
Optimization of the Gadget code and energy measurements on
second-generation Intel Xeon Phi

Dr. Luigi Iapichino luigi.iapichino@lrz.de

Leibniz Supercomputing Centre

IXPUG 2018 Spring conference

mailto:luigi.iapichino@lrz.de

2

Work main contributor

● Member of the Intel Parallel
Computing Center (IPCC) @
LRZ/TUM

● Expert in computational
astrophysics and simulations

Dr. Luigi Iapichino
Scientifc Computing Expert
Leibniz Supercomputing Centre

Email: luigi.iapichino@lrz.de. WWW: http://iapichino.userweb.mwn.de

● Some of the results shown
here are based on work
performed with
Dr. Fabio Barufa (now at Intel)

mailto:luigi.iapichino@lrz.de

3

Outline of the talk

● Overview of the code: P-Gadget3.

● Modernization of a code kernel.

● Back-porting to the full code.

● Optimization steps on Knights Landing (KNL).

● Performance results, takeaways from our KNL experience.

● Energy measurements and optimization on KNL and HSW.

Simulation details:
www.magneticum.org

4

Gadget intro

● Leading application for simulating the formation of
the cosmological large-scale structure (galaxies and
clusters) and of processes at sub-resolution scale
(e.g. star formation, metal enrichment).

● Publicly available, cosmological TreePM N-body +
SPH code.

● First developed in the late 90s as
serial code, later evolved as an MPI
and a hybrid code.

● Good scaling performance up to
O(100k) Xeon cores (SuperMUC@LRZ).

Introduction
Simulation details:
www.magneticum.org

5

Previous optimization work
(Barufaa Iapichinoa Hammer & Karakasisa proceedings of HPCS 2017)

● The representative code kernel subfnd_density was isolated and run as
a stand-alone application, avoiding the overhead from the whole simulation.

● Focus on node-level performance, through minimally invasive changes.

● We use tools from the Intel® Parallel Studio XE (VTune Amplifer and Advisor).

● Code optimizazion through:
➢ Better threading parallelism;
➢ Data optimization (AoS → SoA);
➢ Promoting more efcient vectorization.

● Up to 19x faster execution on KNL.

Also available as: https://arxiv.org/abs/1612.06090

https://arxiv.org/abs/1612.06090

6

Modernizing the threading parallelism of the isolated
kernel

Multi-threading parallelism

thread spinning

● Severe shared-memory
parallelization overhead

● At later iterations, the
particle list is locked and
unlocked constantly due
to the recomputation

● Spinning time 41%

7

Improved performance

Multi-threading parallelism

no spinning

● Lockless scheme: lock
contention removed
through “todo” particle
list and OpenMP
dynamic scheduling.

● Time spent in spinning
only 3%

8

Improved speed-up of the isolated kernel on KNL

Multi-threading parallelism

● Knights Landing Processor 7210 @ 1.3 GHz,
64 cores. KMP Afnity: scatter;
Confguration: Quuadrant/Flat.

● On KNL @ 64 threads:
➢ speed-up wrt original version: 5.7x
➢ parallel efciency: 73%

● Crucial for target performance: OpenMP
threads per MPI task on the full code? On 16
threads on KNL, speed-up improvement 2.3x.

● Remark: the back-porting is based on a
diferent physical workload, where the
performance gain is lower (let’s discuss this
ofine if you are interested...)

9

Guideline for the optimization on KNL

Back-porting

Optimization for KNL seen as a three-step process:

Step Efort Expected performance

Compilation “out of the
box”

1 hour Lower than Haswell
(~ 1.5x)

Optimization without
coding (use of AVX512,
explore confguration,
MCDRAM, MPI/OpenMP)

1 week Up to 2x over previous
step

Optimization with coding 1-3 months (IPCC: 2
years)

Up to the level of
Broadwell

Freely adapted from Leijun Hu,
Inspur @ ISC 2017

10

● Initial vs. optimized including all
optimizations for subfnd_density

● IVB, HSW, BDW: 1 socket w/o
hyperthreading.
KNC: 1 MIC, 240 threads.
KNL: 1 node, 136 threads.

