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Computing Hardware Evolution

Frequency barrier

e Processing units cannot run faster for
reasons of energy efficiency

@ Concurrency makes up for frequency
e Several processing units run together
such as:
e Multicore and manycore
@ Vector processing extensions
o Accelerators
@ Heterogeneous architectures

Deep memory hierarchy

More capabilities, more complexity
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Software Evolution

@ With this architectural evolution, the burden to design intrinsic
algorithmic parallelism rests on software developers

o Parallel programming languages such as MPI+X, which require
programmers to

e expose parallelism from algorithm
e manage computational recourses and communication
@ Asynchronous task-based runtime systems, which:

e relieve developers from managing low-level resources and let them
focus on developing parallel applications
e enhance user productivity
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Task-based Runtime Systems

@ Task-based runtime systems conceptually
similar to out-of-order processor scheduling

@ They provides an automatic parallelization by
tracking data dependencies and resolving data
hazards at runtime

@ Task-based runtimes logically operate with a
directed acyclic graph (DAG) that:

e captures data dependencies between
application tasks
e captures tasks read/write data

@ Task-based runtimes provide additional
information such as task priority, load
balancing, and data locality

@ Profiling and tracing

@ Main challenge of these recent runtime systems

is language expressivity
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Async-AMG: Asynchronous Algebraic Multigrid

@ Asynchronous task-based parallelization of additive algebraic
multi-grid for solving Ax=b

@ |t exploits the parallelism between levels of the grid hierarchy in
additive AMG

e Hybrid MPI4+OmpSs (Barcelona Supercomputer Center)
@ Cray XC40 supercomputer

Rabab Alomairy (KAUST) ALTANAL IXPUG Middle East, 2018

14 / 52



© Motivation
@ Computing Hardware and Software Evolution
@ Task-based Runtime Systems
@ Overview of Task-based ECRC Projects
o ALTANAL

© Literature Review

@ Overview of Existing Asynchronous Task-based Runtime Systems
o DARMA
© ALTANAL
o ALTANAL Layer
@ ALTANAL Interface

@ Test Cases and Experiments

@ Dense Cholesky Factorization

@ Tile Low Rank Cholesky Factorization
© Conclusion and Future Work

«O» <Fr «=r» «=)» = Al



API Standardization
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ALTANAL

o ALTANAL: Abstraction Layer for Task bAsed NumericAl Libraries

@ Although the task-based model is quite active, lack of API
standardization makes it difficult for application or library developers
to switch runtimes

@ A thin layer of abstraction, making the user experience oblivious to
the underneath run-time systems

o ALTANAL Goals:

e Providing a set of abstractions to facilitates the expression of tasking
that map to a variety of run-time systems such as StarPU, Quark,
OmpSs, PaRSEC, OpenMP, and Kokkos

e Enabling exploration of a variety of underlying runtime system
technologies and architectures without changing the application code

e Enhancing user productivity
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Quark: QUeuing And Runtime for Kernels

@ ICL, University of Tennessee
Knoxville.

@ Enable dynamic asynchronous
execution of tasks

@ Targets multi-core, multi-socket
shared memory systems

@ It is highly optimized for
PLASMA library

o Data locality, priority, and
region access.

o Data dependencies: INPUT,
INOUT, OUTPUT

Rabab Alomairy (KAUST)

Algorithm 1: Quark STF Tile Cholesky

QUARK _New(NUM_THREADS);
QUARK_Sequence_Create (quark);

for k =0; k < nt; k++ do

QUARK _Insert_Task(quark, POTREF, flg, ...);

for m=k+1; m< nt; m++do
QUARK _Insert_Task(quark, TRSM, flg, ...);

for n=k+1; n< nt; n++do
QUARK _Insert_Task(quark, SYRK, flg, ...);
for m=n-+1; m< nt; m++do

QUARK _Insert_Task(quark, GEMM, flg, ...);

QUARK _Barrier( quark );
QUARK _Sequence_ Wait (quark, seq);
QUAR_Delete(quark);

ALTANAL
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Quark: QUeuing And Runtime for Kernels

QUARK _Insert_Task(quark, POTRF , flags,

sizeof(int), &uplo, VALUE,
sizeof(int), &n, VALUE,
sizeof(double)*nb*nb, &A, INOUT,
sizeof(int), &lda, VALUE,
sizeof(int), &iinfo, VALUE,
0);

void POTRF (Quark* quark) {
quark_unpack_args_5(quark, &uplo,&n, &A, &lda, &iinfo );
potrf(uplo, n, A, Ida, iinfo);
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StarPU

@ INRIA Bordeaux Sud-Ouest

@ Enable dynamic task-based
implementation.

