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Computing Hardware Evolution

Frequency barrier

Processing units cannot run faster for
reasons of energy efficiency

Concurrency makes up for frequency
Several processing units run together
such as:

Multicore and manycore
Vector processing extensions
Accelerators
Heterogeneous architectures

Deep memory hierarchy

More capabilities, more complexity
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Software Evolution

With this architectural evolution, the burden to design intrinsic
algorithmic parallelism rests on software developers

Parallel programming languages such as MPI+X, which require
programmers to

expose parallelism from algorithm
manage computational recourses and communication

Asynchronous task-based runtime systems, which:

relieve developers from managing low-level resources and let them
focus on developing parallel applications
enhance user productivity
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Task-based Runtime Systems

Task-based runtime systems conceptually
similar to out-of-order processor scheduling

They provides an automatic parallelization by
tracking data dependencies and resolving data
hazards at runtime

Task-based runtimes logically operate with a
directed acyclic graph (DAG) that:

captures data dependencies between
application tasks
captures tasks read/write data

Task-based runtimes provide additional
information such as task priority, load
balancing, and data locality

Profiling and tracing

Main challenge of these recent runtime systems
is language expressivity
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HiCMA: Hierarchical Computations on Manycore
Architectures
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ExaGeoStat: Exascale GeoStatistics
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MOAO: Multi-Object Adaptive Optics systems
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KSVD: KAUST Singular Value Decomposition
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Async-AMG: Asynchronous Algebraic Multigrid

Asynchronous task-based parallelization of additive algebraic
multi-grid for solving Ax=b

It exploits the parallelism between levels of the grid hierarchy in
additive AMG

Hybrid MPI+OmpSs (Barcelona Supercomputer Center)

Cray XC40 supercomputer
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Ringing Bell

API Standardization
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ALTANAL

ALTANAL: Abstraction Layer for Task bAsed NumericAl Libraries

Although the task-based model is quite active, lack of API
standardization makes it difficult for application or library developers
to switch runtimes

A thin layer of abstraction, making the user experience oblivious to
the underneath run-time systems

ALTANAL Goals:

Providing a set of abstractions to facilitates the expression of tasking
that map to a variety of run-time systems such as StarPU, Quark,
OmpSs, PaRSEC, OpenMP, and Kokkos
Enabling exploration of a variety of underlying runtime system
technologies and architectures without changing the application code
Enhancing user productivity
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Quark: QUeuing And Runtime for Kernels

ICL, University of Tennessee
Knoxville.

Enable dynamic asynchronous
execution of tasks

Targets multi-core, multi-socket
shared memory systems

It is highly optimized for
PLASMA library

Data locality, priority, and
region access.

Data dependencies: INPUT,

INOUT, OUTPUT

Algorithm 1: Quark STF Tile Cholesky

QUARK New(NUM THREADS);

QUARK Sequence Create (quark);

for k = 0; k < nt; k++ do
QUARK Insert Task(quark, POTRF, flg, ...);

for m = k + 1; m < nt; m++do
QUARK Insert Task(quark, TRSM, flg, ...);

for n = k + 1; n < nt; n++do
QUARK Insert Task(quark, SYRK, flg, ...);

for m = n + 1; m < nt; m++do
QUARK Insert Task(quark, GEMM, flg, ...);

QUARK Barrier( quark );

QUARK Sequence Wait (quark, seq);
QUAR Delete(quark);
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Quark: QUeuing And Runtime for Kernels

QUARK Insert Task(quark, POTRF , flags,
sizeof(int), &uplo, VALUE,
sizeof(int), &n, VALUE,
sizeof(double)*nb*nb, &A, INOUT,
sizeof(int), &lda, VALUE,
sizeof(int), &iinfo, VALUE,
,0);

void POTRF (Quark* quark) {
quark unpack args 5(quark, &uplo,&n, &A, &lda, &iinfo );
potrf(uplo, n, A, lda, iinfo);

}
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StarPU

INRIA Bordeaux Sud-Ouest

Enable dynamic task-based
implementation.

