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Parallel	Programming	Models	Overview
P1 P2 P3

Shared	Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory
Logical	shared	memory

Shared	Memory	Model

SHMEM,	DSM
Distributed	Memory	Model	

MPI	(Message	Passing	Interface)

Partitioned	Global	Address	Space	(PGAS)

Global	Arrays,	UPC,	Chapel,	X10,	CAF,	…

• Programming	models	provide	abstract	machine	models

• Models	can	be	mapped	on	different	types	of	systems
– e.g.	Distributed	Shared	Memory	(DSM),	MPI	within	a	node,	etc.

• Programming	models	offer	various	communication	primitives
– Point-to-point	(between	pair	of	processes/threads)

– Remote	Memory	Access	(directly	access	memory	of	another	process)

– Collectives	(group	communication)
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Supporting		Programming	Models	for	Multi-Petaflop	and	
Exaflop	Systems:	Challenges	

Programming	Models
MPI,	PGAS	(UPC,	Global	Arrays,	OpenSHMEM),	CUDA,	OpenMP,	
OpenACC,	Cilk,	Hadoop	(MapReduce),	Spark	(RDD,	DAG),	etc.

Application	Kernels/Applications

Networking	Technologies
(InfiniBand,	40/100GigE,	
Aries,	and	Omni-Path)

Multi-/Many-core
Architectures

Accelerators
(GPU	and	FPGA)

Middleware
Co-Design	

Opportunities	
and	

Challenges	
across	Various	

Layers

Performance
Scalability
Resilience

Communication	Library	or	Runtime	for	Programming	Models
Point-to-point	
Communication

Collective	
Communication

Energy-
Awareness

Synchronization	
and	Locks

I/O	and
File	Systems

Fault
Tolerance
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Why	Collective	Communication	Matters?

http://www.hpcadvisorycouncil.com
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• HPC	Advisory	Council	(HPCAC)	MPI	application	profiles

• Most	application	profiles	showed	majority	of	time	spent	in	collective	operations

• Optimizing	collective	communication	directly	impacts	scientific	applications	
leading	to	accelerated	scientific	discovery
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Why	different	algorithms	of	even	a	dense	collective	such	as	Alltoall	do	not	achieve	
theoretical	peak	bandwidth	offered	by	the	system?

Are	Collective	Designs	in	MPI	ready	for	Manycore	Era?
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Alltoall	Algorithms	on	single	KNL	7250	in	Cache-mode	on	64	MPI	processes	
using	MVAPICH2-2.3rc1

~35%	
of	peak
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• Exploiting	high	concurrency	and	high	bandwidth	offered	
by	modern	architectures

• Designing	“zero-copy”	and	“contention-free”	Collective	
Communication

• Efficient	hardware	offloading	for	better	overlap	of	
communication	and	computation

Broad	Challenges	due	to	Architectural	Advances

How	does	MVAPICH2	as	an	MPI	library	tackles	these	challenges	and	
provide	optimal	collective	designs	for	emerging	multi-/many-cores?
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Overview	of	the	MVAPICH2	Project
• High	Performance	open-source	MPI	Library	for	InfiniBand,	Omni-Path,	Ethernet/iWARP,	and	RDMA	over	Converged	Ethernet	(RoCE)

– MVAPICH	(MPI-1),	MVAPICH2	(MPI-2.2	and	MPI-3.1),	Started	in	2001,	First	version	available	in	2002

– MVAPICH2-X	(MPI	+	PGAS),	Available	since	2011

– Support	for	GPGPUs		(MVAPICH2-GDR)	and	MIC	(MVAPICH2-MIC),	Available	since	2014

– Support	for	Virtualization	(MVAPICH2-Virt),	Available	since	2015

– Support	for	Energy-Awareness	(MVAPICH2-EA),	Available	since	2015

– Support	for	InfiniBand	Network	Analysis	and	Monitoring	(OSU	INAM)	since	2015

– Used	by	more	than	2,875	organizations	in	86	countries

– More	than	464,000	(>	0.46	million)	downloads	from	the	OSU	site	directly

– Empowering	many	TOP500	clusters	(Nov	‘17	ranking)
• 1st,	10,649,600-core	(Sunway	TaihuLight)	at	National	Supercomputing	Center	in	Wuxi,	China	