Algorithm 2: StarPU STF Tile Cholesky

starpu_init(NULL);

starpu_data_handle_t handle;

@ Multicore, Manycore starpu_matrix_data_register(&handle, ..)
shared/distributed memory, and

. for k=0; k <nt; k do
heterogeneous architecture ' ne et

starpu_insert_task(&POTREF, ...);
@ StarPU provides task scheduling and  for m = k+1; m < nt; m++do
memory management mechanisms starpu_insert_task(&TRSM, ...);
for n=k+1; n< nt; n++do
starpu_insert_task(&SYRK, ...);
for m=n-+1; m< nt; m++do
starpu_insert_task(&GEMM, ...);

@ Based on three principle:

o Registering its buffers, to get one
handle per buffer
e Defining codelets to CPU and GPU

implementations starpu_task_wait_for_all();
e Applying codelets on some handles starpu_data_unregister (handle);
e Data dependencies: STARPUR, starpu_shutdown();

STARPU_W, STARPU_RW
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StarPU

starpu_insert_task(&dpotrf_starpu ,
STARPU_VALUE, &uplo, sizeof(int),
STARPU.VALUE, &n, sizeof(int),
STARPU_RW, &Ahandle,
STARPU.VALUE, &Ida, sizeof(int),  struct starpu_codelet
STARPU_VALUE, &iinfo, sizeof(int),  dpotrf_starpu = {

0); type = STARPU_SEQ,
void POTRF(void *descr([], void *cl_args) { cpufuncs = {POTRF},
A — .nbuffers = 1,
STARPU_MATRIX_GET_PTR(descr[o]); ~Modes ={ STARPU.RW} J;

starpu_codelet_unpack_args(cl_args,
&uplo,&n, &lda, &iinfo );
potrf(uplo, n, A, Ida, iinfo);

}
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PaRSEC:Parallel Runtime Scheduling and Execution
Controller

Algorithm 3: PaRSEC STF Tile Cholesky

e ICL, University of Tennessee

. . parsec=setup_parsec(argc, argv, iparam);
@ Dynamic Task Discovery and dtd tp — parsec. dtd taskpool new ():

Parametrized Task Graph parsec_dtd_data_collection_init(&A);
parsec_enqueue( parsec, dtd_tp );

o Multicore, Manycore parsec_context_start(parsec);

Shared /distributed memory, and
i for k =0; k < nt; k++ do
heterogeneous architecture parsec_dtd_taskpool_insert_task(&POTREF, ...);

e for m=k+1, m< nt; m++ do
° : ; ;
Data dependenC|es INPUT, parsec_dtd_taskpool_insert_task(& TRSM, ...);
OUTPUT, INOUT for n=k+1; n<nt; n++ do

e PTG has symbolic DAG and no need parsec_dtd_taskpool_insert_task(&SYRK, ...);
for m=n+1; m< nt; m++ do

to build and store it in memory. parsec_dtd_taskpool_insert_task(&GEMM, ...);
@ DTD inserts tasks sequentially, and parsec_dtd_taskpool_wait( parsec, dtd_tp );
the DAG is built dynamically during parsec-context wait( parsec );
. o parsec_taskpool_free( dtd_tp );
run-time and stores it in memory.
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PaRSEC:Parallel Runtime Scheduling and Execution
Controller

parsec_dtd_taskpool_insert_task(dtd_tp, POTRF , priority, " potrf”
)

sizeof(int), &uplo, VALUE,
sizeof(int), &n, VALUE,
sizeof(double)*nb*nb, &A, INOUT,

sizeof(int), &lda, VALUE,
sizeof(int), &iinfo, VALUE,

,PARSEC_DTD_ARG_END);

void POTRF(parsec_execution_stream_t *es, parsec_task_t *this_task){
parsec_dtd_unpack_args(this_task, &uplo,&n, &A, &lda, &iinfo );

potrf(uplo, n, A, Ida, iinfo);
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OpenMP: Open Multi-Processing

@ OpenMP Architecture
Review Board (or OpenMP
ARB)

e OpenMP 1.x (1997-98),
OpenMP 2.x (2000-02)

o Thread-based fork-join
programming model

e OpenMP 3.x (2008-11)

o Independent tasks

e OpenMP 4.x (2013-15)

e Task with dependencies

@ Multicore, Manycore shared
memory systems

@ Data dependencies: in,
out, inout

Rabab Alomairy (KAUST)

