Leibniz-Rechenzentrum

der Bayerischen Akademie der Wissenschaften

Optimization of the Gadget code and energy measurements on
second-generation Intel Xeon Phi

Dr. Luigi lapichino luigi.iapichino@Irz. de

Leibniz Supercomputing Centre

Intel® Parallel
IXPUG 2018 Spring conference Computing Center



mailto:luigi.iapichino@lrz.de

Work main contributor

Dr. Luigi lapichino « Some of the results shown

, Sciéntiﬁc Computing Expert here are based on work

B¢ Leibniz Supercomputing Centre performed with

N f Dr. Fabio Baruffa (now at Intel)

« Member of the Intel Parallel
Computing Center (IPCC) @
LRZ/TUM

« Expert in computational
astrophysics and simulations



mailto:luigi.iapichino@lrz.de

Outline of the talk

Overview of the code: P-Gadget3.

Modernization of a code kernel.

Back-porting to the full code. ‘-!n

Optimization steps on Knights Landing (KNL).

Performance results, takeaways from our KNL experience. -

Energy measurements and optimization on KNL and HSW. ---

Simulation details:
www.magneticum.org




Gadget intro

* Leading application for simulating the formation of
the cosmological large-scale structure (galaxies and
clusters) and of processes at sub-resolution scale
(e.g. star formation, metal enrichment).

VY g

. ggﬁhclydavallable, cosmological TreePM N-body + - Ty
code. - R

« First developed in the late 90s as
serial code, later evolved as an MPI
and a hybrid code.

 Good scaling performance up to
O(100k) Xeon cores (SuperMUC@LRZ).

i PP L : i G Z00m in‘l thigh resolution . . : G
arge volume / low resolution _.-=~" |, small Volume /high resolution TTEyE-- ’ simulation : ”
4 Simulation details:
www.magneticum.org




Previous optimization work

(Baruffa, lapichino, Hammer & Karakasis, proceedings of HPCS 2017)

* The representative code kernel subfind density was isolated and run as
a stand-alone application, avoiding the overhead from the whole simulation.

Focus on node-level performance, through minimally invasive changes.

We use tools from the Intel® Parallel Studio XE (VTune Amplifier and Advisor).

I VB

I HSW
[0 KNC
EEE KNL
[ BDW

Code optimizazion through:
> Better threading parallelism;
» Data optimization (A0S — S0A);
> Promoting more efficient vectorization.

Exec. Time [s]

Up to 19x faster execution on KNL.

|

n 0

Orlg
px.
o,-,g
¢
Or&
¢
Orlg
¢
Orf,



https://arxiv.org/abs/1612.06090

Modernizing the threading parallelism of the isolated

&l <no current project> - Intel WTune Amplifier - Ox
i =
@ Basic Hotspots H

B Collection Log | | 8 Analysis Analysis Type | | Bl Summary o CallevCallee | | % Top-down Tree | |[Bl Platform

Grouping: | Function / Call Stack

CPUTime v
Function/ Call Stack Efiective Time by Utilization o] Spin Time <] Overhead Time
Qldlie @ Poor Ok @Ideal @ Over Qther

p _ kmpc_critical_with_hint Os 2.0... [E1imy

p subfind_ngb_treefind_linkngb_threads_orig 21.74gs |0

b qsort_r 11.452s | 0s 0s Os 0s Os 0s Os Os

p subfind_ngh_compare_dist 8.208s | (NN 0s 0s Os 0s Os 0s Os Os

F __kmp_fork_barrier Os 15.. 0s 0.044s Os Os Os Os Os

b subfind_density_evaluate_orig 1.520s @ Os Os Os Os Os Os Os Os

» kernel_main 1.482s |0 Os Os Os 0s Os 0s Os Os

B __kmp_release_queuing_lock 0Os 0s 1.1.. Os 0s Os 0s Os 0Os

Pk subfind_density_evaluate_primary_orig 0.964s @ Os 0s Os Os Os Os Os Os

- e e, .| e

CoC@C-Ci | 0Ss 1s  18s 25 255 35 35s ds 455 55 S8s 65 655 75 755 8 85s 95 95s 10s 108s 11 1185 12s Thead ™

OMP Watker Thre... (] ddus cPuTims
OMP Watker Thre... Uk Spin and Ov...

e Severe shared-memory
parallelization overhead

« At later iterations, the
particle list is locked and
unlocked constantly due
to the recomputation

* Spinning time 41%

[]® cPu sample

Thiead

OMP Worker Thre...