• 9th,	556,104	cores	(Oakforest-PACS)	in	Japan

• 12th,	368,928-core	(Stampede2)	at	TACC	

• 17th,	241,108-core	(Pleiades)	at	NASA	

• 48th,	76,032-core	(Tsubame	2.5)	at	Tokyo	Institute	of	Technology

– Available	with	software	stacks	of	many	vendors	and	Linux	Distros	(RedHat	and	SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering	Top500	systems	for	over	a	decade



IXPUG	‘18 8Network	Based	Computing	Laboratory

Architecture	of	MVAPICH2	Software	Family

High	Performance	Parallel	Programming	Models

Message	Passing	Interface
(MPI)

PGAS
(UPC,	OpenSHMEM,	CAF,	UPC++)

Hybrid	--- MPI	+	X
(MPI	+	PGAS	+	OpenMP/Cilk)

High	Performance	and	Scalable	Communication	Runtime
Diverse	APIs	and	Mechanisms

Point-to-
point	

Primitives

Collectives	
Algorithms

Energy-
Awareness

Remote	
Memory	
Access

I/O	and
File	Systems

Fault
Tolerance

Virtualization Active	
Messages

Job	Startup
Introspection	
&	Analysis

Support	for	Modern	Networking	Technology
(InfiniBand,	iWARP,	RoCE,	Omni-Path)

Support	for	Modern	Multi-/Many-core	Architectures
(Intel-Xeon,	OpenPower,	Xeon-Phi,	ARM,	NVIDIA	GPGPU)

Transport	Protocols Modern	Features

RC XRC UD DC UMR ODP
SR-
IOV

Multi	
Rail

Transport	Mechanisms
Shared	
Memory

CMA IVSHMEM

Modern	Features

MCDRAM* NVLink* CAPI*

* Upcoming

XPMEM*
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MVAPICH2	Software	Family	
High-Performance	Parallel	Programming	Libraries

MVAPICH2 Support	for	InfiniBand,	Omni-Path,	Ethernet/iWARP,	and	RoCE

MVAPICH2-X Advanced	MPI	features,	OSU	INAM,	PGAS	(OpenSHMEM,	UPC,	UPC++,	and	CAF),	and	
MPI+PGAS	programming	models	with	unified	communication	runtime

MVAPICH2-GDR Optimized	MPI	for	clusters	with	NVIDIA	GPUs

MVAPICH2-Virt High-performance	and	scalable	MPI	for	hypervisor	and	container	based	HPC	cloud

MVAPICH2-EA Energy	aware	and	High-performance	MPI

MVAPICH2-MIC Optimized	MPI	for	clusters	with	Intel	KNC

Microbenchmarks

OMB Microbenchmarks	suite	to	evaluate	MPI	and	PGAS	(OpenSHMEM,	UPC,	and	UPC++)	
libraries	for	CPUs	and	GPUs

Tools

OSU	INAM Network	monitoring,	profiling,	and	analysis	for	clusters	with	MPI	and	scheduler	
integration

OEMT Utility	to	measure	the	energy	consumption	of	MPI	applications
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• Exploiting	high	concurrency	and	high	bandwidth	offered	by	modern	
architectures	for	MPI	collectives	design
– Point-to-point

– Direct	Shared-memory	

– Data	Partitioned	Multi-Leader	(DPML)

• Designing	“zero-copy”	and	“contention-free”	Collective	Communication
– Contention-aware	designs

– True	zero-copy	collectives

• Hardware	offloading	for	better	communication	and	computation	overlap
– SHARP	based	offloaded	collectives

– CORE-Direct	based	Non-blocking	collectives

Agenda
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• Commonly	used	approach	in	implementing	collectives

• Easy	to	express	algorithms	in	message	passing	semantics

• A	naïve	Broadcast	could	be	a	series	of	“send”	operations	from	
root	to	all	the	non-root	processes

• Relies	on	the	implementation	of	point	to	point	primitives

• Limited	by	the	overheads	exposed	by	these	primitives

– Tag-matching

– Rendezvous	hand-shake

Collective	Designs	based	on	Point-to-point	Primitives
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// root = 0

// msg-size > eager-size

if (rank == 0) {

for (i = 1 to n-1) {

MPI_Send(buf,...i,...);

}

} else {

MPI_Recv(buf,...0,...);

}

A	Naïve	Example	of	MPI_Bcast	when	using	MPI_Send/MPI_Recv
MPI_Send MPI_Recv MPI_Recv

MPI_Send

Application	skew
and	library	overhead

MPI_Send

.

