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Overview

É Reducing synchronization and increasing concurrency
are vital adaptations to hybrid architectures.

É We explore synchronization-reducing versions of clas-
sical solvers using a hybrid MPI+OmpSs/OpenMP.

É Main references:
É Amani AlOnazi, George S. Markomanolis, and David Keyes.

2017. Asynchronous Task-Based Parallelization of Algebraic
Multigrid. In ACM Proceedings of the Platform for Advanced
Scientific Computing Conference (PASC ’17).
DOI: https://doi.org/10.1145/3093172.3093230.

É Amani Alonazi, Marcin Rogowski, Ahmed Al-Zawawi, and David
Keyes. Performance Assessment of Hybrid Parallelism for Large-
Scale Reservoir Simulation on Multi- and Many-core Architec-
tures (submitted).

É Amani AlOnazi, Lulu Liu, and David Keyes. Adoption of Less
Synchronous Modes of Computation in Nonlinear Solvers (in
progress).
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Hybridization and Taskification

É OpenMP is an API for shared memory parallel program-
ming; "usually" uses a fork/join model.

É OmpSs uses data flow model to express the concur-
rency of the program to guarantee data race-free ex-
ecution through synchronization mechanisms, i.e., de-
pendences, taskwaits, atomics, ... etc.

É MPI has been used, since its appearance in the 90s, as
one of the most favored parallel models for distributed
memory environment.

É Tasks are the smallest unit of work that represent a
specific instance of an executable kernel and its asso-
ciated data.

É Dependences let the user express the data flow of the
program, so that at runtime this information can be
used to determine if the parallel execution of two tasks
is concurrent or not.
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Asynchronous Task-Based Iterative Algebraic Solvers

1. Asynchronous Algebraic Multigrid

2. Linear Preconditioner in Reservoir Simulator

3. Additive Schwarz Preconditioned Inexact Newton

4. Summary
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Motivations

É AMG is well-suited for large-scale scientific computing
problems; operations scale as O(N).

É Large parallel communication costs often limit parallel
scalability:
É Computation to communication ratio on coarser

grids/levels.
É Lack of scalability on emerging architectures.
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1.1 Algebraic Multigrid

1.2 Task-based Parallelism

1.3 Taskification of the VYAMG Additive V-cycle

1.4 Intranode Concurrency

1.5 Hybrid Distributed and Shared Memory Model

1.6 Performance Results
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AMG

É AMG is an iterative method for solving A = b, very
often used as a preconditioner.

É High-frequency error is reduced by relaxation, while
low-frequency error is mapped to coarse-grids and re-
duced there.

É Consists of two phases: setup and solve.

Setup Phase

É Select coarse grids/levels

É Define interpolation P
C−1
=0

É Define restriction R = PT

É Define coarse-grid A+1 = RAP

Solve Phase

≡ −− 1 − � −−− � − � −−− � −− � −−−− � −−−−− � − 2 � −−− � −−− � −−−−−− � − 3 � −−− � − � −− � − 4 −− AlOnazi | 7



Additive AMG and Multiplicative AMG (1)
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Additive AMG and Multiplicative AMG (2)

P̄

P̄ is a modified version of P to which one smoothing operation at the finer level has been applied,
possibly truncated to a specified sparsity threshold. 1

É One less SpMV
É Concurrent smoothing
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1Panayot Vassilevski and Ulrike Yang. Reducing communication in algebraic multigrid using additive
variants. Numerical Lin. Alg. with Applic. (2014).
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Task-based Parallelism

É Task-based parallel model expresses parallelism in terms of
asynchronous tasks with data dependencies, i.e., input and
output required for a unit of computation.

É Data dependencies between tasks are used to model the
flow of data and by them schedule the execution dynami-
cally.

É The runtime system schedules a pool of workers to conduct
the execution of the DAG.

É Many task-based libraries, such as QUARK, StarPU, Legion,
OmpSs ...
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Taskification of The VYAMG Additive V-cycle

É Given the parallel loop of the
smoothing levels in the grid hier-
archy in the VYAMG.

É We can express the solve phase
as a DAG, where vertices rep-
resent computational tasks and
edges are the dependencies
among them.