OMP Watker Thre... [ cPu usage

OMP Waorker Thre... S T N T T A A, Ny i Y

S 1 T T T 0 T T A A S (s
T S | N 0TI A A i
OMP Wolker Thre. . | T 170 S A [
T i Dl T i T
T 1 TV 1 TP TP 0T O A

thread spinning




Improved performance

&l <no current project> - Intel WTune Amplifier - Ox
il = @ | welcome 1000hs r000hs X =
(85 Basic Hotspots
: e
Grouping: | Function / Call Stack N ¢ @ | CPU Time 2 |
[P G e Effective Time by Utilization o[ VBT 4 VG b b S
Oidle @FPoor [0k @ldeal @ Over Imbalance or Serial Spin | TN () TS T2 s |

ipcc_kernels_openmp_ivh_noveclzubfin...
ipcc_kernels_openmp_ivb_noveclsubfin...
ipcc_kernels_openmp_ivh_noveclsubfin...

p subfind_ngb_treefind_linkngh_thred

11.310s |
8.040s | D

» gsort_r

» subfind_ngb_compare_dist
ipcc_kernels_openmp_ivb_noveclsubfin

* Lockless scheme: lock
contention removed
through "todo" particle
list and OpenMP
dynamic scheduling.

 Time spent in spinning
only 3%

B kernel_main 1.5%4s (D Eln S SOl OpenME isnatcher 40586
] . ibiomps. so![OpenP dispatcher+0x86. ..
b subfind_density_evaluate_orig 1514s | . P
b K _fo K b = = o libiomp5.sol__kmp_fork_call+0xf7 - km...
mp_fork_barrier s
— p_. = libiomp3.sol[CpentP fork]+0xd7 - kmp
» kernel_hinv 0&52s B
= ipcc_kernels_openmp_ivb_novec!subin. ..
L sunﬂndiderTsnyiorlg 0.247s | ipcc_kernels_openmp_ivb_noveclmaint ..
P [OpenMP dispatcher] Os libc.so.61__libc_start_main+0xesS - [unk
b __kmp_api_omp_get_wtime Os [<]] ince_kemels_openmp_ivb_novec!_start. .
a Lik 1 a4 1
I L | om .
—_ e e T e e —
[eTTet JotNe T 125 1255 135 1355 145 1455 18s 155s 185 1655 17s 1.5s Thiead (v
| o L o | o L o | o | \ |
OMP Master Thre... - Running
OMP Worker Thre...
OMP Watker Thre... [l ik cPU Time
OMP Watker Thre... Ul Spin and Ov...

OMP Waoker Thre...
OMF Worker Thre...

Thread

[]® cPu sample

OMP Waker Thre [ cPu usage

OMP Worker Thre...

e |

no spinning




Improved speed-up of the isolated kernel on KNL

* Knights Landing Processor 7210 @ 1.3 GHz,
64 cores. KMP Affinity: scatter;
Configuration: Quadrant/Flat.

e On KNL @ 64 threads:
> speed-up wrt original version: 5.7x
> parallel efficiency: /3%

« Crucial for target performance: OpenMP
threads per MPI task on the full code? On 16

threads on KNL, speed-up improvement 2.3x.

« Remark: the back-porting is based on a
different physical workload, where the
performance gain is lower (let's discuss this
offline If you are interested...)

e-e original
e—e optimized

|
16 64 256

number of threads



Guideline for the optimization on KNL

Optimization for KNL seen as a three-step process:

Compilation "out of the
box"

Optimization without
coding (use of AVX512,
explore configuration,
MCDRAM, MPI/OpenMP)

Optimization with coding 1-3 months (IPCC: 2

1 hour

1 week

years)

Lower than Haswell
(~ 1.5x%)

Up to 2Xx over previous
step

Up to the level of
Broadwell

Freely adapted from Leijun Hu,
Inspur @ ISC 2017



Optimization process and its outcome: an example

(Baruffa, lapichino, Hammer & Karakasis, proceedings of HPCS 2017)

o . . . . lower is better ~64s
* Initial vs. optimized including all — R
optimizations for subfind density EE ENC
_ [ BDW -
« |VB, HSW, BDW: 1 socket w/o ‘=
hyperthreading. £ -
KNC: 1 MIC, 240 threads. 3
KNL: 1 node, 136 threads. 2 _
53
* Performance gain: N
* Xeon Phi: 13.7x KNC, 19.1x KNL.
* Xeon: 2.6x IVB, 4.8x HSW, ol 1 L
4. 7x BDW. g8 &g & & &




Back-porting: development steps on KNL

Original "Out-of-the-box" default
environment, v. 2016 Intel
compiler and libraries, no
KNL-specific flags.