Multicore, Manycore
shared/distributed memory, and
heterogeneous architecture

StarPU provides task scheduling and
memory management mechanisms

Based on three principle:

Registering its buffers, to get one
handle per buffer
Defining codelets to CPU and GPU
implementations
Applying codelets on some handles

Data dependencies: STARPU R,

STARPU W, STARPU RW

Algorithm 2: StarPU STF Tile Cholesky

starpu init(NULL);

starpu data handle t handle;

starpu matrix data register(&handle, ..)

for k = 0; k < nt; k++ do
starpu insert task(&POTRF, ...);

for m = k + 1; m < nt; m++do
starpu insert task(&TRSM, ...);

for n = k + 1; n < nt; n++do
starpu insert task(&SYRK, ...);
for m = n + 1; m < nt; m++do

starpu insert task(&GEMM, ...);

starpu task wait for all();

starpu data unregister (handle);

starpu shutdown();
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StarPU

starpu insert task(&dpotrf starpu ,
STARPU VALUE, &uplo, sizeof(int),
STARPU VALUE, &n, sizeof(int),
STARPU RW, &Ahandle,
STARPU VALUE, &lda, sizeof(int),
STARPU VALUE, &iinfo, sizeof(int),
,0);

void POTRF(void *descr[], void *cl args) {
A =

STARPU MATRIX GET PTR(descr[0]);
starpu codelet unpack args(cl args,
&uplo,&n, &lda, &iinfo );
potrf(uplo, n, A, lda, iinfo);
}

struct starpu codelet
dpotrf starpu = {
.type = STARPU SEQ,
.cpu funcs = {POTRF},
.nbuffers = 1,
.modes ={ STARPU RW} };
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PaRSEC:Parallel Runtime Scheduling and Execution
Controller

ICL, University of Tennessee

Dynamic Task Discovery and
Parametrized Task Graph

Multicore, Manycore
Shared/distributed memory, and
heterogeneous architecture

Data dependencies: INPUT,

OUTPUT, INOUT

PTG has symbolic DAG and no need
to build and store it in memory.

DTD inserts tasks sequentially, and
the DAG is built dynamically during
run-time and stores it in memory.

Algorithm 3: PaRSEC STF Tile Cholesky

parsec=setup parsec(argc, argv, iparam);
dtd tp = parsec dtd taskpool new ();
parsec dtd data collection init(&A);
parsec enqueue( parsec, dtd tp );
parsec context start(parsec);

for k = 0; k < nt; k++ do
parsec dtd taskpool insert task(&POTRF, ...);

for m = k + 1; m < nt; m++ do
parsec dtd taskpool insert task(&TRSM, ...);

for n = k + 1; n < nt; n++ do
parsec dtd taskpool insert task(&SYRK, ...);
for m = n + 1; m < nt; m++ do

parsec dtd taskpool insert task(&GEMM, ...);

parsec dtd taskpool wait( parsec, dtd tp );
parsec context wait( parsec );
parsec taskpool free( dtd tp );
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PaRSEC:Parallel Runtime Scheduling and Execution
Controller

parsec dtd taskpool insert task(dtd tp, POTRF , priority, ”potrf”
sizeof(int), &uplo, VALUE,
sizeof(int), &n, VALUE,
sizeof(double)*nb*nb, &A, INOUT,
sizeof(int), &lda, VALUE,
sizeof(int), &iinfo, VALUE,
,PARSEC DTD ARG END);

void POTRF(parsec execution stream t *es, parsec task t *this task){
parsec dtd unpack args(this task, &uplo,&n, &A, &lda, &iinfo );
potrf(uplo, n, A, lda, iinfo);

}
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OpenMP: Open Multi-Processing

OpenMP Architecture
Review Board (or OpenMP
ARB)

OpenMP 1.x (1997-98),
OpenMP 2.x (2000-02)

Thread-based fork-join
programming model

OpenMP 3.x (2008-11)

Independent tasks

OpenMP 4.x (2013-15)

Task with dependencies

Multicore, Manycore shared
memory systems

Data dependencies: in,

out, inout

Algorithm 4: OpenMP STF Tile Cholesky

#pragma omp parallel

#pragma omp master
{
for k = 0; k < nt; k++ do
#pragma omp task depend(inout:A[0:nb])

POTRF(A[k][k]);

for m = k + 1; m < nt; m++ do
#pragma omp task depend(in:A[0:nb]) depend(inout:A[0:nb])

TRSM( A[k][k], A[m][k]);

for n = k + 1; n < nt; n++ do
#pragma omp task depend(in:A[0:nb]) depend(inout:A[0:nb])

