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Work main contributor

● Member of the Intel Parallel 
Computing Center (IPCC) @ 
LRZ/TUM

● Expert in computational 
astrophysics and simulations

Dr. Luigi Iapichino
Scientifc Computing Expert 
Leibniz Supercomputing Centre

Email: luigi.iapichino@lrz.de. WWW: http://iapichino.userweb.mwn.de 

● Some of the results shown 
here are based on work 
performed with                     
Dr. Fabio Barufa (now at Intel) 
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Outline of the talk

● Overview of the code: P-Gadget3.

● Modernization of a code kernel.

● Back-porting to the full code.

● Optimization steps on Knights Landing (KNL).

● Performance results, takeaways from our KNL experience.

● Energy measurements and optimization on KNL and HSW.

Simulation details: 
www.magneticum.org
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Gadget intro

● Leading application for simulating the formation of 
the cosmological large-scale structure (galaxies and 
clusters) and of processes at sub-resolution scale 
(e.g. star formation, metal enrichment).

● Publicly available, cosmological TreePM N-body + 
SPH code.

● First developed in the late 90s as                         
serial code, later evolved as an MPI                             
and a hybrid code.

● Good scaling performance up to                       
O(100k) Xeon cores (SuperMUC@LRZ).

Introduction
Simulation details: 
www.magneticum.org
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Previous optimization work 
(Barufaa Iapichinoa Hammer & Karakasisa proceedings of HPCS 2017)

● The representative code kernel subfnd_density was isolated and run as
a stand-alone application, avoiding the overhead from the whole simulation.

● Focus on node-level performance, through minimally invasive changes. 

● We use tools from the Intel® Parallel Studio XE (VTune Amplifer and Advisor).

● Code optimizazion through:
➢ Better threading parallelism;
➢ Data optimization (AoS → SoA);
➢ Promoting more efcient vectorization.

● Up to 19x faster execution on KNL.

 
Also available as: https://arxiv.org/abs/1612.06090

https://arxiv.org/abs/1612.06090
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Modernizing the threading parallelism of the isolated 
kernel

Multi-threading parallelism

thread spinning

● Severe shared-memory 
parallelization overhead

● At later iterations, the 
particle list is locked and 
unlocked constantly due 
to the recomputation

● Spinning time 41%
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Improved performance

Multi-threading parallelism

no spinning

● Lockless scheme: lock 
contention removed 
through “todo” particle 
list and OpenMP 
dynamic scheduling. 

● Time spent in spinning 
only 3%
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Improved speed-up of the isolated kernel on KNL 

Multi-threading parallelism

● Knights Landing  Processor 7210 @ 1.3 GHz, 
64 cores. KMP Afnity: scatter; 
Confguration: Quuadrant/Flat.

● On KNL @ 64 threads:
➢ speed-up wrt original version: 5.7x
➢ parallel efciency: 73%

● Crucial for target performance: OpenMP 
threads per MPI task on the full code? On 16 
threads on KNL, speed-up improvement 2.3x.

● Remark: the back-porting is based on a 
diferent physical workload, where the 
performance gain is lower (let’s discuss this 
ofine if you are interested...) 



9

Guideline for the optimization on KNL 

Back-porting

Optimization for KNL seen as a three-step process:

Step Efort Expected performance

Compilation “out of the 
box”

1 hour Lower than Haswell      
(~ 1.5x)

Optimization without 
coding (use of AVX512, 
explore confguration, 
MCDRAM, MPI/OpenMP)

1 week Up to 2x over previous 
step

Optimization with coding 1-3 months (IPCC: 2 
years)

Up to the level of 
Broadwell

Freely adapted from Leijun Hu, 
Inspur @ ISC 2017
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● Initial vs. optimized including all 
optimizations for subfnd_density

● IVB, HSW, BDW: 1 socket w/o 
hyperthreading.                                   
KNC: 1 MIC, 240 threads.                     
KNL: 1 node, 136 threads.

● Performance gain: 
● Xeon Phi: 13.7x KNC, 19.1x KNL.
● Xeon: 2.6x IVB, 4.8x HSW, 

4.7x BDW.

Performance results

lower is better

Optimization process and its outcome: an example 
(Barufaa Iapichinoa Hammer & Karakasisa proceedings of HPCS 2017)
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Back-porting: development steps on KNL 

Back-porting

Code version Description Notes

Original “Out-of-the-box” default 
environment, v. 2016 Intel 
compiler and libraries, no 
KNL-specifc fags.

Step 0 v. 2018 Intel compiler and 
libraries, -xMIC-AVX512.

The code does not beneft 
from specifc cluster or 
memory modes. 

Optimized Threading parallelism 
improved in subfnd_density.
Other minor improvements.

MPI/OpenMP confguration 
set by target, not by optimal 
performance.
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Performance results 

Results

Code version Time (total) [s] Time (subfnd_density) 
[s], % of total

Original 167.4 22.6 (13.5%)

Step 0 142.1
1.2x

17.1 (12.1%) 
1.3x

Optimized 137.1
1.2x 

12.7 (9.3%)
1.8x (isolated kernel: it 
was 1.4x)

One-node tests, performed on an Intel Xeon Phi (KNL) 7210 @ 1.30GHz with 64 cores.
Confguration: Quuad/fat with allocation on DDR. 4 MPI tasks, 16 OpenMP threads each.
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Understanding results and performance targets

● Based on our experience 4-8 MPI 
tasks per KNL should be optimal.

● A complete back-porting should 
improve the OpenMP layer and move 
the best performance to the left.

● The question is closely related to the 
MPI performance of the code.

● Best performance KNL: 53.2s (total), 
10.8s (subfnd_density, 20.3%).

● This is 2.6X faster than the test seen 
in the previous table (1.2X for 
subfnd_density).  

