
Porting, optimization and bottleneck of OpenFOAM in KNL
environment

I. Spissoa, G. Amatib, V. Ruggierob, C. Fiorinac

a) SuperCompunting Application and Innovation Department, Cineca, Via Magnanelli 6/3, 40133, Casalecchio di Reno,

Bologna, Italy.

b) SuperCompunting Application and Innovation Department, Cineca, Via dei Tizii, 6 40133, Roma, Italy.

c) Milano Multiphysics S.R.L.S, Via Giorgio Washington 96, 20146 Milan, Italy

Intel eXtreme Performance Users Group (IXPUG) Europe Meeting, CINECA,
Casalecchio di Reno, 5-7 March 2018

Outline of the presentation

● HPC Hardware technological trend: towards the exascale (Ivan)
● OpenFOAM & HPC bottlenecks (Ivan)
● Up to date performance using Marconi (Giorgio)
● KNL & vectorization: preliminary results (Carlo)
● Further suggested work (All)

● Target: share our experience with other KNL center/Intel staff

2

HPC Hardware technological trend: towards the exascale
HPC & CPU Intel evolution @ CINECA

3

HPC & CPU

Intel evolution: 2010-2018

Westmere (a.k.a. plx.cineca.it)

–Intel(R) Xeon(R) CPU E5645 @2.40GHz, 6 Core per CPU

Sandy Bridge (a.k.a. eurora.cineca.it)

–Intel(R) Xeon(R) CPU E5-2687W 0 @3.10GHz, 8 core per CPU

Ivy Bridge (a.k.a pico.cineca.it)

–Intel(R) Xeon(R) CPU E5-2670 v2 @2.50GHz, 10 core per CPU

–Infiniband FDR

Hashwell (a.k.a. galileo.cineca.it)

–Intel(R) Xeon(R) CPU E5-2630 v3 @2.40GHz, 8 core per CPU

–Infiniband QDR/True Scale (x 2)

Broadwell A1 (a.k.a marconi.cineca.it)

–Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz, 18 core per CPU (x2)

–OmniPath

KNL A2 (a.k.a marconi.cineca.it)

– Intel(R) Knights Landing @ 1.40GHz, 68 cores per CPU

–OmniPath

SKL A3 (a.k.a marconi.cineca.it)

–Intel Xeon 8160 CPU @ 2.10GHz, 24 core per CPU (x2)

exascale: computing system capable of al

least one exaFLOPs calculation per second.

exaFLOPs = 10^18 FLOPS or a billion of billion

calculations per seconds

As clock speeds may for reasons of

power efficiency be as low as 1 Ghz

To Performe 1 Eflop/s peak performance

Need to execute 1 billion floating-point

operations concurrently (Total Concurrency)

MTTI = Mean Time to interrupt,

order of day(s)

HPC Hardware technological trend: towards the exascale
Road Map to exascale: Governing Laws

4

Moore's law: is the observation that the number of transistors in a dense integrated circuit doubles approximately every two years

(18 months, Intel executive David House), hold untill 2006.

Dennard scaling law: also known as MOSFET scaling states that as transistors get smaller their power density (P) stays constant, so

that the power (D) use stays in proportion with area: both voltage (V) and current scale (downward) with length.

Amdahl's law is a formula which gives the theoretical speedup in latency of the execution of a task at fixed workload that can be

expected of a system whose resources are improved. maximum speedup tends to 1 / (1 − P) P= parallel fraction. This menas that 1,000,000

core, P = 0.999999, Serial Fraction 0,000001

The core frequency

and performance do not

grow following the

Moore’s law any longer

HPC Hardware technological trend: towards the exascale
Road Map to exascale

5

● Now power and heat exchange are the limiting factor of the down-scaling Dennard scaling law does not

hold no more.

● The core frequency and performance do not grow following the Moore’s law any longer

● Increase the number of cores to maintain the architectures evolution on the Moore’s law

● Change of Paradigm: Energy Efficiency.

● New chips designed for maximum performance in a small set of workloads, Simple functional units, poor

single thread performance, but maximum throughput.

● New architectural solution towards the exascale: heterogeneous systems examples CPU + ACC (

GPU/MIC/FPGA) or Intel KNC and evolution KNL.

HPC Hardware technological trend: towards the exascale
Roofline model and Computational Intensity

6

● The roofline model: Performance bound (y-axis) ordered according to arithmetic intensity (x-axis) (i.e. GFLOPs/Byte)

● Arithmetic Intensity: is the ratio of total floating-point operations to total data movement (bytes): i.e. flops per byte

Which is the OpenFoam (CFD/FEM) arithmetic intensity? About 0.1, may be less….

HPC Hardware technological trend
Towards the exascale: co-design is required!