SYRK(A[n][k], A[n][n]);

for m = n + 1; m < nt; m++ do
#pragma omp task depend(in:A[0:nb], A[0:nb]) depend(inout:A[0:nb])

GEMM(A[n][k], A[m][k], A[n][m]);

}
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OmpSs

Bercelona Supercomputing
Center (BSC)

Name originally comes from:
OpenMP and StarSs

OmpSs-2 is second
generation of the OmpSs

Multicore, Manycore
shared/distributed memory,
and heterogeneous
architecture

It allows nesting of tasks

Data dependencies: in,

out, inout

Algorithm 5: OmpSs STF Tile Cholesky

for k = 0; k < nt; k++ do
#pragma omp inout(A[0:nb])

POTRF(A[k][k]);

for m = k + 1; m < nt; m++ do
#pragma omp in(A[0:nb]) inout(A[0:nb])

TRSM( A[k][k], A[m][k]);

for n = k + 1; n < nt; n++ do
#pragma omp task in(A[0:nb]) inout(A[0:nb])

SYRK(A[n][k], A[n][n]);

for m = n + 1; m < nt; m++ do
#pragma omp task in(A[0:nb], A[0:nb]) inout(A[0:nb])

GEMM(A[n][k], A[m][k], A[n][m]);
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Summary Table of Existing Task-based Runtime Systems

Task-based
Runtime

Developer
group

Distributed
Memory

GPU Scheduler Features Task Dependency Programming
Interface

OpenMP OpenMP ARB standard in GNU,
pragma directive

STF, implicit
DAG, fork-join
model

C, C++,
Fortran

OmpSs
/OmpSs-2

Bercelona
Supercomputing
Center

X X Breadth First, Work
First, Socket-aware
scheduler, Bottom
level-aware scheduler

STF, implicit DAG C, C++,
Fortran

StarPU INRIA
Bordeaux
Sud-Ouest

X X prio, dm , dmda,
eager scheduler, work
stealing, priority

STF, implicit DAG C

PaRSEC UTK X X PBQ , ePBQ
schedulers, work
stealing, priority

STF, implicit
DAG, PTG,
explicit DAG

C, For-
tran JDF
compiler

Quark UTK priority and locality
hinting, accumulator
and gatherv tasks

STF, implicit DAG C

Kokkos Sandia
National
Laboratories

X execution policy and
pattern,
memory space and
layout

STF, implicit DAG C++
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Summary Table of Existing Task-based Runtime Systems

Task-based
Runtime

Developer
group

Distributed
Memory

GPU Scheduler Features Task Dependency Programming
Interface

Legion Stanford
University

X X logical regions,
spawning child task,
mapping interface

STF, implicit DAG C++,
Regent
compiler

HPX STEllAR Group X X work-queuing model,
message driven
computation using
tasked based

explicit
parallelism,
fork-join model

C, C++

Charm++ University of
Illinois

X X chares, entry
methods,
migratability,
asynchrony ,
structure dagger

explicit DAG C++, cus-
tom

OCR Universities
\Laboratories

asynchronous
event-driven,
work-stealing,
priority, work-sharing

explicit, DAG C

Cilk Intel spawn and sync,
reducers and
hyperobjects, and
work-stealing

Divide and
conquer (recursive
tasks), fork-join
model

C, C++

TBB Intel nested parallelism,
work-stealing, ranges
and
partitioners,memory
allocators

parallel
algorithms,
explicit flow
graphs

C++
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DARMA: Distributed Asynchronous Resilient Models and
Applications

DARMA is a C++ abstraction layer for
asynchronous many-task (AMT)
runtimes

Sandia National Laboratories.

