

Problem Statement and Formulation [2/3]

- The surface integral solution as a result of plugging the second form of Green's
theorem looks like

mc /[6Ga;,r ') — G(r,r)q(r)]dS’ = %p(r), resS (3)
kR
O i (4)

- if we set p = 0, we obtain

Problem Statement and Formulation [3/3]

e Wave scattering and applications.

High-intensity focused ultrasound!?

1 _ . q
T. Betcke, E. van 't Wout and P. Glat. Computationally efficient boundary element methods for high-frequency Helmholtz problems in unbounded
domains, in: Modern Solvers for Helmholtz Problems, Springer (2017).
2E. van 't Wout, P. Glat, T. Betcke and S. Arridge. A fast boundary element method for the scattering analysis of high-intensity focused

ultrasound, Journal of the Acoustical Society of America 138(5) (2015) pp2726-2737.

System Overview

Gmsh—. o

(%_, BEMFMM

Normalization

FMM Wrapper — ExaFMM

iteration

Figure 1: Dataflow across libraries (color-coded)

Discretization of the Scatterer’s Surface

- Divide the surface into curvilinear
triangular patches.

- Each curvilinear patch has N; inter-
polation points.

- Using Nystrom method, The unknown
velocity is expanded as an interpolation
given by Equation:

Np N
a(r) =227 (6)
n=1 i=1
Zl = Ve (7)
[Z1Gmyimy = [G(rg,mys)97y (C)’ (8)

FMM in Numerical Science

= Jr ®(x¥)a(y)ds(y)

- FMM looks for a solution that can be written as a BIE u(x

(to some extent)

- Examples of FMM use cases
Application Kernel Single/Double
Gravitational, Potential Laplace Single
Electrostatic Field Laplace Double
Acoustics Scattering Field (Low Frequency) || Helmholtz Single
Electromagnetic Scattering Field Helmholtz Double

FMM as an Accelerator for the 3D Helmholtz Solution

- FMM works as a matrix-free accelerator for the mat-vec multiplication (or IFMM as a
pre-conditioner [Takahashi et al., 2017]).

- The resulting BIE results in a structured dense matrix.

- Example: impulse response due to a monopole source.

Ns
= 6(r.r)a(r) ©)

- Eq. 9 is expanded into a series of spherical harmonics.

lkZZS (r))Ry(r),r <rq (10)

n=0 m=—n

:iki Z CMR™(r) (11) Cr= Y @S, "(rg) (12)

n=0 m=—n rq<Rmax 10

An Overview of FMM

o

k P2P

@o—

./' —> P2M

./ —> M2M
=> ML

& — L2l

? — L2P

o7

Quad-tree partitioning on 4 processes FMM Hierarchy (Upward, Horizontal, and Downward Sweeps)

11

Traversal Stage

Traditional FMM: Iterate over Dual Tree Traversal (DTT)3:
Hilbert/Morton orders and probe each cell Simultaneously parse source and targets in
for its neighbor [MS Warren et al., 1995]. a pre-order depth-first manner.

Dual-tree traversal

Warren and Salmon original FMM

3Mustafa Abduljabbar, Mohammed Al Farhan, Rio Yokota and David Keyes. Performance Evaluation of Computation and Communication Kernels

of the Fast Multipole Method on Intel Manycore Architecture, Proceedings of the European Conference on Parallel Processing (2017) 553-564.

12

P2P/M2L: Data-level Parallelism

Auto-vectorization with #pragma simd ,
may almost always win in embarrassing-
ly parallel kernels with structured me- °

mory access; however,

© 0 N o

e Check icc compiler's output with
~qopt-report. The default was the ;,

inner-most loop (suboptimal here). .
e Double-check vector loads for G
array-of-structs. 5
e Rewrite divisions and complex %?
numbers to their polar form 22
(experimental 20% reduction in o
vector moves). gg

for (; i<ni; ++i) {
vi_r = real (Bi.SRC); vi_i = imag(Bi.SRC);
for (j=0; j<nj; ++j) {
dX = xi—xj; R2 = norm(dX);

