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HPC Hardware technological trend: towards the exascale

HPC & CPU Intel evolution @ CINECA

exascale: computing system capable of al
least one exaFLOPs calculation per second.

HPC & CPU

Intel evolution: 2010-2018
Westmere (a.k.a. plx.cineca.it)
—Intel(R) Xeon(R) CPU E5645 @2.40GHz, 6 Core per CPU

exaFLOPs = 10718 FLOPS or a billion of billion

) _ _ calculations per seconds
Sandy Bridge (a.k.a. eurora.cineca.it)

—Intel(R) Xeon(R) CPU E5-2687W 0 @3.10GHz, 8 core per CPU
. o _ As clock speeds may for reasons of
Ivy Bridge (a.k.a pico.cineca.it)

—Intel(R) Xeon(R) CPU E5-2670 v2 @2.50GHz, 10 core per CPU

—Infiniband FDR

power efficiency be as low as 1 Ghz

To Performe 1 Eflop/s peak performance
Need to execute 1 billion floating-point
operations concurrently (Total Concurrency)

Hashwell (a.k.a. galileo.cineca.it)

—Intel(R) Xeon(R) CPU E5-2630 v3 @2.40GHz, 8 core per CPU
—Infiniband QDR/True Scale (x 2)

Broadwell Al (a.k.a marconi.cineca.it)

MTTI = Mean Time to interrupt,
—Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz, 18 core per CPU (x2)

—omniPath order of day(s)

KNL A2 (a.k.a marconi.cineca.it)

— Intel(R) Knights Landing @ 1.40GHz, 68 cores per CPU

P Increasing # of cores,

SKL A3 (a.k.a marconi.cineca.it) Sa me Clock 3

—Intel Xeon 8160 CPU @ 2.10GHz, 24 core per CPU (x2)



HPC Hardware technological trend: towards the exascale

Road Map to exascale: Governing Laws

Moore's law: is the observation that the number of transistors in a dense integrated circuit doubles approximately every two years
(18 months, Intel executive David House), hold untill 2006.

Dennard scaling law: also known as MOSFET scaling states that as transistors get smaller their power density (P) stays constant, so
that the power (D) use stays in proportion with area: both voltage (V) and current scale (downward) with length.

Amdahl's law is a formula which gives the theoretical speedup in latency of the execution of a task at fixed workload that can be
expected of a system whose resources are improved. maximum speedup tendsto 1/ (1 - P) P= parallel fraction. This menas that 1,000,000

core, P =0.999999, Serial Fraction 0,000001
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HPC Hardware technological trend: towards the exascale

Road Map to exascale

e Now power and heat exchange are the limiting factor of the down-scaling Dennard scaling law does not
hold no more.

e The core frequency and performance do not grow following the Moore’s law any longer

® Increase the number of cores to maintain the architectures evolution on the Moore’s law

® Change of Paradigm: Energy Efficiency.

® New chips designed for maximum performance in a small set of workloads, Simple functional units, poor
single thread performance, but maximum throughput.

e New architectural solution towards the exascale: heterogeneous systems examples CPU + ACC (
GPU/MIC/FPGA) or Intel KNC and evolution KNL.



HPC Hardware technological trend: towards the exascale

Roofline model and Computational Intensity

The roofline model: Performance bound (y-axis) ordered according to arithmetic intensity (x-axis) (i.e. GFLOPs/Byte)
Arithmetic Intensity: is the ratio of total floating-point operations to total data movement (bytes): i.e. flops per byte

Which is the OpenFoam (CFD/FEM) arithmetic intensity? About 0.1, may be less....

GFLOP vs Computational Intensity (single core)
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HPC Hardware technological trend

Towards the exascale: co-design is required!

