

3D convolutional GAN for fast simulation

F. Carminati, G. Khattak, S. Vallecorsa

IXPUG Europe Spring 2018

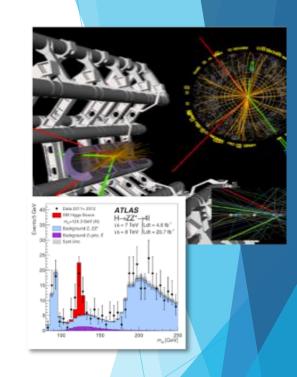
Outline

- Introduction
 - The need for fast simulation
- Status
 - Generative Adversarial Networks for calorimeter simulation
 - Benchmarking on Intel Skylake
 - Testing Intel Nervana Neon
- Plan for 2018
 - Generalisation
 - Optimisation of computing resources
- Summary

Monte Carlo Simulation: Why

 Detailed simulation of subatomic particles is essential for data analysis, detector design

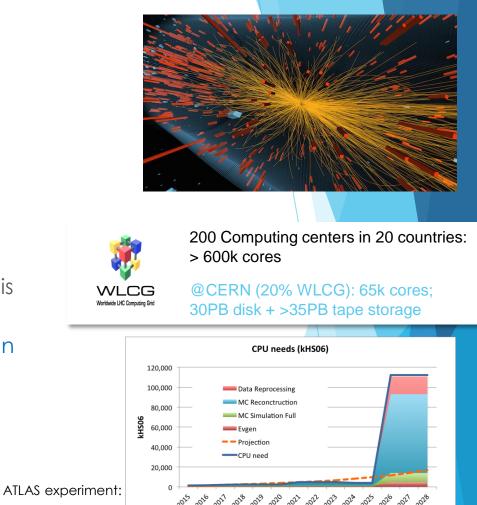
- Understand how detector design affect measurements and physics
- Use simulation to correct for inefficiencies, inaccuracies, unknowns.
- The theory models to compare data against.



A good simulation demonstrates that we understand the detectors and the physics we are studying

The problem

- Complex physics and geometry modeling
- Heavy computation requirements, massively CPU-bound
- Today more than 50% of WLCG power is used for simulations
- By 2025 with the High Luminosity LHC run we will simulate:
 - Much more data!
 - More complex events!
 - Faster!



Campana, CHEP 2016

Fast simulation

- Activities on-going to speedup Monte Carlo techniques (new vectorized geometry library VecGeom)
 - Current code cannot cope with HL-LHC expected needs
- Improved, efficient and accurate fast simulation
 - Currently available solutions are detector dependent
- A general fast simulation tool based on Machine
 Learning/Deep Learning
 - ML techniques are more and more performant in different HEP fields
 - Optimizing training time becomes crucial

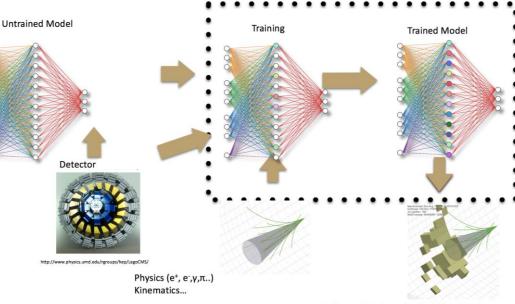
Deep Learning for fast simulation

Generic approach

- Can encapsulate expensive computations
- DNN inference step is faster than algorithmic approach
- Already parallelized and optimized for GPUs/HPCs.
- Industry building highly optimized software, hardware, and cloud services.