É This DAG will not lead to efficient
performance due to the load im-
balance between the tasks and
the low level of concurrency.
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Tiling and Task Decomposition
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Tiling and Task Decomposition Traces

Time →
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Intranode Concurrency Performance

É Strong scalability data of only OmpSs VYAMG used as
a preconditioner of CG solving the 3D Laplacian.
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Intranode Concurrency Performance Analysis

0 → 22 L2 cache miss ratio

0 → 22 L2 cache miss ratio

0 → 22 L2 cache miss ratio

0 → 3.3 Ghz

0 → 3.3 Ghz

0 → 3.3 Ghz
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Hybrid MPI+OmpSs

É Hybrid distributed-shared memory parallelism.
É MPI exploits inter-node (or NUMA) parallelism while a task-

based directed acyclic graph exploits node parallelism.
É Asynchronous execution model
É Hiding communication latency
É Out-of-order execution of tasks

É Dynamic overlap of communications and computations through
the inclusion of communication in the task graph (ongoing
work).

É A separate task dependency graph for each MPI rank.
É MPI_THREAD_FUNNELED thread-safety level in combination

with dynamic asynchronous task dependency graph for com-
putations.

É Dynamically schedules the computations while the main
thread is communicating, and with it latency hiding and
asynchronous execution.
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Performance Model

É Extended AMG performance model. 2

T 
R
=











2C+1P s̄t + ρ̄α + n̄β,  < M− 1
2C+1P s̄t + ρ̄α + n̄β + 2

C
P + ρα + nβ, ddp = 0

0,  = M − 1

T 
P
=

¨

2C−1P s̄−1t + ρ̄−1α + n̄−1β,  > 0
0,  = 0
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6CP st + 3(ρα + nβ),  < dd∨ddp
4CP st + ρα + 2nβ + mx0≤j≤M

ρjα, dd = 0
2CP st + nβ + mx0≤j≤M

ρjα,  = dd ∨ ddp = 0
2CP st + nβ, dd∨ddp > 0
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+ M−1=0 T 
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TADDpAMG = 
M−1
=0 T 

R
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0≤≤M

T 
S
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P

2Gahvari, Baker, Schulz, Yang, Jordan, and Gropp. Modeling the Performance of an Algebraic Multigrid
Cycle on HPC Platforms. ACM ICS (2011)

≡ −− 1 − � −−− � − � −−− � −− � −−−− � −−−−− � − 2 � −−− � −−− � −−−−−− � − 3 � −−− � − � −− � − 4 −− AlOnazi | 21



Performance Model Results I

0!

0.0005!

0.001!

0.0015!

0.002!

0.0025!

0.003!

0.0035!

0.004!

0.0045!

AM
G_

ad
d!

AM
G_

ad
d_
p!

AM
G_

ad
d!

AM
G_

ad
d_
p!

AM
G_

ad
d!

AM
G_

ad
d_
p!

AM
G_

ad
d!

AM
G_

ad
d_
p!

1! 8! 64! 512!

Ti
m

e 
pe

r C
yc

le
 (s

ec
on

ds
) 

MPI Tasks (8 Threads per Task) 

R! P! S!

≡ −− 1 − � −−− � − � −−− � −− � −−−− � −−−−− � − 2 � −−− � −−− � −−−−−− � − 3 � −−− � − � −− � − 4 −− AlOnazi | 22



Performance Model Results II

É A model that helps finding the sweet spot from the improvement of load
balance and concurrency as the size decreases and the overhead
increase proportional to the number of tasks (on going work).
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Experimental Setup

É We implement our approach within the BoomerAMG in
the hypre library of LLNL.

É We use VYAMG as a preconditioner of conjugate gradi-
ent (CG) iterative solver.

É The combination of coarsening and interpolation is HMIS
coarsening, and the ext+i interpolation truncated to at
most 4 elements per row and one level of aggressive
coarsening.

É All the test runs were performed on Shaheen Cray XC40.
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Intranode Performance

É Strong scaling of BoomerAMG (MPI), Add-VYAMG (OmpSs),
and Add-VYAMG (MPI+OmpSs), where the -axis is MPI
tasks× OmpSs workers.
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Internode Performance AMS

É Auxiliary-space Maxwell Solver (AMS) is a variational
form of Hiptmair-Xu auxiliary space preconditioner for
edge finite element discretization of the curl-curl for-
mulation of the Maxwell equations.

É AMS employs unstructured mesh AMG preconditioners
(i.e. BoomerAMG).

É We employ the DAG-based Add-VYAMG instead of Boomer-
AMG within the AMS preconditioner for a 3D electro-
magnetic diffusion on a smooth hexahedral meshing
of the unit cube.