Software (turtle)

As usual software lags behind hardware but
must learn to exploit accelerators and other
innovative technologies such as FGPAs, PGAS

Reluctance by some software devs to learn new
languages such as CUDA, OpenCLis driving

interest in compiler-directive languages such as
OpenAccand OpenMP (4.x)

Continued investment in efficient files
checkpointing, resilience, parallel 1/0

co-design is the way the reduce the di
between hardware and software for H

Hardware (hare)

Reaching physical limits of transistor densities
and increasing clock frequencies further is too
expensive and difficult (energy consumption,
heat dissipation)

Parallelism only solution in HPC but the Blue
Gene road is no longer being persued. Hybrid
ith accelerators such as GPUs or Xeon Phi
come the norm

celerator technologies advancing to remove
its associated with CPU/ACC
mmunication(Intel KNL or Nvidia NVLINK)

range of novel architectures being explored
.g. Mont Blanc, DEEP) and technologies in
any areas




OpenFOAM: algorithmic overview

OpenFOAM is first and foremost a C++ library used to solve in discretized form systems of Partial
Differential Equations (PDE). OpenFOAM stands for Open Field Operation and Manipulation
The Engine of OpenFOAM is the Numerical Method. To solve equations for a continuum,
OpenFOAM uses a numerical approach with the following features:
o segregated, iterative solution (PCG/GAMG), unstructured finite volume method, co-located
variables, equation coupling.
The method of parallel computing used by OpenFOAM is based on the standard Message Passing
Interface (MPI) using the strategy of domain decomposition.
o The geometry and the associated elds are broken into pieces and allocated to separate
processors for solution. (zero layer domain decomposition)
o A convenient interface, Pstream, is used to plug any Message Passing Interface (MPI)
library into OpenFOAM. It is a light wrapper around the selected MPI Interface
OpenFOAM scales reasonably well up to thousands of cores




OpenFOAM: HPC Performances

e OpenFOAM scales reasonably well up to thousands of cores, upper limit orders of thousands of cores. Where we
are looking at is radical scalability =) The real issues are in the scaling of cases of 100's of millions of cell on 10K+
cores.

e  Custom version by Shimuzu Corp., Fujitsu Limited and RIKEN on K Computer (< computer, SPARCE4 VIIITx
2.0GHz. Tofu interconnect) was able to achieve a large scale transient CFD simulation up to 100 billion cell

meshes and achieved a high performance for 100 thousand MPI parallels.
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https://www.top500.org/system/177232
https://www.top500.org/system/177232

OpenFOAM HPC bottlenecks

Up to date, the well known bottlenecks for a full enabling of OpenFOAM for massively parallel clusters are

1.

Scalability of the linear solvers and limit in the parallelism paradigm. In most cases the memory bandwidth is a
limiting factor for the solver. Additionally, global reductions are frequently required in the solvers.

The linear algebra core libraries are the main communication bottlenecks for the scalability

Whole bunch of MPI Allreduce stems from an algorithmic constraint and is unavoidable, increasing with the
number of cores, . . . unless an algorithmic rewrite is proposed.

Generally speaking, the fundamental difficulty is the inability to keep all the processors busy when operating on
very coarse grids. Need for communication-friendly agglomeration (geometric) linear multigrid solver.

Sparse Matrix storage format: The LDU sparse matrix storage format used internally does not enable any
cache-blocking mechanism (SIMD, vectorization).
the 1/0 data storage system: when running in parallel, the data for decomposed fields and mesh(es) has
historically been stored in multiple files within separate directories for each processor, which is a bottleneck for
big simulation. For example LES/DNS with hundreds of cores requires very often saving on disk. Work on going:
a. Implemention of ADIOS Parallel I/0 library by Esi-OpenCFD and Oak Ridge National Laboratory
https://openfoam.com/documentation/files/adios-201610.pdf

b. Collocated file format by OpenFOAM Foundation, https://openfoam.org/news/parallel-io/
10



Up to date performance using Marconi

e Both 3 partition are tested for reference

o BDW: 36 core for node
o KNL: 272 core for node (HT on)
o SKL: 48 core for node

Node level comparison (serial performance is meaningless for HPC)

Two test case
o  Driven Cavity
m From 100*3 to 4003 (1 M, 8M, 27M and 64 M of cells)
m icofoam,PCG, scotch
o Flow around a cylinder
m About 2M elements
m pimpleFoam, GAMG, scotch

o Target: Define a reference value for performance

11



Driven Cavity

PoBRo-a=s=aflk JReacadde > 3 322
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DB: 2Nodes_36Task_1000.vtk
Cycle: 1000