7

OpenFOAM: algorithmic overview

8

● OpenFOAM is first and foremost a C++ library used to solve in discretized form systems of Partial
Differential Equations (PDE). OpenFOAM stands for Open Field Operation and Manipulation

● The Engine of OpenFOAM is the Numerical Method. To solve equations for a continuum,
OpenFOAM uses a numerical approach with the following features:

○ segregated, iterative solution (PCG/GAMG), unstructured finite volume method, co-located
variables, equation coupling.

● The method of parallel computing used by OpenFOAM is based on the standard Message Passing
Interface (MPI) using the strategy of domain decomposition.

○ The geometry and the associated elds are broken into pieces and allocated to separate
processors for solution. (zero layer domain decomposition)

○ A convenient interface, Pstream, is used to plug any Message Passing Interface (MPI)
library into OpenFOAM. It is a light wrapper around the selected MPI Interface

● OpenFOAM scales reasonably well up to thousands of cores

OpenFOAM: HPC Performances

9

● OpenFOAM scales reasonably well up to thousands of cores, upper limit orders of thousands of cores. Where we
are looking at is radical scalability =) The real issues are in the scaling of cases of 100's of millions of cell on 10K+
cores.

● Custom version by Shimuzu Corp., Fujitsu Limited and RIKEN on K Computer (K computer, SPARC64 VIIIfx
2.0GHz, Tofu interconnect) was able to achieve a large scale transient CFD simulation up to 100 billion cell
meshes and achieved a high performance for 100 thousand MPI parallels.

[1] Pham Van Phuc et al., Shimizu Corporation, Fujitsu Limited, Riken: Evaluation of MPI Optimization of C++ CFD Code on the K Computer,

SIG Technical Reports Vol. 2015-HPC-151 No. 19 2015/10/01. (in Japanese)

https://www.top500.org/system/177232
https://www.top500.org/system/177232

OpenFOAM HPC bottlenecks

10

Up to date, the well known bottlenecks for a full enabling of OpenFOAM for massively parallel clusters are

1. Scalability of the linear solvers and limit in the parallelism paradigm. In most cases the memory bandwidth is a
limiting factor for the solver. Additionally, global reductions are frequently required in the solvers.

The linear algebra core libraries are the main communication bottlenecks for the scalability
Whole bunch of MPI Allreduce stems from an algorithmic constraint and is unavoidable, increasing with the
number of cores, . . . unless an algorithmic rewrite is proposed.
Generally speaking, the fundamental difficulty is the inability to keep all the processors busy when operating on
very coarse grids. Need for communication-friendly agglomeration (geometric) linear multigrid solver.

2. Sparse Matrix storage format: The LDU sparse matrix storage format used internally does not enable any
cache-blocking mechanism (SIMD, vectorization).

3. the I/O data storage system: when running in parallel, the data for decomposed fields and mesh(es) has
historically been stored in multiple files within separate directories for each processor, which is a bottleneck for
big simulation. For example LES/DNS with hundreds of cores requires very often saving on disk. Work on going:

a. Implemention of ADIOS Parallel I/O library by Esi-OpenCFD and Oak Ridge National Laboratory
https://openfoam.com/documentation/files/adios-201610.pdf

b. Collocated file format by OpenFOAM Foundation, https://openfoam.org/news/parallel-io/

Up to date performance using Marconi

11

● Both 3 partition are tested for reference
○ BDW: 36 core for node
○ KNL: 272 core for node (HT on)
○ SKL: 48 core for node

● Node level comparison (serial performance is meaningless for HPC)
● Two test case

○ Driven Cavity
■ From 100^3 to 400^3 (1 M, 8M, 27M and 64 M of cells)
■ icofoam,PCG, scotch

○ Flow around a cylinder
■ About 2M elements
■ pimpleFoam, GAMG, scotch

● Target: Define a reference value for performance

Driven Cavity

12

● 100^3, T=0.5, deltaT=0.0005
● 200^3, T=0.2, deltaT=0.005
● 300^3, T=0.2, deltaT=0.005
● 400^3, T=0.1, deltaT=0.0025
● Target:

○ Looking for performance
○ Looking for saturation
○ Looking for bottleneck

Driven Cavity: some info

13

● openFoam+ release used (from ESI)
○ Compiled using intel compiler + intelmpi

● SKL: Release v1712 slightly faster then v1606,v1612,v1712
● BDW: Release v1712 slightly faster then v1606,v1612,v1712
● KNL: knl flag (-avx512) seems ineffective (see vectorization section)
● 100^3 only to validate the flow, too small for a an HPC testcase
● “strange/slow” performance are tested many times to avoid “dirty” figures
● Validation done comparing residual
● For first level MPI profiling

