
3D convolutional GAN for fast 

simulation
F. Carminati, G. Khattak, S. Vallecorsa

1



Outline

 Introduction

 The need for fast simulation 

 Status

 Generative Adversarial Networks for calorimeter simulation

 Benchmarking on Intel Skylake

 Testing Intel Nervana Neon

 Plan for 2018

 Generalisation

 Optimisation of computing resources 

 Summary



Monte Carlo Simulation: Why

 Detailed simulation of subatomic particles is 

essential for data analysis, detector design

 Understand how detector design affect 

measurements and physics

 Use simulation to correct for inefficiencies, 

inaccuracies, unknowns.

 The theory models to compare data against.
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A good simulation demonstrates that we understand the detectors 

and the physics we are studying



The problem

 Complex physics and geometry 

modeling

 Heavy computation requirements, 

massively CPU-bound

 Today more than 50% of WLCG power is 

used for simulations

 By 2025 with the High Luminosity LHC run 

we will simulate:

Much more data!

More complex events!

Faster!
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200 Computing centers in 20 countries: 

> 600k cores

@CERN (20% WLCG): 65k cores; 

30PB disk + >35PB tape storage 

Campana, CHEP 2016

ATLAS experiment:

https://indico.cern.ch/event/505613/contributions/2241721/attachments/1344208/2032301/Oral-90.pdf


Fast simulation
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• Activities on-going to speedup Monte Carlo techniques (new 

vectorized geometry library VecGeom)

• Current code cannot cope with HL-LHC expected needs

• Improved, efficient and accurate fast simulation

• Currently available solutions are detector dependent

• A general fast simulation tool based on Machine 

Learning/Deep Learning

• ML techniques are more and more performant in different 

HEP fields

• Optimizing training time becomes crucial

Intel
Parallel 
Computing 
Center 
2015-2016



Deep Learning for fast simulation

 Generic approach

 Can encapsulate expensive 

computations 

 DNN inference step is faster than 

algorithmic approach

 Already parallelized and optimized 

for GPUs/HPCs. 

 Industry building highly optimized 

software, hardware, and cloud 

services. 
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A DL engine for fast simulation

 Start with time consuming detectors

 Reproduce particle showers in 

calorimeters

 Train on detailed simulation

 Test training on real data

 Test different models

 Generative Adversarial Networks, 

Recurrent Networks 

 Embed training-inference cycle in 

simulation
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Intel
Parallel 
Computing 
Center  
2017



Requirements

 A fast inference step: 

 It takes ~1 minute to simulate one electromagnetic shower with detailed 

simulation --> need at least a x100-1000 speedup 

 Precise simulation results:

 Need a detailed validation process

 Probably cannot go below single precision floating points

 Generic customizable tool 

 Easy-to-use and easily extensible framework

 Large hyper parameters scans and meta-optimisation of the algorithm:

 Training time under control

 Scalability

 Possibility to work across platforms
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A plan in two steps
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Can image-processing approaches be useful? 

• Can we preserve accuracy while increasing 
speed? 

• Can we sustain the increase in detector 
complexity (future highly-granular 
calorimeters)? 

• A first proof of concept

• Understand performance 

and validate accuracy

• Prove generalisation is possible

• Understand and optimise
computing resources

How generic is this approach?

• Can we “adjust” architecture to fit a 
large class of detectors? 

What resources are needed?

Intel
Parallel 
Computing 
Center  
2017



Status
Proof of concept, benchmarking  and Validation
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Generative models for simulation

Many models: Generative Stochastic Networks, Variational Auto-Econders, 

Generative Adversarial Networks ..

 Realistic generation of samples

 Optimise multiple output for a single input

 Can do interpolation

 Work well with missing data

Ranzato, Susskind, Mnih, Hinton, IEEE CVPR 2011
https://arxiv.org/pdf/1605.05396.pdf
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Typically used in computer vision techniques



Generative Adversarial Networks

 Generator learns to generate data 

starting from random noise

 Discriminator learns how to 

distinguish real data from 

generated data

The counterfeiter/police case

 Counterfeiter shows police the fake money

 Police says it is fake and gives feedback 

 Counterfeiter makes new money based on feedback

 Iterate until police is fooled
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arXiv:1406.2661v1 

Simultaneously train two networks that compete and cooperate with 

each other: 