Pseudocolor
Var: U_magnitude
1,000

e 10073, T=0.5, deltaT=0.0005
e 20073, T=0.2, deltaT=0.005
e 30073, T=0.2, deltaT=0.005
e 40073, T=0.1, deltaT=0.0025
e Target:

o Looking for performance
o Looking for saturation
o Looking for bottleneck

user: giorgio
Fri Mar 210:22:37 2018 12



Driven Cavity: some info

e openFoam+ release used (from ESI)
o Compiled using intel compiler + intelmpi

SKL: Release w1712 slightly faster then v1606 ,v1612,v1712

BDW: Release v1712 slightly faster then v1606,v1612,v1712

KNL: knl flag (-avx512) seems ineffective (see vectorization section)
10073 only to validate the flow, too small for a an HPC testcase
“strange/slow” performance are tested many times to avoid “dirty” figures
Validation done comparing residual

For first level MPI profiling

o I_MPI_STATS=ipm

13



Driven Cavity: 20043
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Driven Cavity: 30043
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Driven Cavity: KNL & SKL speed-up
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Driven Cavity: time vs. task (300 & 400
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Driven Cavity:KNL MPI overhead

e 2003, I MPI STAT=ipm

e BDW not reported, overhead > 50% in time
e MPI INITremoved

Task nodes time % mpi = % allreduce | % waitall % recv
128 2 466 17 14 1.4 0.2
256 4 255 22 17 2.5 0.3
512 8 158 35 25 4.6 1.1

1024 16 103 48 33 6.8 1.5

2048 32 77 62 44 8.0 1.7

19




Driven Cavity: SKL MPI overhead

e 2003, I MPI STAT=ipm

e BDW not reported, overhead > 50% in time
e MPI INITremoved

Task nodes time % mpi = % allreduce | % waitall % recv
96 2 331 8.6 6.0 1.4 0.1
192 4 133 18 13 2.9 0.5
384 8 43 29 20 4.5 0.6
768 16 22 43 29 7.0 1.4
1536 32 22 69 49 6.0 6.0

20




e Almost all with message size 8 b_yte

Driven Cavity:KNL MPI overhead

From OSU microbenchmark MPI allreduce benchmark

Time in microseconds

HW Task nodes Mean time OSU time
KNL 1024 16 208 54
KNL 2048 32 210 62
SKL 768 16 48 13
SKL 1536 32 79 17

5 time slower....why?

21



Flow around a cylinder

PoGRoree=8 4k g@esaaddd )PP B 322
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DB: KNL_16Node_é4Task_try1_46131.vtk
Cycle: 46131

Pseudocolor
Var: U_0_magnitude
1,450

'1057
T=10, deltaT=le-3 '
adjustTimeStep yes
2 M of cells

More complex test (academic)
Target:
o Looking for performance
o Looking for saturation
o Looking for bottleneck

user: giorgio 2
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Flow around a Cylinder
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Performance issue (Marconi?)
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Flow around a cylinder: MPI overhead

e 716 nodetestcase, I_MPI_ STAT=ipm
o BDW not reported, overhead > 50% in time
o SKL: from 246" — 274"
o KNL: from 800" — 890

e MPI INITremoved

HW time % mpi | % allreduce % waitall % recv
SKL 274 77 44 22 )
KNL 849 65 35 18 4
HW Task nodes Mean time (micros) OSU time
KNL 1024 16 150 54
SKL 768 16 60 13 e




Effect of vectorization: DIC-PCG

e 1003 lid-driven cavity as test case - 8 cores

e preconditioned conjugate gradient algorithm (PCG) with a
diagonal-based incomplete cholesky (DIC) preconditioner

e 353.3to 330.7 seconds, less than 10% speed-up
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Effect of vectorization: DIC-PCG