Algorithm 4: OpenMP STF Tile Cholesky

#pragma omp parallel
#pragma omp master

{
for k =0; k < nt; k++ do
#pragma omp task depend(inout:A[0:nb])
POTRF(A[K][K]);
for m=k+1, m< nt; m++ do
#pragma omp task depend(in:A[0:nb]) depend(inout:A[0:nb])
TRSM( A[K|[K], A[m][K]):
for n=k+1; n< nt; nt++ do
#pragma omp task depend(in:A[0:nb]) depend(inout:A[0:nb])
SYRK (AT, Aln]in)):;
for m=n+1; m< nt; m++ do
#pragma omp task depend(in:A[0:nb], A[0:nb]) depend(inout:A[0:nb])
GEMM(A[n][]. A[m][K]. A[n][m]):

}
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OmpSs

@ Bercelona Supercomputing
Center (BSC) Algorithm 5: OmpSs STF Tile Cholesky

@ Name originally comes from: for k = 0; k < nt; k++ do
OpenMP and StarSs #pragma omp inout(A[0:nb])
_ POTRF(A[K][K]):
@ OmpSs-2 is second for m=k+1; m< nt; m++ do
generation of the OmpSs #pragma omp in(A[0:nb]) inout(A[0:nb])
TRSM( A[K|[K], A[m][K]):

o Multicore, Manycore
for n=k+1; n< nt; n++ do

shared/distributed memory, #pragma omp task in(A[0:nb]) inout(A[0:nb])
and heterogeneous SYRK(A[n][K], Aln][n]);
architecture for m=n+1; m< nt; m++ do

#pragma omp task in(A[0:nb], A[0:nb]) inout(A[0:nb])

o It allows nesting of tasks GEMM(A[n][K], A[ml[K], A[n][m]):

o Data dependencies: in,
out, inout
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Summary Table

of Existing Task-based Runtime Systems

Task-based | Developer Distributed GPU Scheduler Features Task Dependency | Programming
Runtime group Memory Interface
OpenMP OpenMP ARB standard in GNU, STF, implicit C, C++,
pragma directive DAG, fork-join Fortran
model
OmpSs Bercelona v v Breadth First, Work STF, implicit DAG | C, C++,
/OmpSs-2 | Supercomputing First, Socket-aware Fortran
Center scheduler, Bottom
level-aware scheduler
StarPU INRIA v v prio, dm , dmda, STF, implicit DAG | C
Bordeaux eager scheduler, work
Sud-Ouest stealing, priority
PaRSEC UTK v v PBQ , ePBQ STF, implicit C, For-
schedulers, work DAG, PTG, tran JDF
stealing, priority explicit DAG compiler
Quark UTK priority and locality STF, implicit DAG | C
hinting, accumulator
and gatherv tasks
Kokkos Sandia v execution policy and | STF, implicit DAG | C++
National pattern,
Laboratories memory space and
layout

Rabab Alomairy (KAUST)
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Summary Table

of Existing Task-based Runtime Systems

Task-based | Developer Distributed GPU Scheduler Features Task Dependency | Programming
Runtime group Memory Interface
Legion Stanford v v logical regions, STF, implicit DAG | C++,
University spawning child task, Regent
mapping interface compiler
HPX STEIIAR Group | v/ v work-queuing model, | explicit C, C++
message driven parallelism,
computation using fork-join model
tasked based
Charm-++ | University of v v chares, entry explicit DAG C++, cus-
lllinois methods, tom
migratability,
asynchrony ,
structure dagger
OCR Universities asynchronous explicit, DAG C
\Laboratories event-driven,
work-stealing,
priority, work-sharing
Cilk Intel spawn and sync, Divide and C, C++
reducers and conquer (recursive
hyperobjects, and tasks), fork-join
work-stealing model
TBB Intel nested parallelism, parallel CH++
work-stealing, ranges | algorithms,
and explicit flow
partitioners,memory graphs
allocators
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DARMA: Distributed Asynchronous Resilient Models and
Applications

e DARMA is a C++ abstraction layer for
asynchronous many-task (AMT)

runtimes pr—

. . . Common APl Front End API

@ Sandia National Laboratories. Aol acoss runtimes |~ (Applicaton User)
M

@ Executing applications with multiple
different run-time systems to take
advantage of the strengths and
weaknesses of each without modifying
user code

) Transation Layer

Back End API

Specfiaton for Runtime]

Common API
301055 runtimes

o DARMA software provides two levels:
front-end API, and back-end-API

e DARMA currently supports OpenMP 06 Haar
and Kokkos runtime systems in the
backend
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DARMA: Distributed Asynchronous Resilient Models and
Applications

o DARMA follows the Sequential
Task Flow (STF) model to
express the main building blocks

@ Data interactions occurs using
special handle called an
AccessHandle

@ Asynchrous task can be defined
using create_work() function

e create_work() can be called
with either a C4++11 lambda
or a functor

@ AccessHandle has well-defined
deterministic permissions on the
underlying data: Modify, Read,