A DL engine for fast simulation

- Start with time consuming detectors
 - Reproduce particle showers in calorimeters
- Train on detailed simulation
 - Test training on real data
- Test different models
 - Generative Adversarial Networks. **Recurrent Networks**
- Embed training-inference cycle in simulation



Intel Parallel

Computing

Center 2017

nte

Requirements

A fast inference step:

It takes ~1 minute to simulate one electromagnetic shower with detailed simulation --> need at least a x100-1000 speedup

Precise simulation results:

- Need a detailed validation process
- Probably cannot go below single precision floating points
- Generic customizable tool
 - Easy-to-use and easily extensible framework
- Large hyper parameters scans and meta-optimisation of the algorithm:
 - Training time under control
 - Scalability
 - Possibility to work across platforms

A plan in two steps

Can image-processing approaches be useful?

- Can we preserve accuracy while increasing speed?
- Can we sustain the increase in detector complexity (future highly-granular calorimeters)?

How generic is this approach?

• Can we "adjust" architecture to fit a large class of detectors?

What resources are needed?

- Prove generalisation is possible
- Understand and optimise computing resources

Intel Parallel Computing Center 2017

- A first proof of concept
- Understand performance
 and validate accuracy

Status

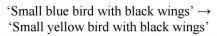
Proof of concept, benchmarking and Validation

Generative models for simulation

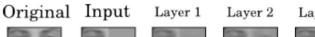
Typically used in computer vision techniques

Many models: Generative Stochastic Networks, Variational Auto-Econders, Generative Adversarial Networks ...

- Realistic generation of samples
- Optimise multiple output for a single input
- Can do interpolation
- Work well with missing data



https://arxiv.org/pdf/1605.05396.pdf



0

Layer 3

Layer 4

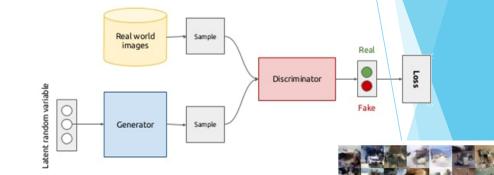
Layer 4 (x 10)

Ranzato, Susskind, Mnih, Hinton, IEEE CVPR 2011

Generative Adversarial Networks

Simultaneously train two networks that compete and cooperate with each other:

- Generator learns to generate data starting from random noise
- Discriminator learns how to distinguish real data from generated data



The counterfeiter/police case

- Counterfeiter shows police the fake money
- Police says it is fake and gives feedback
- Counterfeiter makes new money based on feedback
- Iterate until police is fooled

GAN samples for CIFAR-10

arXiv:1406.2661v1

CLIC calorimeter simulation

- CLIC is a CERN project for a linear accelerator of electrons and positrons to TeV energies
- Associated electromagnetic calorimeter detector design^(*)
- A highly segmented array of absorber material and silicon sensors
 - 1.5 m inner radius, 5 mm×5 mm segmentation: 25 tungsten absorber layers + silicon sensors

Electromagnetic shower (e, y)

CLIC calorimeter data

- Highly segmented (pixelized)
 - Segmentation is critical for particle identification and energy calibration.
- Sparse.
- Non-linear location-dependency