.

.

• Overheads	of	
handshake	for	
each	rendezvous	
message	transfer

• Is	there	a	better	
way?

Tag	matching

Receiver	wasting	
CPU	cycles	
waiting	for	
Sender’s	request

rootMPI_Send

MPI_Recv MPI_Recv
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• A	large	shared-memory	region
– Collective	algorithms	are	realized	by	shared-

memory	copies	and	synchronizations

– Good	performance	for	small	message	via	
exploiting	cache	locality

– Avoid	overheads	associated	with	MPI	point-to-
point	implementations

• Requires	one	additional	copy	for	each	transfer

• Performance	degradations	for	large	message	
communication
– memcpy ()	is	the	dominant	cost	for	large	messages

• Most	MPI	libraries	use	some	variant	of	Direct	
SHMEM	collectives

Direct	Shared	Memory	based	Collectives

Reduction	collectives	perform	even	
worse	with	SHMEM	based	design	
because	of	compute	+	memcpy
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Data	Partitioning	based	Multi-Leader	(DPML)	Designs
• Hierarchical	algorithms	delegate	lot	of	computation	on	the	“node-leader”

– Leader	process	responsible	for	inter-node	reductions	while	intra-node	non-
root	processes	wait	for	the	leader

• Existing	designs	for	MPI_Allreduce	do	not	take	advantage	of	the	vast	
parallelism	available	in	modern	multi-/many-core	processors	

• DPML	- a	new	solution	for	MPI_Allreduce	
• Takes	advantage	of	the	parallelism	offered	by

– Multi-/many-core	architectures
– High	throughput	and	high-end	features	offered	by	InfiniBand	and	Omni-Path	

• Multiple	partitions	of	reduction	vectors	for	arbitrary	number	of	leaders
M.	Bayatpour,	S.	Chakraborty,	H.	Subramoni,	X.	Lu,	and	D.	K.	Panda,	Scalable	Reduction	Collectives	with	Data	Partitioning-based	
Multi-Leader	Design,	Supercomputing	'17.	
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Architectures

• 2X	improvement	of	over	
MVAPICH2	at	256K	

• Higher	benefits	of	DPML	as	the	
message	size	increases

XEON	+	IB	(64	Nodes,	28	PPN)
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4X

• Benefits	of	DPML	sustained	on	
KNL+OmniPath even	at	4096 processes

• With	32K	bytes,	4X improvement	over	
MVAPICH2
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Scalability	of	DPML	Allreduce On	Stampede2-KNL	(10,240	Processes)
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Performance	Benefits	of	DPML	AllReduce on	MiniAMR Kernel
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• For	MiniAMR	Application	with	4096	
processes,	DPML	can	reduce	the	latency	
by	2.4X	on	KNL	+	Omni-Path	cluster

2.4X 1.5X

KNL	+	Omni-Path	(32	PPN) XEON	+	Omni-Path	(28	PPN)
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• On	XEON	+	Omni-Path,	with	1792	
processes,	DPML	can	reduce	the	latency	
by	1.5X
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• Exploiting	high	concurrency	and	high	bandwidth	offered	by	modern	
architectures	for	MPI	collectives	design
– Point-to-point

– Direct	Shared-memory	

– Data	Partitioned	Multi-Leader	(DPML)

• Designing	“Zero-copy”	and	“contention-free”	Collective	Communication
– Contention-aware	designs

– True	zero-copy	collectives

• Hardware	offloading	for	better	communication	and	computation	overlap
– SHARP	based	offloaded	collectives

– CORE-Direct	based	Non-blocking	collectives

Agenda
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How	Kernel-assisted	“Zero-copy”	works?

Kernel

MPI	Sender MPI	Receiver

Send	
Buffer

Recv
Buffer

Shared	Memory

Kernel

MPI	Sender MPI	Receiver

Send	
Buffer

Recv
Buffer

Shared	Memory	– SHMEM
Requires	two	copies

No	system	call	overhead
Better	for	Small	Messages

Kernel-Assisted	Copy	
Requires	single	copy
System	call	overhead

Better	for	Large	Messages
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A	Variety	of	Available	“Zero”-Copy	Mechanisms
LiMIC KNEM CMA XPMEM