● Performance gain:
● Xeon Phi: 13.7x KNC, 19.1x KNL.
● Xeon: 2.6x IVB, 4.8x HSW,

4.7x BDW.

Performance results

lower is better

Optimization process and its outcome: an example
(Barufaa Iapichinoa Hammer & Karakasisa proceedings of HPCS 2017)

11

Back-porting: development steps on KNL

Back-porting

Code version Description Notes

Original “Out-of-the-box” default
environment, v. 2016 Intel
compiler and libraries, no
KNL-specifc fags.

Step 0 v. 2018 Intel compiler and
libraries, -xMIC-AVX512.

The code does not beneft
from specifc cluster or
memory modes.

Optimized Threading parallelism
improved in subfnd_density.
Other minor improvements.

MPI/OpenMP confguration
set by target, not by optimal
performance.

12

Performance results

Results

Code version Time (total) [s] Time (subfnd_density)
[s], % of total

Original 167.4 22.6 (13.5%)

Step 0 142.1
1.2x

17.1 (12.1%)
1.3x

Optimized 137.1
1.2x

12.7 (9.3%)
1.8x (isolated kernel: it
was 1.4x)

One-node tests, performed on an Intel Xeon Phi (KNL) 7210 @ 1.30GHz with 64 cores.
Confguration: Quuad/fat with allocation on DDR. 4 MPI tasks, 16 OpenMP threads each.

13

Understanding results and performance targets

● Based on our experience 4-8 MPI
tasks per KNL should be optimal.

● A complete back-porting should
improve the OpenMP layer and move
the best performance to the left.

● The question is closely related to the
MPI performance of the code.

● Best performance KNL: 53.2s (total),
10.8s (subfnd_density, 20.3%).

● This is 2.6X faster than the test seen
in the previous table (1.2X for
subfnd_density).

Parameter study of the MPI / OpenMP ratio on a KNL node.

Results

14

Summary – performance optimization
● Along the described development steps, performance improvement on KNL is 1.2x

for the whole code, 1.8x for the optimized kernel subfnd_density.

● Improvements are portable also on Xeon (ongoing tests on newer versions).
● The improvement of subfnd_density is in line with predictions based on the isolated

kernel (1.4x), thus verifying our approach.

● Performance gap with Haswell: the original code was 1.7x slower on KNL, the
optimized is 1.3x slower. For subfnd_density: the original version was 1.50x
slower on KNL, the optimized one only 1.16x slower → closing the gap!

● Room for further improvement?
➢ Complete back-porting of further steps (data layout, vectorisation);
➢ Back-port to other two major routines (~70% total time);
➢ Explore and modernize also the MPI layer of the code.

More information: www.lrz.de/services/compute/labs/astrolab/ipcc

15

Energy measurements and optimization on KNL

Motivation: How does the energy footprint of my application evolve while optimizing it?
Is energy efciency a point of strength of Xeon Phi systems?

Test case:

● Gadget simulation
evolving 2 × 2563
particles.

● Suitable for being
run on 8 KNL nodes.

System:
● Pre-Commercial

Procurement (PCP) KNL
cluster @ CINES,
Montpellier (France).

● Bull/Sequana, 168 KNL
7250 Intel® Xeon Phi CPU
7250 @ 1.40GHz

● Focus on energy efciency.
● Quuad/fat confguration
● Compiler and libraries v.

2017

Software:

● Bull Energy
Optimizer (BEO)
v.1.0.

● Easy-to-use, non
intrusive energy
profler

Energy

16

Diagnostics: Energy to solution vs Time to solution

Energy

● Optimize = moving towards the
lower left corner of the plot.

● For a code with ideal scaling, the
scaling plot is a vertical line.

● Otherwise, in the simplest case, one
can verify that

where P є [0;1] is the parallel
efciency.

E2 N=EN×
1

PN→ 2N

17

Results for Gadget on KNL

Energy

● Test confguration: same as before
(4 MPI tasks per node, 16 OpenMP
threads each)

● Scaling is not ideal, energy
measures in line with expectations.

● Hyperthreading is not a solution.
● best = best combination of MPI and

OpenMP (32 MPI tasks per node, 4
OpenMP threads each).