X-axis

10

Data 100

1.0

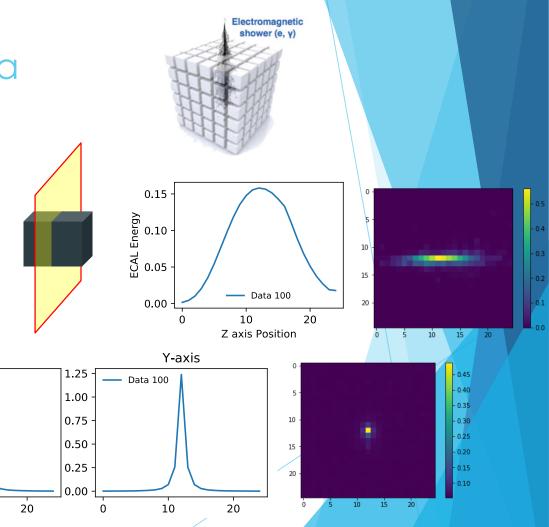
0.6

0.2

0.0

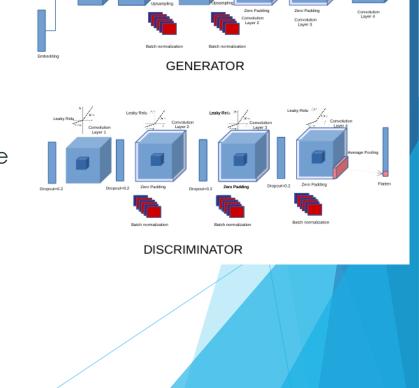
0

8.0 6.0 6.0 7 8.0 8.0



3D GAN

- Similar discriminator and generator models
 - 3d convolutions (keep X,Y symmetry)
- Tested several tips&tricks found in literature*
 - Some helpful (no batch normalisation in the last step, LeakyRelu, no hidden dense layers, no pooling layers)
- Batch training
- Loss is combined cross entropy



Convolution

Dense I ava

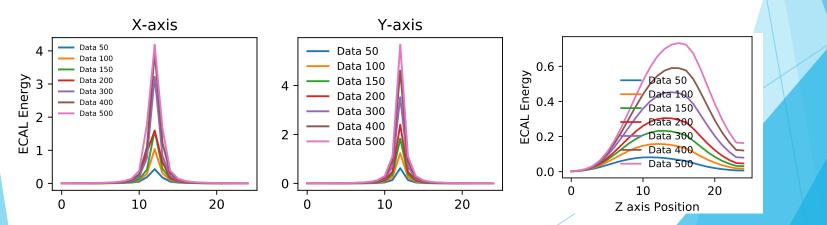
Bechary

*https://github.com/soumith/ganhacks

Conditioning on additional variables

Training generator and discriminator using initial particle energy

- Auxiliary discriminator output
 - Multi-objective optimisation: primary particle energy & reconstructed energy
- Train the generator to reproduce correct shapes



particle

energy

discriminator

yes / no

data sample?

data sample

×

generator

noise

generator

sample

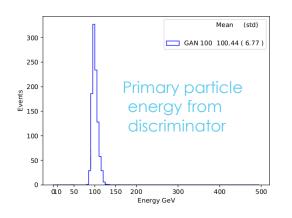
"reco"

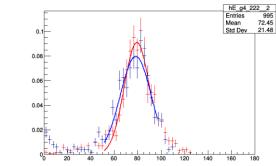
energy

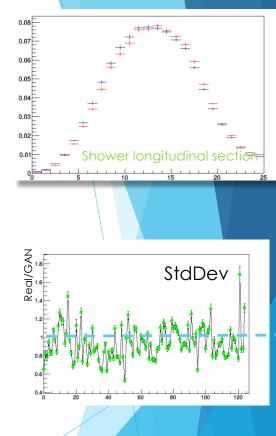
Measuring physics performance

We do not rely on typical image quality assessments

- Comparison to Monte Carlo
- High level quantities (energy shower shapes)
- Detailed calorimeter response (single cell response)
- Particle properties (primary particle energy)







Physics results are very promising

Need Hyperparameter scans for further optimisation

Computing resources

- All tests run with Intel optimised Tensorflow 1.4.1. + keras 2.1.2
 - Compiled TF sources (-O3 –march=broadwell –config=mkl) (AVX2)*

18

- TF linked to MKL-DNN
- Use NCHW data format
- OpenMP setup (for Skylake)
 - KMP_BLOCKTIME = 1
 - KMP_HW_SUBSET=1T
 - OMP_NUM_THREADS=28 (physical cores)
 - KMP_AFFINITY=balanced
- Systems:
 - Intel Xeon Platinum 8180 @2.50 GHz (28 physical cores)
 - NVIDIA GeForce GTX 1080

* Currently AVX512 TF build is broken

Computing resources: inference

- Using a trained model is very fast
 - Orders of magnitude faster than detailed simulation (
)
 - Next step: test inference on FPGA and integrated accelerators