GAN samples
for CIFAR-10

https://arxiv.org/abs/1406.2661v1
https://arxiv.org/abs/1406.2661v1


CLIC calorimeter simulation

 CLIC is a CERN project for a linear accelerator of electrons 

and positrons to TeV energies

 Associated electromagnetic calorimeter detector design(*)

 A highly segmented array of absorber material and silicon 

sensors

 1.5 m inner radius, 5 mm×5 mm segmentation: 25 tungsten 

absorber layers +  silicon sensors
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(*) http://cds.cern.ch/record/2254048#
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25 2525

Data is essentially a 
3D image 

Stored as a 25x25x25 
HDF5 dataset

http://cds.cern.ch/record/2254048


CLIC calorimeter data

 Highly segmented (pixelized)

 Segmentation is critical for 
particle identification and 
energy calibration.

 Sparse.

 Non-linear location-dependency



3D GAN

 Similar discriminator and generator models

 3d convolutions (keep X,Y symmetry)

 Tested several tips&tricks found in literature*

 Some helpful (no batch normalisation in 

the last step, LeakyRelu, no hidden dense 

layers, no pooling layers)

 Batch training

 Loss is combined cross entropy 

*https://github.com/soumith/ganhacks



Conditioning on additional 

variables

 Auxiliary discriminator output 

 Multi-objective optimisation: primary particle energy & 

reconstructed energy

 Train the generator to reproduce correct shapes
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Training generator and discriminator using initial 
particle energy 



Measuring physics performance

 Comparison to Monte Carlo

 High level quantities (energy shower shapes)

 Detailed calorimeter response (single cell response)

 Particle properties (primary particle energy) StdDev
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Shower longitudinal section

Physics results are very promising

Need Hyperparameter scans for further  optimisation

Primary particle 

energy from 

discriminator
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We do not rely on typical image quality assessments



Computing resources

 All tests run with Intel optimised Tensorflow 1.4.1. + keras 2.1.2

 Compiled TF sources (-O3 –march=broadwell –config=mkl) (AVX2)*

 TF linked to MKL-DNN

 Use NCHW data format 

 OpenMP setup (for Skylake)

 KMP_BLOCKTIME = 1

 KMP_HW_SUBSET=1T

 OMP_NUM_THREADS=28 (physical cores )

 KMP_AFFINITY=balanced

 Systems:

 Intel Xeon Platinum 8180 @2.50 GHz (28 physical cores)

 NVIDIA GeForce GTX 1080
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* Currently AVX512 TF build is broken 
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Computing resources: inference

Problem Machine
Time/Shower

(msec)

Full Simulation 

(geant4)

Intel Xeon Platinum 

8180
17000

3d GAN

(batch size 128)

Intel Xeon 

Platinum 8180
7

3d GAN

(batchsize 128)
GeForce GTX 1080 0.04

3d GAN

(batchsize 128)

Intel i7 @2.8GHz 

(MacBookPro)
66

• Using a trained model is very fast

• Orders of magnitude faster than detailed 
simulation (👍)

• Next step: test inference on FPGA and 
integrated accelerators

Time to create an electron shower
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Computing resources: training

• Training time (30 epochs, 200k particles)

• 1d on an NVIDIA GTX-1080

• ~30 days  on Intel Xeon 8180

Problem Machine
Training time 

(days)

3d GAN

(batchsize 128)

Intel Xeon Platinum 

8180

(Intel optimised TF) 

30

3d GAN

(batchsize 128)
GeForce GTX 1080 1

Time to train for 30 epochs

Using AVX512 might 
bring the ratio down 

to ~15



Benchmarking on Skylake

 Major hotspot related to Data Layout optimization: tensor elements copy operation

 Cores are filled 
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PRELIMINARY

COPY TENSOR  ELEMENTS

MULTIPLICATION



Benchmarking on Skylake: reducing 

dimensions

 Simplify network by reducing the number of axis: 2D longitudinal 
shower shape  (typically used to identify particles)

 Simple 2D convolutions 

 Network parameters reduced by a factor x6
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Problem Machine
Training time 

(hours)

2d GAN

(batchsize 128)

Intel Xeon Platinum 

8180

(Intel optimised TF) 

14

2d GAN

(batchsize 128)
GeForce GTX 1080 1.5

Time to train for 30 epochs

Difference is down 

to a factor x10 

(AVX2) !