Permission	Check Not	Supported Supported Supported Supported

Availability Kernel	Module Kernel	Module Included in	Linux	3.2+ Kernel	Module

memcpy()	invoked	at Kernel-space Kernel-space Kernel-space User-space

memcpy()	granularity Page	size Page	size Page	size Any	size

LiMIC KNEM CMA XPMEM
MVAPICH2 √ x √ √	(upcoming	release)
OpenMPI	2.1.0 x √ √ √
Intel	MPI	2017 x x √ x
Cray	MPI x x √ √

MPI	Library	Support

Cross	Memory	Attach(CMA)	is	widely	supported	kernel-assisted	mechanism
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• Direct	algorithm	designs	based	on	kernel-
assisted	zero-copy	mechanism
– “Map” application	buffer	pages	inside	kernel

– Issue	“Put” or	“Get” operations	directly	on	the	
application	buffers

• Good	performance	for	large	messages
– Avoid	unnecessary	copy overheads	of	SHMEM

• Performance	depends	on	the	communication	
pattern of	the	collective	primitive

• Does	not	offer	“zero-copy”	for	Reduction	
Collectives	

Direct	Kernel-assisted	(CMA-based)	Collectives

What	about	contention?
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Impact	of	Collective	Communication	Pattern	on	CMA	Collectives
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Contention-aware	CMA	Collective
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• Up	to	5x and	2x	improvement	for	MPI_Scatter and	MPI_Bcast on	KNL
• For	Bcast,	improvements	obtained	for	large	messages	only	(p-1	copies	with	CMA,	p	copies	with	

Shared	memory)
• AlltoAll	Large	message	performance	bound	by	system	bandwidth	(5%-20%	improvement)
• Fallback	to	SHMEM	for	small	messages

~	5x
better

S.	Chakraborty,	H.	Subramoni,	and	D.	K.	Panda,	Contention	Aware	Kernel-Assisted	MPI	Collectives	for	Multi/Many-core	Systems,	IEEE	
Cluster	’17,	BEST	Paper	Finalist
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Multi-Node	Scalability	Using	Two-Level	Algorithms
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• Significantly	faster	intra-node	communication
• New	two-level	collective	designs	can	be	
composed

• 4x-17x improvement	in	8	node	Scatter	and	
Gather	compared	to	default	MVAPICH2

~	2.5x	
Better

~	3.2x
Better

~	4x
Better

~	17x
Better

Can	we	have	zero-copy	“Reduction”	
collectives	with	this	approach?	
Do	you	see	the	problem	here???

1. Contention	“avoidance”	–
Not	removal

2. Reduction	requires	extra	
copies
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• Offload	Reduction	computation	and	communication	to	peer	MPI	ranks
– Every	Peer	has	direct	“load/store”	access	to	other	peer’s	buffers
– Multiple	pseudo	roots	independently	carry-out	reductions	for	intra-and	inter-node

– Directly	put	reduced	data	into	root’s	receive	buffer

• True	“Zero-copy” design	for	Allreduce and	Reduce
– No	copies	require	during	the	entire	duration	of	Reduction	operation

– Scalable	to	multiple	nodes

• Zero	contention overheads as	memory	copies	happen	in	“user-space”

Shared	Address	Space	(XPMEM-based)	Collectives

J.	Hashmi,	S.	Chakraborty,	M.	Bayatpour,	H.	Subramoni,	and	D.	Panda,	Designing	Efficient	Shared	Address	Space	Reduction	Collectives	for	Multi-/Many-cores,	
International	Parallel	&	Distributed	Processing	Symposium	(IPDPS	'18),	May	2018.
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Shared	Address	Space	(XPMEM)-based	Collectives	Design
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• “Shared	Address	Space”-based	true zero-copy Reduction	collective	designs	in	MVAPICH2

• Offloaded	computation/communication	to	peers	ranks	in	reduction	collective	operation

• Up	to	4X improvement	for	4MB	Reduce	and	up	to	1.8X improvement	for	4M	AllReduce

1.8X
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4X

37%

Will	be	available	in	upcoming	MVAPICH2-X	release

50%
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Application-Level	Benefits	of	XPMEM-Based	Collectives

MiniAMR	(Broadwell,	ppn=16)	

• Up	to	20%	benefits	over	IMPI	for	CNTK	DNN	training	using	AllReduce
• Up	to	27% benefits	over	IMPI	and	up	to	15% improvement	over	MVAPICH2	for	

MiniAMR	application	kernel
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(Broadwell,	B.S=default,	iteration=50,	ppn=28)

0

20

40

60

80

16 32 64 128 256
Ex
ec
ut
io
n	
Ti
m
e	
(s
)