Step O v. 2018 Intel compiler and The code does not benefit
libraries, -xMIC-AVX512. from specific cluster or
memory modes.

Optimized Threading parallelism MPI/OpenMP configuration
Improved in subfind density. set by target, not by optimal
Other minor improvements.  performance.




Performance results

One-node tests, performed on an Intel Xeon Phi (KNL) 7210 @ 1.30GHz with 64 cores.
Configuration: Quad/flat with allocation on DDR. 4 MPI tasks, 16 OpenMP threads each.

Original 167.4 226 (13.5%)
Step 0 1421 17.1 (12.1%)
1.2X 1.3X
Optimized 137.1 12.7 (9.3%)
1.2X 1.8x (isolated kernel: it
was 1.4X)




Understanding results and performance targets

1000

» Based on our experience 4-8 MP|
tasks per KNL should be optimal.

64

32

« A complete back-porting should
improve the OpenMP layer and move
the best performance to the left.

-
(=)}

#0OMP Threads
[e+]
g

Exec. Time [s]

« The question is closely related to the
MPI performance of the code. .

* Best performance KNL: 53.2s (total), ,
10.8s (subfind density, 20.3%).

* Thisis 2.6X faster than the test seen . ; - - = 10
In the previous table (1.2X for #MPI Tasks
subfind density). Parameter study of the MPI / OpenMP ratio on a KNL node.




Summary - performance optimization

* Along the described development steps, performance improvement on KNL Is 1.2x
for the whole code, 1.8x for the optimized kernel subfind density.

* Improvements are portable also on Xeon (ongoing tests on newer versions).

* The improvement of subfind density is in line with predictions based on the isolated
kernel (1.4x), thus verifying our approach.

* Performance gap with Haswell: the original code was 1.7x slower on KNL, the
optimized is 1 3x slower. For subfind density: the original version was 1.50x
slower on KNL, the optimized one only 1.16x slower — closing the gap!

* Room for further improvement?

~ Complete back-porting of further steps (data layout, vectorisation);
> Back-port to other two major routines (~70% total time);
> Explore and modernize also the MPI layer of the code,

I




Energy measurements and optimization on KNL

Motivation: How does the energy footprint of my application evolve while optimizing it?
Is energy efficiency a point of strength of Xeon Phi systems?

Test case: System: Software:
. . * Pre-Commercial

* Gadget simulation Procurement (PCP) KNL * Bull Energy
evolving 2 x 2567 cluster @ CINES, Optimizer (BEO)
particles. Montpellier (France). v.1.0.

. . * Bull/Sequana, 168 KNL

* Suitable for being 7250 Intel® Xeon Phi CPU « Fasy-to-use, non

run on 8 KNL nodes. 7250 @ 1.40GHz intrusive energy
* Focus on energy efficiency. profiler

* Quad/flat configuration

« Compiler and libraries v.
2017




Diagnostics: Energy to solution vs Time to solution

_ | 2500
* Optimize = moving towards the
lower left corner of the plot.
L . — 2000+ .
 For a code with ideal scaling, the )
scaling plot is a vertical line. g
- Otherwise, in the simplest case, one £ 15007 il
can verify that L"é
1 = 1000} -
PN-)ZN
! | ! | ! l L l ! | !
S001 15 > 25 3 35 4

where Pe [0:1] is the parallel
efficiency.

Energy to solution [MJ]




Results for Gadget on KNL

« Jest configuration: same as before

(4 MPI tasks per node, 16 OpenMP 200
threads each)
. : . o4 KNL

« Scaling is not ideal, energy = 2000- -

measures in line with expectations. g

=

* Hyperthreading is not a solution. S 1500 08 KNL. 2HT |
* best = best combination of MPl and £ ®8 KNL

OpenMP (32 MPI tasks per node, 4 £

OpenMP threads each). 10001 o8 KNL, best ® 16 KNL -
* Time: 1.5X; energy 1.3X

Improvement over baseline. 500155 35 .' Ry —"
 And this only by exploring the setup! Energy to solution [MJ]




Optimizing for energy: energy-aware scheduling on

SuperMUC (Phase 2, Haswell nodes)

« Long tradition as energy-efficient data center

at LRZ.
» Energy-saving functionalities of the 102%
LoadLeveler job scheduler, 100%
« An energy tagis created at runtime by 98%
LoadLeveler by measuring application c %%

w
]
a

properties (instr. per second,data transfer...)
and applying a model.