Time to create an electron shower

Problem	Machine	Time/Shower (msec)
Full Simulation (geant4)	Intel Xeon Platinum 8180	17000
3d GAN (batch size 128)	Intel Xeon Platinum 8180	7
3d GAN (batchsize 128)	GeForce GTX 1080	0.04
3d GAN (batchsize 128)	Intel i7 @2.8GHz (MacBookPro)	66

Computing resources: training

Using AVX512 might bring the ratio down to ~15

Time to train for 30 epochs

Problem	Machine	Training time (days)
3d GAN (batchsize 128)	Intel Xeon Platinum 8180 (Intel optimised TF)	30
3d GAN (batchsize 128)	GeForce GTX 1080	1

- Training time (30 epochs, 200k particles)
 - 1d on an NVIDIA GTX-1080
 - ~30 days on Intel Xeon 8180

Benchmarking on Skylake

- Major hotspot related to Data Layout optimization: tensor elements copy operation
- Cores are filled

Function / Ca		Effective Time by Utilization V
		📗 Idle 🔋 Poor 🔋 Ok 🔋 Ideal 🚦 Over
Eigen::CustomTensorEvaluator<(long),1, (long)-1, (long)-1, Eigen::TensorM	/ap <eigen::tensor<float (int)1,="" (int)5,="" const,="" long="">, (int)16, Eigen::Ma</eigen::tensor<float>	keP 60945.735s 📕
Eigen::internal::gebp_kernel <float, eigen::internal::blas_data_mag<="" float,="" long,="" p=""></float,>	pper <float, (int)0="" (int)0,="" long,="">, (int)8, (int)4, (bool)0, (bool)0>::operator</float,>	r() 11233.760s
Eigen::internal::EvalRange <eigen::tensorevaluator<eigen::tensorassigno< p=""></eigen::tensorevaluator<eigen::tensorassigno<>	Dp <eigen::tensormap<eigen::tensor<float, (int)1,="" (int)5,="" long="">, (int)16</eigen::tensormap<eigen::tensor<float,>	6, E 4182.117s 🛑
Eigen::internal::gemm_pack_rhs <float, eigen::internal::tensorcontract<="" long,="" p=""></float,>	tionSubMapper <float, (int)0,="" eigen::tensorevaluator<eigen::ter<="" long,="" th=""><td>nsoi 3550.852s 间</td></float,>	nsoi 3550.852s 间
std::_Function_handler <void (long,="" eigen::threadpooldevice::parallel<="" long),="" p=""></void>	IFor(long, Eigen::TensorOpCost const&, std::function <long (long)="">, st</long>	d::fi 2245.278s 📙
Eigen::CustomTensorEvaluator<(long)-1, (long)-1, (long)-1, Eigen::TensorM	/lap <eigen::tensor<float (int)1,="" (int)5,="" const,="" long="">, (int)16, Eigen::Ma</eigen::tensor<float>	keP 1004.295s
Eigen::internal::EvalRange <eigen::tensorevaluator<eigen::tensorassigno< p=""></eigen::tensorevaluator<eigen::tensorassigno<>	Dp <eigen::tensormap<eigen::tensor<float, (int)1,="" (int)5,="" long="">, (int)16</eigen::tensormap<eigen::tensor<float,>	6, E 980.972s
Eigen::internal::EvalRange <eigen::tensorevaluator<eigen::tensorassigno< p=""></eigen::tensorevaluator<eigen::tensorassigno<>	Dp <eigen::tensormap<eigen::tensor<float, (int)1,="" (int)5,="" long="">, (int)16</eigen::tensormap<eigen::tensor<float,>	6, E 632.088s
Eigen::NonBlockingThreadPoolTempl <tensorflow::thread::eigenenvironmer< p=""></tensorflow::thread::eigenenvironmer<>	nt>::Schedule	528.436s
Eigen::internal::EvalRange <eigen::tensorevaluator<eigen::tensorassigno< p=""></eigen::tensorevaluator<eigen::tensorassigno<>	Dp <eigen::tensormap<eigen::tensor<float, (int)1,="" (int)2,="" long="">, (int)16</eigen::tensormap<eigen::tensor<float,>	6, E 480.056s
Eigen::NonBlockingThreadPoolTempl <tensorflow::thread::eigenenvironmer< p=""></tensorflow::thread::eigenenvironmer<>	nt>::WaitForWork	408.586s
	 D	
200s - E	U Sa	tilization
se C		3
150s- 👜	0 U	a la
	rag	
100s-	Ave	II
50-		
50s -		
0 10 20 30	40 Simultaneously Utilized Logical CPUs: 57 70	80 90 100 110
Deer	Elapsed Time: 1 448s	

