

Universität Stuttgart

Challenges and Opportunities in using Software-Defined Visualization in MegaMol

Tobias Rau, Patrick Gralka, Michael Krone, Guido Reina, Thomas Ertl

IXPUG | Bologna | 2018-03-06

The MegaMol Visualization Framework

MegaMol is not a visualization tool. MegaMol is a platform for visualization research.

A Platform for Visualization Research

- Started at Visualization Research Center of the University of Stuttgart
- Researchers across different disciplines
- Particle-based simulations across different scales
 - Atoms, Molecules, Proteins
 - Crystallites, Granular Media
- Development of new visualization techniques
 - 5 full-time researcher positions

User Scenarios for Visualization

- Communicate results
 - Example: Shockwave in Aluminum

Explore your findings.

User Scenarios for Visualization

- Communicate results
 - Example: Shockwave in Aluminum
- Verify, check plausibility
 - Example: Anscombe's quartet

Debug your Simulation.

User Scenarios for Visualization

- Communicate results
 - Example: Shockwave in Aluminum
- Verify, check plausibility
 - Example: Anscombe's quartet
- Facilitate discovery
 - Example: Spherical waves during crack propagation

Discover the unexpected.

Related Software

- VMD, Vislt, Paraview, PyMol, Amira, Ovito, ...
 - Either very general...
 - ... or with powerful analysis functionality
- Common drawback
 - Interactivity on workstation
 - Quality of visualization for non-trivial datasets
- Why MegaMol?
 - Focus on scalability and high-quality rendering

SDVis Extending MegaMol

- GPU render path is limited in scalability
 - Requires sophisticated LOD- or compression techniques
- SDVis allows to circumvent memory-bound issues
- SDVis enables MegaMol to be used on a larger variety of hardware
- But: OSPRay scales at overview scenarios while GPUs can only scale at detail scenarios

Use Case: Molecular Surface Rendering

Molecular Surface Visualization

- Important visualization for analysis of molecular data
 - Show interface between a molecule and the environment
- Popular choice: Solvent Excluded Surfaces (SES)
 - Molecular surface with respect to a certain substrate molecule
 - Pro: useful for binding & docking
 - Shows what parts of the molecule are accessible to this substrate
 - Con: involved computation and rendering of the surface

Solvent Excluded Surface – Definition

- Prerequisite: *hard sphere model* (each atom is represented by a sphere)
- Spherical probe rolling over atom spheres
 - Probe center traces out Solvent Accessible Surface (SAS)
 - Enlarged atom spheres
 - Probe surface traces out SES
 - Smooth molecular surface
 - Maintains atom spheres, closes small gaps
 - Probe cannot reach parts under the surface

Solvent Excluded Surface – Rendering

- SES is composed of three geometric primitives
 - Spherical patches → Probe in contact with one atom
 - Spherical triangles \rightarrow Probe in contact with three atoms
 - Toroidal patch \rightarrow Probe in contact with two atoms

Requires new geometric primitives in OSPRay

- Analytical root finding & additional intersection tests
- Clipping planes / spheres (spherical triangles / tori)

Solvent Excluded Surface – Results

- Performance
 - Interactive rendering even for large data (>1M atoms)
 - Preliminary results (work in progress)
- Advantages compared to GPU-based rendering
 - Increased scalability for rendering
 - Transparency
 - Important to see inner structures
 - Improved shape perception (global illumination)
 - Cavity detection via Ambient Occlusion

Simian virus capsid (~1M atoms)

Solvent Excluded Surface – Results

Synthetic test case: Molecule instanced on regular grid

- Molecule: 1AF6 → 10k atoms
- SES: 38954 primitives

Universität Stuttgart

Measurements on: i9-7900X, 64 GB RAM

Use Case: In-Situ Visualization

Asymmetric MegaMol Execution

- FGI frontend
- Data-distributed rendering
- Depth-based compositing

Advantages of Distributed MegaMol

- Distributed MegaMol is fully featured on all nodes
 - Each node has a complete, individual MegaMol graph
 - Processing, Filtering, Slicing, Highlighting, Rendering, ...
 - Local operations for each node
- OSPRay offloading has no 'semantic operations'
 - Operations happen on compositing node
 - Operations require re-distribution of data

General In-Situ Setup

- Two paradigms available:
 - Image transfer
 - Low bandwidth requirements
 - Share compute load with simulation or use dedicated compute nodes
 - Data transfer
 - High bandwidth requirements
 - Allows for steering
- MegaMol provides NAMD interface (for ESPResSo, and older Gromacs versions)
 - WIP: Interface with other simulation software

SDVis Benefits

Thank You

- Stuttgart now part of the IPCC family
- Check out MegaMol on GitHub
- Interesting problems wanted! ⁽²⁾

Universität Stuttgart

716