}

\\relay self—sigularity to PETSc callback
if (Bi PATCHI=Bj PATCH && R2!1=0) {
real_t R=sqrt(R2);
if (R<=near_patch_distance) {
for (k=0; k<gauss_quad_points; ++k) {
\\ near patch singularity treatment

} else {
vj_r = real (Bj.SRC); vj_-i = imag(Bj.SRC);
Src2.r = vi_rxvj_r—vi_ikvj_i;
src2_i = vi_rkvj_i+vi_ikxvj_r;
invR = 1.0/sqrt(R);
eikr = 1.0/exp(wave_i*R);
eikr x= invR;
eikr_r = cos(wave_rxR)xeikr;
eikr_i = sin(wave_rxR)xeikr;
pot_r += src2_rxeikr_r—src2_ixeikr_i;
pot-i += src2_rxeikr_i+src2_ixeikr_r;
}

}
}
Bi . TRG += complex(pot_r, pot_i);
13

Traversal: Thread-level Parallelism

- Control cell size and task granularity by minimizing the difference between LLC and
the interacting cell sizes (minimize cache-miss rate).

min f(s, c) = (M2Lgjze + P2Psize) — L2/L3 Cache
s,c
=2 x c x task size x nthreads/core (13)

X [(csize x log ;) + bsize] — L2/L3 Cache

- Multiplier 2" is inclusive of source and

target.

- csize/bsize is the cell/body struct size.
- s is the task spawning parameter.

- ¢ is the number of bodies per leaf cell.
- log £ is the depth of recursive branch.

- L2/L3 Last Level Cache (LLC) size.
14

Large Mesh Partitioning

- Pre-partitioning: - Partitioning:

e Create intermediate format with e Separate Global/Local trees using
minimal indexed binary data modified ORB [Abduljabbar et al.,
(double-precision coordinates). 2017].

e Map each rank to its region in the e Graft tree in one step when doing
file. global traversal.

local ess¢ntial tree
tree

local
tree

O local root nodes 1process

rank 0 my rank rank 2

LET Grafting

Load-balancing (Repartitioning)

- Load-imbalance harms GMRES performance due to long wait on reduction of each

step.

- Optimal partitioning for random distributions is NP-hard.

- Consider previous work-load and communication.

wi =l +axr (14)

- The variables /; and r;, and the total runtime are already measured in the present

code, so the information is available with negligible cost.

- Control granularity of partitioning based on load-imbalance.

Defer
partitioning
for a few steps

Weighted

Morton/Hilbert Migration
partitioning within a time step
every time step (Node failure)

Coarse

Fine L

A Neighborhood-based Communication Protocol (HSDX) *

1. 2. 3
build_communication_graph coarsen_tree at source processes
MPI_Create_dist_graph_adjacent MPI_Neighbor_all_to_allv MPI_Neighbor_all_to_all
MPI_Neighbor_all_to_all MPI_Neighbor_all_to_allv
repeat step 3 until max_depth reached
7 8 9
! s ’ e | | @3 || @y
7 R
12 14
12 P 13 [« 14 (11.16) 13 [(10,15)
x .
17 18 19
7 18 19 (20,22) (23,24) (20,25)

4Mustafa Abduljabbar, George S. Markomanolis, Huda Ibeid, Rio Yokota and David Keyes. Communication Reducing Algorithms for Distributed

Hierarchical N-Body Problems with Boundary Distributions, Proceedings of the International Supercomputing Conference (2017), 79-96. 17

KNL Haswell Skylake
Family x200 E5V3 Scalable
Model 7290 2670 8176
Socket(s) 1 2 2
Cores 72 32 56
GHz 1.50 2.60 2.10
Watts/socket 245 120 165
DDR4 (GB) 192 128 264
Frequency Driver | acpi-cpufreq | acpi-cpufreq | acpi-cpufreq
Max GHz 1.50 2.60 2.10
Governor conservative | performance | ondemand
Turbo Boost v v v