No.	of	Processes

Intel	MPI
MVAPICH2
MVAPICH2-XPMEM20%

9%

27%

15%



IXPUG	‘18 28Network	Based	Computing	Laboratory

• Exploiting	high	concurrency	and	high	bandwidth	offered	by	modern	
architectures	for	MPI	collectives	design
– Point-to-point

– Direct	Shared-memory	

– Data	Partitioned	Multi-Leader	(DPML)

• Designing	“zero-copy”	and	“contention-free”	Collective	Communication
– Contention-aware	designs

– True	zero-copy	collectives

• Hardware	offloading	for	better	communication	and	computation	overlap
– SHARP	based	offloaded	collectives

– CORE-Direct	based	Non-blocking	collectives

Agenda
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• Application	processes	schedule	collective	operation

• Check	periodically	if	operation	is	complete

• Overlap	of	computation	and	communication	=>	Better	Performance

• Catch:	Who	will	progress	communication	

Concept	of	Non-blocking	Collectives
Application
Process

Application
Process

Application
Process

Application
Process
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Communication

Communication
Support	Entity

Communication
Support	Entity

Communication
Support	Entity
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Complete

Check	if
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§ Management	and	execution	of	MPI	operations	in	the	
network	by	using	SHArP
§ Manipulation	of	data	while	it	is	being	transferred	in	the	switch	

network

§ SHArP	provides	an	abstraction	to	realize	the	reduction	
operation
§ Defines	Aggregation	Nodes	(AN),	Aggregation	Tree,	and	

Aggregation	Groups

§ AN	logic	is	implemented	as	an	InfiniBand	Target	Channel	
Adapter	(TCA)	integrated	into	the	switch	ASIC	*

§ Uses	RC	for	communication	between	ANs	and	between	AN	and	
hosts	in	the	Aggregation	Tree	*	

Offloading	with	Scalable	Hierarchical	Aggregation	Protocol	(SHArP)

Physical	Network	Topology*

Logical	SHArP	Tree**	Bloch	et	al.	Scalable	Hierarchical	Aggregation	Protocol	(SHArP):	A	Hardware	Architecture	for	Efficient	Data	Reduction
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SHArP based	blocking	Allreduce Collective	Designs	in	MVAPICH2
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SHArP	Support	is	available	since	MVAPICH2	2.3a

M.	Bayatpour,	S.	Chakraborty,	H.	Subramoni,	X.	Lu,	and	D.	K.	Panda,	Scalable	Reduction	Collectives	with	Data	Partitioning-based	Multi-
Leader	Design,	SuperComputing	'17.	

13%12%
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Performance	of	NUMA-aware	SHArP Design	on	XEON	+	IB	Cluster

• As	the	message	size	decreases,	the	benefits	of	using	Socket-based	design	increases

• NUMA-aware	design	can	reduce	the	latency	by	up	to	23%	for	DDOT	phase	of	HPCG	
and	up	to	40%	for	micro-benchmarks

OSU	Micro	Benchmark	(16	Nodes,	28	PPN) HPCG		(16	nodes,	28	PPN)

23%

40%

Low
er	is	better



IXPUG	‘18 33Network	Based	Computing	Laboratory

0

2

4

6

8

10

4 8 16 32 64 128

La
te
nc
y	
(u
s)

Message	Size	(Bytes)

1	PPN*,	8	Nodes

MVAPICH2
MVAPICH2-SHArP

0.1

1

10

100

4 8 16 32 64 128

O
ve
rla

p	
(%

)

Message	Size	(Bytes)

1	PPN,	8	Nodes

MVAPICH2
MVAPICH2-SHArP

SHArP based	Non-Blocking	Allreduce in	MVAPICH2
MPI_Iallreduce Benchmark

2.3x

*PPN:	Processes	Per	Node	

• Complete	offload	of	Allreduce	collective	operation	to	“Switch”

o higher	overlap	of	communication	and	computation

Available	since	MVAPICH2	2.3a
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• Mellanox	CORE-Direct	technology	allows	for	offloading	the	
collective	communication	to	the	network	adapter

• MVAPICH2	supports	CORE-Direct	based	offloading	of	non-
blocking	collectives

– Covers	all	the	non-blocking	collectives

– Enabled	by	configure	and	runtime	parameters

• CORE-Direct	based	MPI_Ibcast design	improves	the	
performance	of	High	Performance	Linpack (HPL)	benchmark