∇ × ∇ × ~E + ~E = 1
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Internode Performance: AMS Strongscaling
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Internode Performance: AMS Weakscaling
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Summary - AMG

É We presented first results for algebraic multigrid in a
hybrid distributed-shared implementation using a di-
rected acyclic graph tasked-based decomposition.

É We profiled the hypre BoomerAMG with MPI+OmpSs in
the Intel multicore environment.

É The strong scaling results on 32 cores per single Haswell
node of Cray XC40 demonstrate the feasibility of this
approach to exploit dynamic scheduling of the domain-
decomposed TDG, even for the scalar Laplacian oper-
ator, which has low arithmetic intensity.

É Faster strong and weak scaling results across nodes
are also obtained for the 3D electromagnetic diffusion
test case.
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Reservoir Simulator Overview 1

É SPE10 Model:
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Reservoir Simulator Overview 2

Two-Phase Flow

−∇·(λtK∇p) = qt+∇·(λnK∇pc)−∇·((λnρn+λρ)Kg) (1)

∂Sϕ

∂t
+ ∇ · (λK(∇p − ρg) = q (2)

The Jacobian matrix A is decomposed:

A = P + E (3)

where P is block-tridiagonal with grid cells ordered first in
the Z-direction. E contains the remaining non-zero data
block.
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Linear Solver System

An approximate inverse preconditioner for A is:

A−1 ≈ M−1
N
= [  +

N
∑

k=1

(−1)k(P−1E)k]P−1 (4)

where N is the series term, and the action of P−1 is com-
puted by a sparse direct solver, e.g., LU.

Constrained Pressure Residual uses Equation (4) as base-
preconditioning.
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Independent Tasks for Hybridization

É P is constructed by assembling the linear equations
associated with the cells of maximum transmissibil-
ity traces in the horizontal XY plane plus the vertical-
transmissibility terms of each Z line.

É A set of Z-line systems can be solved independently
to construct the base preconditioner system.

É The main computational kernel is Z-line solve with up-
wards/dowards sweep coupled with matrix-vector mul-
tiplication (SpMV).
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Independent Tasks for Hybridization

Associated with Beginning/End of Z-line

!0 !1 !2 !3

Solve Concurrently 

After the 1st factorization stepTridiagonal System Per MPI
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Linear Solver Implementation

É MPI: MPI everywhere implementation with no overde-
composition of the linear system.

É OMP: MPI+OpenMP implementation of the linear solver
with the multithreaded overdecomposition of the sys-
tem.

É Task: MPI+OpenMP with task-based implementation
for the asynchronous progress of the P2P communi-
cation in the SpMV kernel.
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Haswell

É Intel Haswell (Xeon E5-2698v3), with 2 CPU sockets
per node, and 16 processor cores per socket
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Knights Landing Node

É Intel Xeon Phi (Knights Landing 7210), which is
equipped with 64 hardware cores.
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Skylake Node

É Intel Skylake (Xeon 8176), the successor of Haswell,
with two sockets and 28 cores per socket.
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Across architectures: Haswell, Skylake, and KNL
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2.1 Reservoir Simulator

2.2 Independent Tasks for Hybridization

2.3 Performance of MPI+OpenMP using SPE10 Model

2.4 Summary - Reservoir Preconditioner
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Summary - Reservoir Preconditioner

É We developed shared memory parallelization of the
preconditioner and SpMV kernels as an execution time
option to the distributed memory MPI model.

É Our results indicate that hybrid model can outperform
MPI-everywhere per-node on Intel Haswell, Knights Land-
ing, and Skylake.

É Benefits of a hybrid model are the most pronounced
on Skylake, where the performance boost can reach
50% using 112 logical cores.
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Asynchronous Task-Based Iterative Algebraic Solvers

1. Asynchronous Algebraic Multigrid

2. Linear Preconditioner in Reservoir Simulator

3. Additive Schwarz Preconditioned Inexact Newton

4. Summary
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3.1 Nonlinear Preconditioning

3.2 Hybrid Model for Load Balancing

3.3 Preliminary Performance Result

3.4 Summary - ASPIN
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Nonlinear Preconditioning

É Newton-like methods (e.g. Newton-Krylov-Schwarz) are
often favored for the solution of nonlinear systems.

É Global Newton-like methods may waste considerable
computational resources for problems that are nonlin-
early stiff.