Hardware Specifications

18

Data-level Parallelism

Skylake - 112 Threads

8000
7000 [
6000 .
- b v
P
0 5000 P 4 —— No-vec
% —&— Intrin
4000 4 Auto-vec
é & ——— Theoratical Peak
3000 - 1
20007 —6——o0— - —
1000
of
0 0.5 1 15 2 25

x10°

GFLOP/s
B
g

g

KNL [quadrant/flat mode] - 288 Threads

—&— No-vec
—&— Intrin

Auto-vec

—— Theoratical Peak

Single Precision Floating Point Performance

- Lower latency and higher throughput for AVX512 in Skylake.
- Increased cache miss penalty in KNL.

25
x10°

19

Thread-level Parallelism [1/2]

Skylake - 112 Threads Skylake - 112 Threads
2048| 53 | 471 | 476 | 66 | 1166 1 2048| 062 | 033 | 018 | 102 | 236 - 4
35
1024| 526 | 424 | 38 | 474 | 898 14 1024 066 | 041 | 001 | 068 | 169 | 303
3
8 5| 53 | 4z | a7 | a7 | a7 2 X sz o7 | o5 | o1 | 0w | 1e | 403 25
[= j =
S 10 i 2
(5 256| 562 | 456 | 404 | 483 | 915 o 256 075 | 058 | 033 | 001 | 102 | 303
8 15
128| 59 | 48 | 424 | 49 | 897 128| 079 | 066 | 05 | 001 | 102 | 303 .
6
64| 74 | 577 | 424 | 488 | 89 64| 083 | 075 | 05 | 001 | 102 | 303 05
4 L

16 32 64 128 256 16 32 64 128 256 512
Task Size Task Size

Experimental results vs. performance model on Skylake

20

Thread-level Parallelism [2/2]

KNL [quadrant/flat mode] - 288 Threads KNL [quadrant/flat mode] - 288 Threads

40
2048| 1476 | 1157 | 908 | 11.07 | 1981 2048| 059 | 027 | 027 | 118 | 264 45
35 4
1024| 1382 | 1094 | 835 | 1009 | 1857 1024 064 | 036 | 009 | 082 | 191 | 337 a5
30
L s512| 1396 | 108 | 824 | 97 195 & 512 068 | 045 | 009 | 046 | 118 | 337 3
2 25 2 25
B i
G 256| 1393 | 1115 | 871 | 1007 | 1881 G 256| 073 | 054 | 027 | 009 | 118 | 337 2
20
15
128| 1448 | 1163 | 903 | 101 | 1849 128| 077 | 064 | 045 | 009 | 118 | 337
15 1
64| 1758 | 1349 | 904 | 101 | 1846 0 64| 082 | 073 | 045 | 009 | 118 | 337 05
16 32 64 128 256 512 16 32 64 128 256 512
Task Size Task Size

Experimental results vs. performance model on KNL

21

Cray XC40 Characteristics

- Distributed experiments are run on Shaheen XC40, which hosts 196,608 Haswell

cores, and has a linpack performance of 5.5 PFlop/s.

- Strong scaling is challenging in traditional FMM codes.

XC40 Network Hierarchy

Level | Hardware/Network Unit | Nodes | Cores | Overhead | Hops
1 Socket 1 16 32 N/A
2 NUMA Node 1 32 64 N/A
3 Blade 4 128 256 1
4 Chassis 64 2,048 4,096 1
5 Cabinet 192 6,144 8,192 1
6 Local alltoall G 384 12,288 16,384 1
7 Global alltoall G1 2,304 | 74,728 | 131,072 2
8 Global alltoall G2 6,174 | 197,568 N/A 3