○ I_MPI_STATS=ipm

Driven Cavity: 200^3

14

Driven Cavity: 300^3

15

Driven Cavity: 400^3

16

Driven Cavity: KNL & SKL speed-up

17

KNL SKL

Driven Cavity: time vs. task (300 & 400)

18

300^3 400^3

Driven Cavity:KNL MPI overhead

19

● 200^3, I_MPI_STAT=ipm
● BDW not reported, overhead > 50% in time
● MPI_INIT removed

Task nodes time % mpi % allreduce % waitall % recv

128 2 466 17 14 1.4 0.2

256 4 255 22 17 2.5 0.3

512 8 158 35 25 4.6 1.1

1024 16 103 48 33 6.8 1.5

2048 32 77 62 44 8.0 1.7

Driven Cavity: SKL MPI overhead

20

● 200^3, I_MPI_STAT=ipm
● BDW not reported, overhead > 50% in time
● MPI_INIT removed

Task nodes time % mpi % allreduce % waitall % recv

96 2 331 8.6 6.0 1.4 0.1

192 4 133 18 13 2.9 0.5

384 8 43 29 20 4.5 0.6

768 16 22 43 29 7.0 1.4

1536 32 22 69 49 6.0 6.0

Driven Cavity:KNL MPI overhead

21

● From OSU microbenchmark MPI_allreduce benchmark
● Almost all with message size 8 byte
● Time in microseconds

● 5 time slower….why?

HW Task nodes Mean time OSU time

KNL 1024 16 208 54

KNL 2048 32 210 62

SKL 768 16 48 13

SKL 1536 32 79 17

Flow around a cylinder

22

● T=10, deltaT=1e-3
● adjustTimeStep yes
● 2 M of cells
● More complex test (academic)
● Target:

○ Looking for performance
○ Looking for saturation
○ Looking for bottleneck

Flow around a Cylinder

23

Performance issue (Marconi?)

24

● SKL
● 400^3
● 128 Nodes
● 48 Task per node

More than 50% variation!!!

Flow around a cylinder: MPI overhead

25

● 16 node testcase, I_MPI_STAT=ipm
○ BDW not reported, overhead > 50% in time
○ SKL: from 246’’ → 274’’
○ KNL: from 800’’ → 890

● MPI_INIT removed

HW time % mpi % allreduce % waitall % recv

SKL 274 77 44 22 5

KNL 849 65 35 18 4

HW Task nodes Mean time (micros) OSU time

KNL 1024 16 150 54

SKL 768 16 60 13

Effect of vectorization: DIC-PCG

26

● 1003 lid-driven cavity as test case - 8 cores

● preconditioned conjugate gradient algorithm (PCG) with a
diagonal-based incomplete cholesky (DIC) preconditioner

● 353.3 to 330.7 seconds, less than 10% speed-up

Effect of vectorization: DIC-PCG

27

File location Line Code snippet Vectorized Time w/o
vectorization

Time with
vectorization

src/OpenFOAM/
matrices/lduMatr
ix/preconditioner
s/DICPreconditio
ner/DICPrecondi
tioner.C

109 for (label cell=0; cell<nCells; cell++)
{
 wAPtr[cell] = rDPtr[cell]*rAPtr[cell];
}

Yes 9.2
(2.6%)

5.3
 (1.6%)

114 for (label face=0; face<nFaces; face++)
{
 wAPtr[uPtr[face]] -= rDPtr[uPtr[face]]
*upperPtr[face]*wAPtr[lPtr[face]];
}

No 59.9
(17.0%)

59.5
(18.0%)

119 for (label face=nFacesM1; face>=0; face--)
{
 wAPtr[lPtr[face]] -= rDPtr[lPtr[face]]*
upperPtr[face]*wAPtr[uPtr[face]];
}

No 66.6
(18.9%)

67.1
(20.3%)

Effect of vectorization: DIC-PCG

28

File location Line Code snippet Vectorized Time w/o
vectorization

Time with
vectorization

src/OpenFOAM/
matrices/lduMatr
ix/preconditioner
s/DICPreconditio
ner/DICPrecondi
tioner.C

109 for (label cell=0; cell<nCells; cell++)
{
 wAPtr[cell] = rDPtr[cell]*rAPtr[cell];
}

Yes 9.2
(2.6%)

5.3
 (1.6%)

114 for (label face=0; face<nFaces; face++)
{
 wAPtr[uPtr[face]] -= rDPtr[uPtr[face]]
*upperPtr[face]*wAPtr[lPtr[face]];
}

No 59.9
(17.0%)

59.5
(18.0%)

119 for (label face=nFacesM1; face>=0; face--)
{
 wAPtr[lPtr[face]] -= rDPtr[lPtr[face]]*
upperPtr[face]*wAPtr[uPtr[face]];
}