« Can a job run faster than default frequency?
Thresholds are applied. B

 For Gadget: run at 2.4 GHz on 8 HSW nodes in
/780s, -11% with respect to default freq. (2.2
GHZ) with the same energy fOOtpl’iﬂt (116MJ) 27 26 25 24 23 22 21 20 19 18 17 16 15 14

« With respect to the KNL best run: f "’”"’W“?]fﬁ“”d
1.15X faster, 1.5X more energy-efficient. (from Auweter & Brochard 2014)

SuperMUC: www.Irz.de/services/
compute/supermuc/systemdescription

Sweet Spot @ 1.8 GHz

4

W
Pt
R

90%

rel. Energy-to-Solutio



http://www.lrz.de/services/

Summary - energy

« On KNL: exploring the parameter space of your configuration exposes
optimization potential.

« On Xeon (e.g. Haswell): energy-aware scheduling is an additional optimization
strategy.

* In our test, the KNL nodes have a slightly larger energy footprint than Haswell.
Was energy saving not a motivation for going many-core?

 To do: more fine-grained analysis (measurements in selected code sections and
In the course of the code modernization strategy...).

* Further tools for energy measurements: currently testing LIKWID.

« Collaboration with the team developing the Global Extensible Open Power
Manager (GEOPM), a novel runtime framework for the implementation of
energy management strategies.




Some more KNL wisdom

Quad-cache Is a good starting point, quad-flat with allocation on
MCDRAM is worth being tested, SNC modes are mainly for very
advanced developers.

It Is unlikely to gain performance with more than 2 threads/core.

Vectorize whenever possible, use compiler reports and tools to exploit
low-hanging fruits.

Know where your data are located and how they move.

If optimizations are portable, the effort pays off!




Acknowledgements

* Research supported by the Intel® Parallel Computing Center program.

* The IPCC team at LRZ currently includes Nicolay Hammer and Michele Martone.
* Support for energy measurements: Carmen Navarrete (LRZ).

* P-Gadget3 developers: Klaus Dolag, Margarita Petkova, Antonio Ragagnin.

* TCEs at Intel: Heinrich Bockhorst, Klaus-Dieter Oertel.

* Thanks to the IXPUG community for useful input and discussions.

More details: Baruffa, F., lapichino, L., Karakasis, V., Hammer, N.J.: Performance optimisation of
Smoothed Particle Hydrodynamics algorithms for multi/many-core architectures. 2017, proceedings of
the 2017 International Conference on High Performance Computing & Simulation (HPCS 2017), 381.
Awarded as Outstanding Paper (runner-up). DOI: 10.1109/HPCS.2017.64. arXiv: 1612.06090.




Back-up:

Back-porting the kernel optimizations to the full code

« [0 ease the back-porting, we defined a new Gadget test problem with a simplified

but representative workload (2 * 642 particles).

128
 From a physical viewpoint, this workload probes

advanced phases of the galaxy evolution
(Inter-galactic medium is strongly clumped).

« Computationally, a reduced effort
for finding particle neighbors!

speedup

* Improvement in execution time:
2.3x on Broadwell (Xeon E5-2699v4,
22 cores/socket), 5.3x on KNL. It was
4 7x and 19.1x for the old workload.

| [

@ @ BDW - original
@@ BDW - optimised
@ @ KNL - original

@@ KNL - optimised

16 32 64
# threads



Back-up: removing lock contention

todo_partlist = partlist; - creating a todo particle list

while (partlist.length) {

error=0;
#pragma omp parallel for schedule (dynamic) _ _ _
for (auto p:todo_partlist) { - iterations over the todo list

if (something_is_wrog) error=1; (private ngblist)

ngblist = find_neighbours (p) ;

sort (ngblist) ;

for (auto n:select (ngblist, K)) — actual computation
compute_interaction (p, n);

LNo-checks for computation

//...check for any error
todo_particles = mark_for_recomputation (partlist);

}




	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23