File location Line [ Code snippet Vectorized | Time w/o Time with
vectorization vectorization
src/OpenFOAM/ | 109 |for (label cell=0; cell<nCells; cell++) Yes 9.2 5.3
matrices/lduMatr { (2.6%) (1.6%)
ix/preconditioner wAPtr[cell] = rDPtr[cell]*rAPtr[cell];
s/DICPreconditio }
ner/DICPrecondi
tioner.C N _
114 | for (label face=0; face<nFaces; face++) No 59.9 59.5
{ (17.0%) (18.0%)
wAPtr[uPtr[face]] -= rDPtr[uPtr[face]]
*upperPtr[face]*wAPtr[IPtr[face]];
}
119 |for (label face=nFacesM1; face>=0; face--) [No 66.6 67.1
{ (18.9%) (20.3%)

wWAPtr[IPtr[face]] -= rDPtr[IPtr[face]]*
upperPtr[face]*wAPtr[uPtr[face]];

}

27




Effect of vectorization: DIC-PCG

File location Line | Code snippet Vectorized | Time w/o Time with
vectorization vectorization

src/OpenFOAM/ [ 109 | for (label cell=0; cell<nCells; cell++) Yes 9.2 5.3

matrices/lduMatr { (2.6%) (1.6%)

ix/preconditioner wAPtr[cell] = rDPtr[cell]*rAPtr[cell];

s/DICPreconditio }

ner/DICPrecondi

domaS 114 [f-- "ottt m e fmmm e o m e o 59.9 59.5
Limited speed up A

}Possmle bottlenecks from fetching data from
memory (large sparse matrlx)

119 |Hur yaver lace=nracesvi i, lace~-u, 1ace--) 66.6 67.1

{ (18.9%) (20.3%)
wWAPtr[IPtr[face]] -= rDPtr[IPtr[face]]*
upperPtr[face]*wAPtr[uPtr[face]];

} 28




Effect of vectorization: DIC-PCG

File location Line | Code snippet Vectorized | Time w/o Time with
vectorization vectorization
src/OpenFOAM/ | 109 |for (label cell=0; cell<nCells; cell++) 5.3
matrices/IduMatr { I n te na I (1.6%)
ix/preconditioner wAPtr[cell] = rDPtr[cell]*rAPtr[cell]; : :
s/DICPreconditio } -
dependencies
el 114 |for (label face=0; face<nFaces; face++) No 59.9 59.5
{ (17.0%) (18.0%)
wAPtr[uPtr[face]] -= rDPtr[uPtr[face]]
*upperPtr[face]*wAPtr[IPtr[face]];
}
119 |for (label face=nFacesM1; face>=0; face--) [No 66.6 67.1
{ (18.9%) (20.3%)
wAPtr[IPtr[face]] -= rDPtr[IPtr[face]]*
upperPtr[face]*wAPtr[uPtr[face]];
Y 29




Effect of vectorization: DIC-PCG

File location Line [ Code snippet Vectorized | Time w/o Time with
vectorization vectorization
src/OpenFOAM/ | 109 |for (label cell=0; cell<nCells; cell++) FO rced 5 3
matrices/lduMatr {
ix/preconditioner wAPtr[cell] = rDPtr[cell]*rAPtr[cell];
s/DICPreconditig } veCtorlzatlon
Egrrllg)rl.gPrecondl 114 |#pragma simd One |00p Speeds up
for (label face=0; face<nFaces; face++) by 2 timeS the Other
{ ’
wAPtr[uPtr[face]] -= rDPtr[uPtr[face]]
*upperPtr[face]*wAPtr[IPtr[face]]; S.|OWS dOW" by 25
} times (data retrival
119 |#pragma simd from RAM, double
for (label face=nFacesM1; face>=0; face--) | ., i \£U.070)
{ indexing, ?)

wAPtr[IPtr[face]] -= rDPtr[IPtr[face]]*

upperPtr[face]*wAPtr[uPtr[face]]; -
}




Effect of vectorization: GAMG

e 1003 lid-driven cavity as test case

e Geometric agglomerated algebraic multigrid solver (GAMG)
with Gauss-Seidel smoother

e No speed up

31



Effect of vectorization: take home messages

OpenFOAM makes very little use of vectorization:
e Non-vector-friendly algorithms
e Non-vector friendly implementation of these algorithm
o Double indexing frequently used
o Inefficient retrieval of data from memory (unstructured
meshes, large sparse matrices)