PRELIMINARY

Benchmarking on Skylake: reducing dimensions

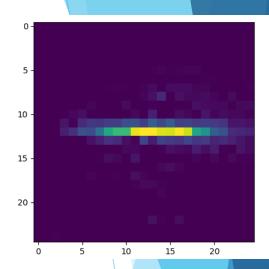
 Simplify network by reducing the number of axis: 2D longitudinal shower shape (typically used to identify particles)

Simple 2D convolutions

Network parameters reduced by a factor x6

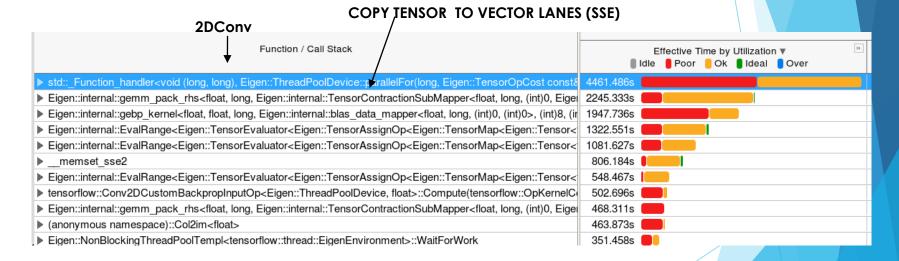
Time to train for 30 epochs

Problem	Machine	Training time (<mark>hours</mark>)
2d GAN (batchsize 128)	Intel Xeon Platinum 8180 (Intel optimised TF)	14
2d GAN (batchsize 128)	GeForce GTX 1080	1.5



Benchmarking on Skylake: 2D profiling

Call stack is as "expected": firs hotspot is tensor multiplication



Problem is related 3D convolutions!

Work ongoing with Intel experts to find a solution

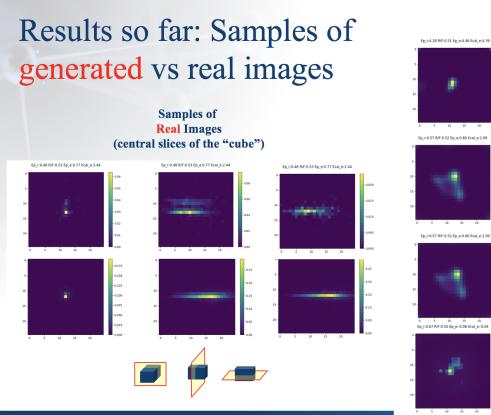
Implementation in Neon

- Intel Nervana's deep learning framework
- Optimised for Intel hardware
- Also available GPU kernel library
- Integration in NervanaCloud and NervanaGraph: upcoming multinode scaling
- Extensive development work on Neon itself needed to implement our 3D GAN architecture
 - Unfortunately performance does not compare to Tensorflow

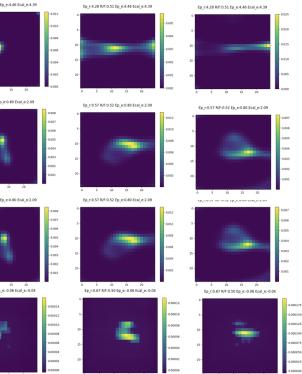
Thanks to Intel support (A. Zanetti)!