NIC	offload	based	Non-blocking	Collectives	using	CORE-Direct	

Available	since	MVAPICH2-X	2.2a
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Co-designing	HPL	with	Core-Direct	and	Performance	Benefits
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HPL	Problem	Size	(N)	as	%	of	Total	Memory
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HPL	Performance	Comparison	with	512	Processes	
HPL-Offload	consistently	offers	higher	throughput	than	HPL-1ring	and	HPL-
Host.	Improves	peak	throughput	by	up	to	4.5	%	for	large	problem	sizes
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HPL-Offload	surpasses	the	peak	throughput	of	HPL-1ring	with	
significantly	smaller	problem	sizes	and	run-times!	

K.	Kandalla,	H.	Subramoni,	J.	Vienne,	S.	Pai	Raikar,	K.	Tomko,	S.	Sur,	and	D	K	Panda,
Designing	Non-blocking	Broadcast	with	Collective	Offload	on	InfiniBand	Clusters:	A	Case	Study	with	HPL,	(HOTI	2011)
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• Many-core	nodes	will	be	the	foundation	blocks	for	emerging	Exascale	systems

• Communication	mechanisms	and	runtimes	need	to	be	re-designed to	take	
advantage	of	the	high	concurrency offered	by	manycores

• Presented	a	set	of	novel	designs for	collective	communication primitives	in	
MPI	that	address	several	challenges

• Demonstrated	the	performance	benefits of	our	proposed	designs	under	a	
variety	of	multi-/many-cores	and	high-speed	networks

• Some	of	these	designs	are	already	available	in	MVAPICH2	libraries	

• The	new	designs	will	be	available	in	upcoming	MVAPICH2	libraries

Concluding	Remarks
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Thank	You!

Network-Based	Computing	Laboratory
http://nowlab.cse.ohio-state.edu/

hashmi.29@osu.edu

The	High-Performance	MPI/PGAS	Project
http://mvapich.cse.ohio-state.edu/

The	High-Performance	Deep	Learning	Project
http://hidl.cse.ohio-state.edu/

The	High-Performance	Big	Data	Project
http://hibd.cse.ohio-state.edu/
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Collective	Communication	in	MVAPICH2

Multi/Many-Core	Aware	Designs

Communication
only

Inter-Node
Communication

Intra-Node	
Communication

Point	to	Point
(SHMEM,	

LiMIC,	CMA,	
XPMEM)

Direct	Shared	
Memory

Direct	Kernel	
Assisted

(CMA,	XPMEM,	
LiMIC)

Point	to	
Point

Hardware	
Multicast SHARP RDMA

Designed	for	Performance	&	Overlap

Communication	
+	Computation

Blocking	and	non-blocking	Collective	
Communication	Primitives	in	MPI
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Breakdown	of	a	CMA	Read	operation
• CMA	relies	on	get_user_pages()
function

• Takes	a	page	table	lock	on	the	
target	process

• Lock	contention	increases	with	
number	of	concurrent	readers

• Over	90%	of	total	time	spent	in	
lock	contention

• One-to-all	communication	on	Broadwell,	
profiled	using	ftrace

• Lock	contention	is	the	root	cause	of	performance	degradation
• Present	in	other	kernel-assisted	schemes	such	as	KNEM,	LiMiC as	well
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void	main()

{

MPI_Init()

…..

MPI_Ialltoall(…)

Computation	that	does	not	depend	on	result	of	Alltoall

MPI_Test(for	Ialltoall)	/*	Check	if	complete	(non-blocking)	*/

Computation	that	does	not	depend	on	result	of	Alltoall

MPI_Wait(for	Ialltoall)	/*	Wait	till	complete	(Blocking)	*/

…

MPI_Finalize()

}

How	do	I	write	applications	with	Non-blocking	Collectives?
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• A	set	of	design	slides	will	be	added	in	this	section	based	on	the	following	
paper	accepted	for	IPDPS	‘18

J.	Hashmi,	S.	Chakraborty,	M.	Bayatpour,	H.	Subramoni,	and	D.	K.	Panda,	
Designing	Efficient	Shared	Address	Space	Reduction	Collectives	for	Multi-/Many-
cores,	32nd	IEEE	International	Parallel	&	Distributed	Processing	Symposium	(IPDPS	
'18),	May	2018

XPMEM-based	Shared	Address	Space	Collectives