32



Further on-going work
HPC Profiling and testing

e Anin depth profiling analysis is aiming to identify a set of useful tools and corresponding metrics
to spot the HPC bottlenecks

e Tools used

o Intel Amplifier

o Intel Advisor

o Intel Monitor Performance Snapshot
e Metrics to be explored/evaluated

o Memory bound

o Memory bandwidth

e Test and Installation on Intel Patch on KNL architecture
33



Further on-going work
HPC Profiling: VTune bandwidth utilization

<no current project> - Intel Vune Amplifier

CPU Utilization : 2.5% &
Average CPU Usage : 0.907 Out of 36 logical CPUs
(3) CPU Usage Histogram

() Memory Bound : 5.7%

Cache Bound 3.8%  of Clockticks
DRAM Bound 7.6%  of Clockticks
NUMA: % of Remote Accesses : 0.3%

FPU Utilization : 4.0% &

. SP FLOPs per Cycle 1.291 Out of 32
Vector Capacity Usage 26.9% &
<no current project> 1 ) FP Instruction Mix
() % of Packed FP Instr. *:  7.6%
% of 128-bit : 7.6% K
% of 256-bit 0.0%
% of Scalar FP Instr. 924% &

FP Arith/Mem Rd Instr. Ratio : 0.869
FP Arith/Mem Wr Instr. Ratio ~: 3.158
Top Loops/Functions with FPU Usage by CPU Time

This section provides information for the most time consuming loops/functions with floating point operations.

Function CPU Time FPU Utilization Vector Set Loop Type
[libOpenFOAM. so] 146.672s 43% &
[icoF oam] 3.668s 0.9%
[libfiniteVolume. so] 3.303s 24%

(3) Collection and Platform Info

Explora banawidth utilization aver time using the histogram and Identify memory objects or functons with maximum cortribution to tha high bandwidth ualization.

Bandwidth Domaln.
Bandwidtn Utsiization
This histogram d

lays the wall tme the bancwidth was utlized by certain value, Use sliders at the bottom of the histogram to Gefine thresholds for Low, Medium and High utilization ievels. You can use these

Bendwickh wtilization types In tha Bottom-up viaw to group data and sce all functions axccutad during a particular wlization type. Ta laarn bandwidth capabilitias, rafor to your system specificatiors or run appropriate

benchmarks to measure them; for example, Intel Memory Latency Checker can provide maximum achievable DRAM and QPT bandwidth,

£y
7
Elapsed Time

605
40s.
205
& e
50 100 1350 200 250 300 350 400
0 0

Bandwiath Utiization

Top Functions with High Bandwidth Utillzation
This section shows top functions, sarted by LLC Misses that were executing when bandwidth utilizetion was high for the domain selected in the histogram area.

Function LLC Miss Count
10%

0.9%

dusdens o 0.7%
ML BIASI@avX512 mic zoemm 2copy G4 ea 0.6%
agen 0.1%

10/14
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Further on-going work

CSR format for sparse matrix, external linear solver algebra

Reminder two (of three) bottlenecks (1) limit in the parallelism paradigm. In most cases the memory bandwidth is a
limiting factor for the solver. Additionally, global reductions are frequently required in the solvers.(2) The LDU sparse
matrix storage format used internally does not enable any cache-blocking mechanism (SIMD, vectorization).

(1) and (2) are both related to the sparse matrix solvers and linear algebra.
Collaboration with ESI-OpenCFD

Prototyping stage would be to add in an interface to transcribe the LDU format into another sparse matrix format CSR
(Compress Row Storage) that is supported by an external solver package such as hypre or petsc.

Use a data structure that will use efficiently the data locality of the new chip-set, and will enable efficiently
simd/vectorizaion

This temporarily interface could be used to benchmark improvements possible by use of one of these external solver
packages. On the assumption that there are substantial benefits

e PETSC: https://www.mcs.anl.gov/petsc/
e HYPRE: https://computation.linl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
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Bonus Slide

In Situ Visualization with OpenFOAM

Simone, mi fai un riassunto di una slide?

Grazie

Ok, per quando?

Martedi mattina grazie
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