● Time: 1.5X; energy 1.3X
improvement over baseline.

● And this only by exploring the setup!

18

Optimizing for energy: energy-aware scheduling on
SuperMUC (Phase 2a Haswell nodes)

● Long tradition as energy-efcient data center
at LRZ.

● Energy-saving functionalities of the
LoadLeveler job scheduler.

● An energy tag is created at runtime by
LoadLeveler by measuring application
properties (instr. per second,data transfer…)
and applying a model.

● Can a job run faster than default frequency?
Thresholds are applied.

● For Gadget: run at 2.4 GHz on 8 HSW nodes in
780s, -11% with respect to default freq. (2.2
GHz) with the same energy footprint (1.16MJ).

● With respect to the KNL best run:
1.15X faster, 1.5X more energy-efcient. (from Auweter & Brochard 2014)

For details: Auweter et al. 2014, proceedings ISC SuperMUC: www.lrz.de/services/
compute/supermuc/systemdescription

http://www.lrz.de/services/

19

Summary - energy

● On KNL: exploring the parameter space of your confguration exposes
optimization potential.

● On Xeon (e.g. Haswell): energy-aware scheduling is an additional optimization
strategy.

● In our test, the KNL nodes have a slightly larger energy footprint than Haswell.
Was energy saving not a motivation for going many-core?

● To do: more fne-grained analysis (measurements in selected code sections and
in the course of the code modernization strategy…).

● Further tools for energy measurements: currently testing LIKWID.
● Collaboration with the team developing the Global Extensible Open Power

Manager (GEOPM), a novel runtime framework for the implementation of
energy management strategies.

20

Some more KNL wisdom

● Quuad-cache is a good starting point, quad-fat with allocation on
MCDRAM is worth being tested, SNC modes are mainly for very
advanced developers.

● It is unlikely to gain performance with more than 2 threads/core.

● Vectorize whenever possible, use compiler reports and tools to exploit
low-hanging fruits.

● Know where your data are located and how they move.

● If optimizations are portable, the efort pays of!

Experiences on KNL

21

Acknowledgements

● Research supported by the Intel® Parallel Computing Center program.
● The IPCC team at LRZ currently includes Nicolay Hammer and Michele Martone.
● Support for energy measurements: Carmen Navarrete (LRZ).
● P-Gadget3 developers: Klaus Dolag, Margarita Petkova, Antonio Ragagnin.
● TCEs at Intel: Heinrich Bockhorst, Klaus-Dieter Oertel.
● Thanks to the IXPUG community for useful input and discussions.

More details: Barufa, F., Iapichino, L., Karakasis, V., Hammer, N.J.: Performance optimisation of
Smoothed Particle Hydrodynamics algorithms for multi/many-core architectures. 2017, proceedings of
the 2017 International Conference on High Performance Computing & Simulation (HPCS 2017), 381.
Awarded as Outstanding Paper (runner-up). DOI: 10.1109/HPCS.2017.64. arXiv: 1612.06090.

To contact me: luigi.iapichino@lrz.de

22

Back-up:
Back-porting the kernel optimizations to the full code

● To ease the back-porting, we defned a new Gadget test problem with a simplifed
but representative workload (2 * 64³ particles).

● From a physical viewpoint, this workload probes
advanced phases of the galaxy evolution
(inter-galactic medium is strongly clumped).

● Computationally, a reduced efort
for fnding particle neighbors!

● Improvement in execution time:
2.3x on Broadwell (Xeon E5-2699v4,
22 cores/socket), 5.3x on KNL. It was
4.7x and 19.1x for the old workload.

Back-porting

23

Back-up: removing lock contention

Subfnd algorithm

todo_partlist = partlist;

while(partlist.length){
 error=0;
 #pragma omp parallel for schedule(dynamic)
 for(auto p:todo_partlist){
 if(something_is_wrog) error=1;
 ngblist = find_neighbours(p);
 sort(ngblist);
 for(auto n:select(ngblist,K))
 compute_interaction(p,n);
 }

//...check for any error
 todo_particles = mark_for_recomputation(partlist);
}

creating a todo particle list

iterations over the todo list
(private ngblist)

actual computation

No-checks for computation

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23