None.
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ALTANAL Interface

High-Level API

ALTANAL Init °
ALTANAL _Finalize
ALTANAL_Enable

ALTANAL Disable

ALTANAL _Sequence_Create
ALTANAL _Sequence_Destroy
ALTANAL _Insert_Task
ALTANAL_Unpack_Arg
ALTANAL _Options_Init

Low-Level API

ALTANAL_Runtime_init
ALTANAL_Runtime_finalize
ALTANAL_Runtime_enable
ALTANAL_Runtime_disable
ALTANAL_Runtime_sequence_create
ALTANAL _Runtime_sequence_destroy
ALTANAL _Runtime_insert_task
ALTANAL _Runtime_unpack_arg
ALTANAL _Runtime_options_init

Rabab Alomairy (KAUST) ALTANAL IXPUG Middle East, 2018 38 /52



DA

]
it



DA

|
i
it



ALTANAL Main API

Algorithm 6: ALTANAL STF Tile Cholesky

ALTANAL Init(ncpus, ngpus);

ALTANAL _context_t *altanal;

ALTANAL _sequence_t *sequence;

ALTANAL _request_t *request;

ALTANAL Sequence_Create(altanal, &sequence);

for k =0; k < nt; k++ do

ALTANAL _Insert_Task(&ALTANAL_CODELETS_NAME(POTRF), options, ...);
for m=k+1; m< nt; m++do

ALTANAL _Insert_Task(&ALTANAL_CODELETS_NAME(TRSM), options, ...);
for n=k+1; n< nt; n++do

ALTANAL _Insert_Task(&ALTANAL_CODELETS_NAME(SYRK), options, ...);

for m=n+1; m< nt; m++do
ALTANAL _Insert_Task(&ALTANAL_CODELETS_NAME(GEMM), options, ...);

ALTANAL _Sequence_Wait(altanal, sequence);
ALTANAL_Sequence_Destroy(altanal, sequence);
ALTANAL _Finalize();
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ALTANAL Main API

ALTANAL_CODELETS(POTRF, POTRF_CPU)

ALTANAL _Insert_Task(ALTANAL_CODELETS_NAME(POTRF), options,
ALTANAL_VALUE, &uplo, * sizeof(int),
ALTANAL_VALUE, &n, sizeof(int),
ALTANAL_INOUT, &A, sizeof(double)*nb*nb
ALTANAL_VALUE, &lda, sizeof(int),
ALTANAL_VALUE, &iinfo, sizeof(int),
,ALTANAL_PARAM_END);

void POTRF_CPU(ALTANAL altanal) {
ALTANAL _Unpack_Args(altanal, &uplo,&n, &lda, &iinfo );
potrf(uplo, n, A, Ida, iinfo);
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256GB of main memory.

Figure: Dual-socket 18-core Intel(R) Xeon(R) Haswell CPU E5-2699 v3 @ 2.3 GHz with
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with 256GB of main memory.

Figure: Dual-socket 28-core Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz 38.5MB
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Figure: Dual-socket 18-core Intel(R) Xeon(R) Haswell CPU E5-2699 v3 @ 2.3 GHz with
256GB of main memory, shared memory system
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with 256GB of main memory, shared memory system

Figure: Dual-socket 28-core Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz 38.5MB
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Conclusion and Future Work

o ALTANAL is designed to provide run-time oblivious interface that can
be mapped to many backend run-times (OpenMP, StarPU, Quark,
OmpSs, Kokkos, PaRSEC)

o It tackles many challenges such as the ability of studying different
runtimes for best standards and practices

@ ALTANAL API is used in the interface of compute-bound and
memory-bound workloads and enable them to switch between Quark,
StarPU, and PaRSEC

@ ALTANAL currently abstracts Quark , StarPU, and PaRSEC

@ This research will support many of today's scientific applications
based on leading asynchronous dynamic runtime systems

@ We are targeting other run-time systems such as OpenMP, OmpSs,
Kokkos, and TBB

@ ALTANAL will be extended to benefit from C++ abstraction
mechanism

Rabab Alomairy (KAUST) ALTANAL IXPUG Middle East, 2018 51 /52



DA

]
it



	Motivation
	Computing Hardware and Software Evolution
	Task-based Runtime Systems
	Overview of Task-based ECRC Projects
	ALTANAL

	Literature Review
	Overview of Existing Asynchronous Task-based Runtime Systems
	DARMA

	ALTANAL
	ALTANAL Layer
	ALTANAL Interface

	Test Cases and Experiments
	Dense Cholesky Factorization
	Tile Low Rank Cholesky Factorization

	Conclusion and Future Work