22

Weak Scalability

e A single scattering sphere, to
validate the concept and the

30 r
—e— Weak Scalability
————— Ideal Scaling

25

N
S

convergence. gls _________ 14375“40575"’16'960
e We fix the problem size while éml PR e i
keeping 10 points per wavelength o P
(1.0e* accuracy vs. analytical). i
32 128 flx\lllzjmbefzgféliore:lgz 32768 131072
Cores | Mem. [GB] | Freq. [KHz] N (DoF) TI[S] | lters
512 2,048 24 8,984,640 3.1e3 | 185
2,048 8,192 96 35,938,560 3.3e3 | 190
8,192 32,768 384 143,754,240 | 3.6e3 | 200
32,768 131,072 1,536 575,016,960 | 4.6e3 | 223
131,072 524,288 6,144 2,300,067,840 | 5.7e3 | 256

23

Strong Scalability [1/2]

575,016,960 DoF

2,300,067,840 DoF

—e— Strong Scalability
10! eal Scaling

Speedup

10°
16384 32768

65536

Number of Cores

131072 196608

143,754,240 DoF

—e— Strong Scalability -
deal Scaling
1
10 0.37
o
g
&
06
%
10°
8192 16384 32768 65536 131072 196608

Number of Cores

102 [+ Strong Scalability
Ideal Scaling

10°
1024 2048 4096 8192 16384

32768

65536 131072

24

35,938,560 DoF

Speedup

10"

—e— Strong Scalability
eal Scaling

02

0
10
256

512

1024 2048 4096 8192 16384 32768 65536 131072
Number of Cores

2,246,160 DoF

—e— Strong Scalability
deal Scaling

64 128 256 512 1024 2048 4096 8192

8,984,640 DoF

rong Scalability
deal Scaling

102

10°
64 128 25 512 1024 2048
Number of Cores

561,540 DoF

4006 8192 16384

102 —e— Strong Scalability
Ideal Scaling

Speedup
8

29 a4 129 256 519

1024 2048 4006

Communication Load Balancing

[Comm LET cells

[Comm LET cells

Mean Time[s]
Mean Time([s]
5

700 800 900 1000

400 500 600 700 800 900 1000 100 200 300 400 500 600
MPI Rank MPI Rank

100 200 300

35

25

Balancing Step

Mean Time[s]

Timestep

Data Scalability

Mean Time[s]

——FMM Time
)]
104 ---O(NI(Z)gN) L]
-— .
O(N %) /,
10 ’ 1

107

64 compute nodes of Shaheen

Mean Time[s]

=
S]
~

i
1S}
-

=
S]
o

=
15}
o

1,024 compute nodes of Shaheen

——FMM Time
- - -0

= = =O(NlogN)
---0N?)

N

27

Convergence Aspects and Numerical Error

10°

I3 [
o o
) -

Relative Residual Norm
S
&

104

Convergence behavior of 1m DoF using different

_____ Self and Near Singularity
e Self Singularity

— Near Singularity

- - —Ignore Self Singularity

200 400 600 800 1000 1200 1400
Number of Iterations

singularity correction modes

28

Conclusion

e Auto-vectorization of FMM kernels by the Intel C/C++ Compiler 2017 can
achieve significant performance boost with given precautions.

e Heavy tuning parameters for recursive task parallelism of FMM's tree traversal
can be avoided using our performance model with a small prediction penalty.

e Communication balancing results in 6 times faster global communication time for
100m DoF.

e Solution of a 2 billion DoF systems of high-order curvilinear triangular patches of
a spherical mesh in about 60 minutes time-to-solution and an accuracy of 1.0e™*
compared to the analytical solution.

e Near-optimal parallel efficiency on Shaheen for both weak and strong scalability
studies.

29

Future Direction

e Explore and address performance challenges of more heterogeneous HPC
architectures.
e GPU-based supercomputers.

e Study different network topologies of various supercomputer architectures, and
make HSDAX aware of the underlying network units.

e Intel Omni-Path network architecture.
e Further extend our solver implementation to include different highly nonuniform
domains and more complex geometries.

e Wing-fuselage configuration emulated by two intersecting ellipsoids.

30

Thank you

	Introduction and Background
	Extreme Scale Implementation and Optimizations
	Shared-memory Optimizations
	Distributed-memory Optimizations

	Evaluation and Discussion
	Shared-memory Optimizations
	Distributed-memory Optimizations

	Concluding Remarks and Future Work