No 66.6
(18.9%)

67.1
(20.3%)

Limited speed-up
Possible bottlenecks from fetching data from
memory (large sparse matrix)

Effect of vectorization: DIC-PCG

29

File location Line Code snippet Vectorized Time w/o
vectorization

Time with
vectorization

src/OpenFOAM/
matrices/lduMatr
ix/preconditioner
s/DICPreconditio
ner/DICPrecondi
tioner.C

109 for (label cell=0; cell<nCells; cell++)
{
 wAPtr[cell] = rDPtr[cell]*rAPtr[cell];
}

Yes 9.2
(2.6%)

5.3
 (1.6%)

114 for (label face=0; face<nFaces; face++)
{
 wAPtr[uPtr[face]] -= rDPtr[uPtr[face]]
*upperPtr[face]*wAPtr[lPtr[face]];
}

No 59.9
(17.0%)

59.5
(18.0%)

119 for (label face=nFacesM1; face>=0; face--)
{
 wAPtr[lPtr[face]] -= rDPtr[lPtr[face]]*
upperPtr[face]*wAPtr[uPtr[face]];
}

No 66.6
(18.9%)

67.1
(20.3%)

Internal
dependencies

Effect of vectorization: DIC-PCG

30

File location Line Code snippet Vectorized Time w/o
vectorization

Time with
vectorization

src/OpenFOAM/
matrices/lduMatr
ix/preconditioner
s/DICPreconditio
ner/DICPrecondi
tioner.C

109 for (label cell=0; cell<nCells; cell++)
{
 wAPtr[cell] = rDPtr[cell]*rAPtr[cell];
}

Yes 9.2
(2.6%)

5.3
 (1.6%)

114 #pragma simd
for (label face=0; face<nFaces; face++)
{
 wAPtr[uPtr[face]] -= rDPtr[uPtr[face]]
*upperPtr[face]*wAPtr[lPtr[face]];
}

No 59.9
(17.0%)

59.5
(18.0%)

119 #pragma simd
for (label face=nFacesM1; face>=0; face--)
{
 wAPtr[lPtr[face]] -= rDPtr[lPtr[face]]*
upperPtr[face]*wAPtr[uPtr[face]];
}

No 66.6
(18.9%)

67.1
(20.3%)

Forced
vectorization
One loop speeds up
by 2 times, the other
slows down by 2.5
times (data retrival
from RAM, double
indexing, ?)

Effect of vectorization: GAMG

31

● 1003 lid-driven cavity as test case

● Geometric agglomerated algebraic multigrid solver (GAMG)
with Gauss-Seidel smoother

● No speed up

Effect of vectorization: take home messages

32

OpenFOAM makes very little use of vectorization:
● Non-vector-friendly algorithms
● Non-vector friendly implementation of these algorithm

○ Double indexing frequently used
○ Inefficient retrieval of data from memory (unstructured

meshes, large sparse matrices)

Further on-going work
HPC Profiling and testing

● An in depth profiling analysis is aiming to identify a set of useful tools and corresponding metrics
to spot the HPC bottlenecks

● Tools used
○ Intel Amplifier
○ Intel Advisor
○ Intel Monitor Performance Snapshot

● Metrics to be explored/evaluated
○ Memory bound
○ Memory bandwidth

● Test and Installation on Intel Patch on KNL architecture
33

34

Further on-going work
HPC Profiling: VTune bandwidth utilization

35

Further on-going work
CSR format for sparse matrix, external linear solver algebra

Reminder two (of three) bottlenecks (1) limit in the parallelism paradigm. In most cases the memory bandwidth is a
limiting factor for the solver. Additionally, global reductions are frequently required in the solvers.(2) The LDU sparse
matrix storage format used internally does not enable any cache-blocking mechanism (SIMD, vectorization).

(1) and (2) are both related to the sparse matrix solvers and linear algebra.

Collaboration with ESI-OpenCFD

Prototyping stage would be to add in an interface to transcribe the LDU format into another sparse matrix format CSR
(Compress Row Storage) that is supported by an external solver package such as hypre or petsc.

Use a data structure that will use efficiently the data locality of the new chip-set, and will enable efficiently
simd/vectorizaion

This temporarily interface could be used to benchmark improvements possible by use of one of these external solver
packages. On the assumption that there are substantial benefits

● PETSC: https://www.mcs.anl.gov/petsc/
● HYPRE: https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods

https://www.mcs.anl.gov/petsc/
https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods

Bonus Slide
In Situ Visualization with OpenFOAM

Simone, mi fai un riassunto di una slide?

Grazie

Ok, per quando?

Martedì mattina grazie

36