Benchmarking on Skylake: 2D 

profiling

 Call stack is as “expected”: firs hotspot is tensor multiplication
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COPY TENSOR  TO VECTOR LANES (SSE)
2DConv

 Problem is related 3D convolutions!

 Work ongoing with Intel experts to find a solution



Implementation in Neon

 Intel Nervana’s deep learning framework

 Optimised for Intel hardware

 Also available GPU kernel library

 Integration in NervanaCloud and NervanaGraph: upcoming multinode

scaling

 Extensive development work on Neon itself needed to implement our 3D 

GAN architecture

 Unfortunately performance does not compare to Tensorflow
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Thanks to Intel support (A. Zanetti)! 



A.Zanetti, Intel 



2018 PLAN

Some work  on validation is still ongoing  

Focus on generalisation and computing resources optimisation



GENERALISATION

• Our baseline is an example of next generation highly granular 

detector

• Extend to other calorimeters (FCC LAr calorimeter, CALICE 

SDHCAL)

• Explore optimal network topology according to the problem to 

solve

• Hyper-parameters tuning and meta-optimization

• Sklearn/skopt, Spearmint, …
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SDHCAL prototype during SPS test beam



Parallel Training

 Test different hardware/environments

 Intel® Xeon Phi™, DL-100

 Cloud

 Try NervanaGraph as soon as available

 Parallelization on distributed  systems

 Implement data parallelism and study scaling on clusters

 Horovod, mpi-learn, …

 Optimise training data management

 Test “Big Data” frameworks (e.g. Spark/SparkML, ..)
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Y

Start

Generate Fake
Image Batch

Train Discriminator
on real images

Train Discriminator
on fake images

Discriminator
Loss is average
of both losses

Combined Model loss
for the Discriminator

(All images flagged real)

Train Combined
Model twice

Epoch<
num_epochs

Y



Summary

 Generative models seem natural candidates for fast simulation

 Rely on the possibility to interpret “events” as “images”

 First GANs applications to calorimeter simulations look very 
promising 

 Many studies ongoing in the different experiments 

 3d GAN is the initial step of a wider plan to investigate simulation 
with DL

 Eager to see good performances on CPUs

 Need to solve the 3D convolutions issues in TF and/or MKL/MKL-DNN
29



Spinoffs?

 Direct

 Radiation treatment planning

 Medical instrument design / optimization

 Radiation safety

 Indirect

 Complex / multidimensional DL applications for other sciences

 Combination DL / Big Data

 Combination DL / HPC (c.f. ACAT 2019)
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Thanks !
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Questions?



Some references

 GANs:

 Just google “Generative Adversarial Networks”!

 I. Goodfellow recent seminar: https://indico.cern.ch/event/673989/

 A. Radford, L. Metz and S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks. 
2015.

 Mirza, Mehdi and Osindero, Simon. Conditional generative adversarial nets. 2014. 

 Augustus Odena, Christopher Olah, Jonathon Shlens, Conditional Image Synthesis with Auxiliary Classifier GANs. ICML, 2017. 

 Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter Abbeel. InfoGAN: Interpretable Representation Learning by 
Information Maximizing Generative Adversarial Nets. 2016. 

 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. Improved Techniques for Training GANs. NIPS, 
2016.

 Advanced GANs: 

 https://indico.cern.ch/event/655447/contributions/2742180/attachments/1552018/2438676/advanced_gans_iml.pdf (see refs on page 
16)

 Physics and ML:

 DS@HEP : (2017 workshop) https://indico.fnal.gov/event/13497/timetable/#20170508

 Connecting the dots:

 https://indico.hephy.oeaw.ac.at/event/86/timetable/#20160222 (2016 workshop)

 IML workshops: https://indico.cern.ch/event/595059/ and https://indico.cern.ch/event/655447/
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https://indico.cern.ch/event/673989/
https://indico.cern.ch/event/655447/contributions/2742180/attachments/1552018/2438676/advanced_gans_iml.pdf
https://indico.fnal.gov/event/13497/timetable/#20170508
https://indico.hephy.oeaw.ac.at/event/86/timetable/#20160222
https://indico.cern.ch/event/595059/
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