  

Parameter study of the MPI / OpenMP ratio on a KNL node.

Results
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Summary – performance optimization
● Along the described development steps, performance improvement on KNL is 1.2x 

for the whole code, 1.8x for the optimized kernel subfnd_density. 

● Improvements are portable also on Xeon (ongoing tests on newer versions).
● The improvement of subfnd_density is in line with predictions based on the isolated 

kernel (1.4x), thus verifying our approach.

● Performance gap with Haswell: the original code was 1.7x slower on KNL, the 
optimized is 1.3x slower. For subfnd_density: the original version was 1.50x 
slower on KNL, the optimized one only 1.16x slower → closing the gap!

● Room for further improvement?
➢ Complete back-porting of further steps (data layout, vectorisation);
➢ Back-port to other two major routines (~70% total time);
➢ Explore and modernize also the MPI layer of the code. 

More information: www.lrz.de/services/compute/labs/astrolab/ipcc
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Energy measurements and optimization on KNL

Motivation: How does the energy footprint of my application evolve while optimizing it?
Is energy efciency a point of strength of Xeon Phi systems?

Test case:

● Gadget simulation 
evolving 2 × 2563 
particles.

● Suitable for being 
run on 8 KNL nodes.

System:
● Pre-Commercial 

Procurement (PCP) KNL 
cluster @ CINES, 
Montpellier (France).

● Bull/Sequana, 168 KNL 
7250 Intel® Xeon Phi CPU 
7250 @ 1.40GHz

● Focus on energy efciency.
● Quuad/fat confguration
● Compiler and libraries v. 

2017

Software:

● Bull Energy 
Optimizer (BEO) 
v.1.0.

● Easy-to-use, non 
intrusive energy 
profler

Energy
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Diagnostics: Energy to solution vs Time to solution 

Energy

● Optimize = moving towards the 
lower left corner of the plot.

● For a code with ideal scaling, the 
scaling plot is a vertical line.

● Otherwise, in the simplest case, one 
can verify that

where P є [0;1] is the parallel 
efciency.  

E2 N=EN×
1

PN→ 2N
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Results for Gadget on KNL 

Energy

● Test confguration: same as before   
(4 MPI tasks per node, 16 OpenMP 
threads each)

● Scaling is not ideal, energy 
measures in line with expectations.

● Hyperthreading is not a solution.
● best = best combination of MPI and 

OpenMP (32 MPI tasks per node, 4 
OpenMP threads each).

● Time: 1.5X; energy 1.3X 
improvement over baseline.

● And this only by exploring the setup! 
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Optimizing for energy: energy-aware scheduling on 
SuperMUC (Phase 2a Haswell nodes)

● Long tradition as energy-efcient data center 
at LRZ.

● Energy-saving functionalities of the 
LoadLeveler job scheduler.

● An energy tag is created at runtime by 
LoadLeveler by measuring application 
properties (instr. per second,data transfer…) 
and applying a model.

● Can a job run faster than default frequency? 
Thresholds are applied.

● For Gadget: run at 2.4 GHz on 8 HSW nodes in 
780s, -11% with respect to default freq. (2.2 
GHz) with the same energy footprint (1.16MJ).

● With respect to the KNL best run:                     
1.15X faster, 1.5X more energy-efcient.  (from Auweter & Brochard 2014)

For details: Auweter et al. 2014, proceedings ISC SuperMUC: www.lrz.de/services/ 
compute/supermuc/systemdescription

http://www.lrz.de/services/
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Summary - energy

● On KNL: exploring the parameter space of your confguration exposes 
optimization potential. 

● On Xeon (e.g. Haswell): energy-aware scheduling is an additional optimization 
strategy.

● In our test, the KNL nodes have a slightly larger energy footprint than Haswell. 
Was energy saving not a motivation for going many-core? 

● To do: more fne-grained analysis (measurements in selected code sections and 
in the course of the code modernization strategy…).

● Further tools for energy measurements: currently testing LIKWID.
● Collaboration with the team developing the Global Extensible Open Power 

Manager (GEOPM), a novel runtime framework for the implementation of 
energy management strategies.
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Some more KNL wisdom

● Quuad-cache is a good starting point, quad-fat with allocation on 
MCDRAM is worth being tested, SNC modes are mainly for very 
advanced developers.

● It is unlikely to gain performance with more than 2 threads/core.

● Vectorize whenever possible, use compiler reports and tools to exploit 
low-hanging fruits.

● Know where your data are located and how they move.

● If optimizations are portable, the efort pays of! 

Experiences on KNL
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Back-up:
Back-porting the kernel optimizations to the full code

● To ease the back-porting, we defned a new Gadget test problem with a simplifed 
but representative workload (2 * 64³ particles).

● From a physical viewpoint, this workload probes                                                     
advanced phases of the galaxy evolution                                                            
(inter-galactic medium is strongly clumped). 

● Computationally, a reduced efort                                                                            
for fnding particle neighbors!

● Improvement in execution time:                                                                                 
2.3x on Broadwell (Xeon E5-2699v4,                                                                        
22 cores/socket), 5.3x on KNL. It was                                                                          
4.7x and 19.1x for the old workload.

 

Back-porting
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Back-up: removing lock contention

Subfnd algorithm

todo_partlist = partlist;

while(partlist.length){
  error=0;
  #pragma omp parallel for schedule(dynamic)
  for(auto p:todo_partlist){
    if(something_is_wrog) error=1;
    ngblist = find_neighbours(p);
    sort(ngblist);
    for(auto n:select(ngblist,K)) 
       compute_interaction(p,n);
  }

//...check for any error
  todo_particles = mark_for_recomputation(partlist);
}

creating a todo particle list

iterations over the todo list 
(private ngblist)

actual computation

No-checks for computation
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