A.Zanetti, Intel

(intel) Nervana



Samples of Generated Images (central slices of the "cube")



2018 PLAN

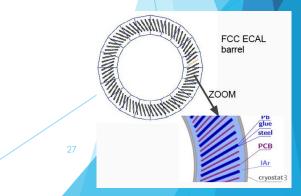
Some work on validation is still ongoing

Focus on generalisation and computing resources optimisation

GENERALISATION

- Our baseline is an example of next generation highly granular detector
- Extend to other calorimeters (FCC LAr calorimeter, CALICE SDHCAL)
- Explore optimal network topology according to the problem to solve
 - Hyper-parameters tuning and meta-optimization
 - Sklearn/skopt, Spearmint, ...

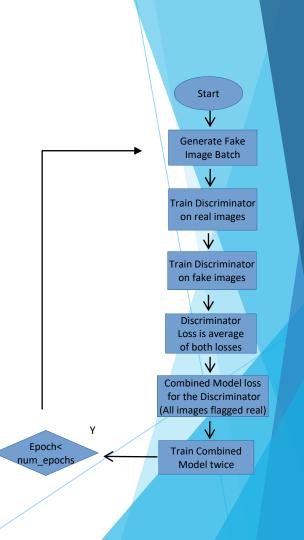
SDHCAL prototype during SPS test beam



Parallel Training

Test different hardware/environments

- ▶ Intel® Xeon Phi™, DL-100
- Cloud
- Try NervanaGraph as soon as available
- Parallelization on distributed systems
 - Implement data parallelism and study scaling on clusters
 - Horovod, mpi-learn, ...
- Optimise training data management
 - Test "Big Data" frameworks (e.g. Spark/SparkML, ..)



Summary

- Generative models seem natural candidates for fast simulation
 - Rely on the possibility to interpret "events" as "images"
 - First GANs applications to calorimeter simulations look very promising
 - Many studies ongoing in the different experiments
- 3d GAN is the initial step of a wider plan to investigate simulation with DL
- Eager to see good performances on CPUs
- Need to solve the 3D convolutions issues in TF and/or MKL/MKL-DNN

Spinoffs?

Direct

- Radiation treatment planning
- Medical instrument design / optimization
- Radiation safety
- Indirect
 - Complex / multidimensional DL applications for other sciences

30

- Combination DL / Big Data
- Combination DL / HPC (c.f. ACAT 2019)

Thanks !

Questions?

31

Some references

- ► GANs:
 - Just google "Generative Adversarial Networks"!
 - I. Goodfellow recent seminar: <u>https://indico.cern.ch/event/673989/</u>
 - A. Radford, L. Metz and S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks. 2015.
 - Mirza, Mehdi and Osindero, Simon. Conditional generative adversarial nets. 2014.
 - Augustus Odena, Christopher Olah, Jonathon Shlens, Conditional Image Synthesis with Auxiliary Classifier GANs. ICML, 2017.
 - Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter Abbeel. InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. 2016.
 - Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. Improved Techniques for Training GANs. NIPS, 2016.
- Advanced GANs:
 - https://indico.cern.ch/event/655447/contributions/2742180/attachments/1552018/2438676/advanced_gans_iml.pdf (see refs on page 16)
- Physics and ML:
 - DS@HEP: (2017 workshop) <u>https://indico.fnal.gov/event/13497/timetable/#20170508</u>
 - Connecting the dots:
 - https://indico.hephy.oeaw.ac.at/event/86/timetable/#20160222 (2016 workshop)
 - IML workshops: <u>https://indico.cern.ch/event/595059/</u> and https://indico.cern.ch/event/655447/