Executing applications with multiple
different run-time systems to take
advantage of the strengths and
weaknesses of each without modifying
user code

DARMA software provides two levels:
front-end API, and back-end-API

DARMA currently supports OpenMP
and Kokkos runtime systems in the
backend

Application

DARMA

Runtime

OS/Hardware

Common API
across runtimes

Common API
across runtimes

Front End API
(Application User)

Translation Layer

Back End API
(Specification for Runtime)

Glue Code
(Specific to each runtime)
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DARMA: Distributed Asynchronous Resilient Models and
Applications

DARMA follows the Sequential
Task Flow (STF) model to
express the main building blocks

Data interactions occurs using
special handle called an
AccessHandle

Asynchrous task can be defined
using create work() function

create work() can be called
with either a C++11 lambda
or a functor

AccessHandle has well-defined
deterministic permissions on the
underlying data: Modify, Read,
None.
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ALTANAL Layer
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ALTANAL Layer
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ALTANAL Interface

High-Level API

ALTANAL Init

ALTANAL Finalize

ALTANAL Enable

ALTANAL Disable

ALTANAL Sequence Create

ALTANAL Sequence Destroy

ALTANAL Insert Task

ALTANAL Unpack Arg

ALTANAL Options Init

Low-Level API

ALTANAL Runtime init

ALTANAL Runtime finalize

ALTANAL Runtime enable

ALTANAL Runtime disable

ALTANAL Runtime sequence create

ALTANAL Runtime sequence destroy

ALTANAL Runtime insert task

ALTANAL Runtime unpack arg

ALTANAL Runtime options init
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ALTANAL Init
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ALTANAL Finalize
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ALTANAL Main API

Algorithm 6: ALTANAL STF Tile Cholesky

ALTANAL Init(ncpus, ngpus);
ALTANAL context t *altanal;
ALTANAL sequence t *sequence;
ALTANAL request t *request;
ALTANAL Sequence Create(altanal, &sequence);

for k = 0; k < nt; k++ do
ALTANAL Insert Task(&ALTANAL CODELETS NAME(POTRF), options, ...);

for m = k + 1; m < nt; m++do
ALTANAL Insert Task(&ALTANAL CODELETS NAME(TRSM), options, ...);

for n = k + 1; n < nt; n++do
ALTANAL Insert Task(&ALTANAL CODELETS NAME(SYRK), options, ...);

for m = n + 1; m < nt; m++do
ALTANAL Insert Task(&ALTANAL CODELETS NAME(GEMM), options, ...);

ALTANAL Sequence Wait(altanal, sequence);
ALTANAL Sequence Destroy(altanal, sequence);
ALTANAL Finalize();
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ALTANAL Main API

ALTANAL CODELETS(POTRF, POTRF CPU)

ALTANAL Insert Task(ALTANAL CODELETS NAME(POTRF), options,
ALTANAL VALUE, &uplo, ˙ sizeof(int),
ALTANAL VALUE, &n, sizeof(int),
ALTANAL INOUT, &A, sizeof(double)*nb*nb
ALTANAL VALUE, &lda, sizeof(int),
ALTANAL VALUE, &iinfo, sizeof(int),
,ALTANAL PARAM END);

void POTRF CPU(ALTANAL altanal) {
ALTANAL Unpack Args(altanal, &uplo,&n, &lda, &iinfo );
potrf(uplo, n, A, lda, iinfo);

}
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Dense Cholesky Factorization

Figure: Dual-socket 18-core Intel(R) Xeon(R) Haswell CPU E5-2699 v3 @ 2.3 GHz with
256GB of main memory.
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Dense Cholesky Factorization

Figure: Dual-socket 28-core Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz 38.5MB
with 256GB of main memory.
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Tile Low Rank Cholesky Factorization

Figure: Dual-socket 18-core Intel(R) Xeon(R) Haswell CPU E5-2699 v3 @ 2.3 GHz with
256GB of main memory, shared memory system
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Tile Low Rank Cholesky Factorization

Figure: Dual-socket 28-core Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz 38.5MB
with 256GB of main memory, shared memory system
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Conclusion and Future Work

ALTANAL is designed to provide run-time oblivious interface that can
be mapped to many backend run-times (OpenMP, StarPU, Quark,
OmpSs, Kokkos, PaRSEC)

It tackles many challenges such as the ability of studying different
runtimes for best standards and practices

ALTANAL API is used in the interface of compute-bound and
memory-bound workloads and enable them to switch between Quark,
StarPU, and PaRSEC

ALTANAL currently abstracts Quark , StarPU, and PaRSEC

This research will support many of today's scientific applications
based on leading asynchronous dynamic runtime systems

We are targeting other run-time systems such as OpenMP, OmpSs,
Kokkos, and TBB

ALTANAL will be extended to benefit from C++ abstraction
mechanism
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