É Additive-Schwarz Preconditioned Inexact Newton (AS-
PIN) is a domain decomposition method for solving
large, sparse nonlinear systems of equations. 3

É It solves potentially unbalanced Newton problems on
subdomains to derive a new nonlinear system with the
same root as the original.

3Nonlinearly Preconditioned Inexact Newton Algorithms, X.-C. Cai
and D. E. Keyes. SIAM J Sci. Comput. Vol. 24, pp. 183 - 200.
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ASPIN Algorithm

É Concurrent local solve, however, the computational cost
for each subdomain may varies.

É For parallel implementation, as the number of subdomains
increases, the overhead of load imbalance computation
increases.

Algorithm 1 ASPIN
1: for k = 0,1,2, ... until convergence do
2: Compute F(k) as follows:
3: Find g

(k)
 = TΩ(

(k)) by solving local systems:

4: FΩ(
(K) − g(K) ) = 0,  = 1, , N

5: Form the global residual F(k) =
∑N
=1 g

(K)


6: Check the stopping condition on F(k)
7: Find d(K) by solving Ĵ d(K) = F(k), where Ĵ =

∑N
=1 J

−1
Ω
J

8: Set (k+1) = (k) − λ(K)d(K)
9: end for
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Two-phase Flow

É Computational cost for each domain varies as the wetting
phase front advances.
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3.1 Nonlinear Preconditioning

3.2 Hybrid Model for Load Balancing

3.3 Preliminary Performance Result

3.4 Summary - ASPIN
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Hybrid Model for Load Balancing

É Dynamic load balancing between MPI processes can be hard
and costly overhead.

É By design, domain decomposition implementation is often
based on the assumption that executing the same compu-
tation on different data on every core will take the same
time on every core.

É Hybrid MPI+OpenMP implementation may be able to miti-
gate these effects by using dynamic scheduling within each
node and keeping number of MPI rank small.

É MPI provides communication primitives to exploit inter-node
parallelism while OpenMP exploits parallelism within a node
(always intra-node).

É Using this methodology facilitates the overlapping of com-
munication and computation phases, improving the appli-
cation performance.
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3.1 Nonlinear Preconditioning

3.2 Hybrid Model for Load Balancing

3.3 Preliminary Performance Result

3.4 Summary - ASPIN
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Performance Result I

É The quarter 5-spot benchmark of reservoir modeling
with a 64x64x10 grid and homogeneous permeability.
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Performance Result II

É The quarter 5-spot benchmark of reservoir modeling
with a 64x64x10 grid and homogeneous permeability.
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3.1 Nonlinear Preconditioning

3.2 Hybrid Model for Load Balancing

3.3 Preliminary Performance Result

3.4 Summary - ASPIN
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Summary - ASPIN

É We explored hybrid parallelization of ASPIN and load
balancing using dynamic runtime system on Skylake
node.

É ASPIN offers concurrent local solve, however, the
computational cost for each local problem may vary.

É Number of ASPIN iterations is not sensitive to either
the number of local subproblems or the number of
unknowns.

É Computational cost is much higher in the subdomain
near the wetting phase front advances than the other
subdomains.

É Asynchronous implementation applied to a new
modified ASPIN algorithm (joint work with Lulu Liu).
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Asynchronous Task-Based Iterative Algebraic Solvers

1. Asynchronous Algebraic Multigrid

2. Linear Preconditioner in Reservoir Simulator

3. Additive Schwarz Preconditioned Inexact Newton

4. Summary
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Summary

É Motivations for trying hybrid models:
É Avoiding message passing within node/socket.
É Avoiding memory copies required in MPI.
É Load balancing without explicit data movement and com-

plex implementation.
É Overlapping computation and communication explicitly

via asynchronous progress of communication.
É Adapting to many-core emerging architecture.

É Tips for hybridization:
É Take advantage of the first touch allocation policy (par-

allel initialisation).
É Invoking MPI calls within asynchronous task is not triv-

ial (MPI and OmpSs/OpenMP are totally decoupled).
É If thread safety is implemented using global locks, the

locking overheads and serialisation of MPI calls may
outweigh any potential performance benefits.
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Thank You!

Qs?
Email: amani.alonazi@kaust.edu.sa
https://github.com/ecrc
Special Thanks to my collaborators: ECRC and ARAMCO
Thanks to:

É hypre group of Lawrence Livermore National
Laboratory

É PETSc group of Argonne National Laboratory

É OmpSs and Tools (Paraver, Extrae) groups of
Barcelona Supercomputing Center
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