
Intel High Performance and

Throughput Computing

Hans Pabst

https://github.com/hfp/libxsmm

March 5th 2018, CINECA, Bologna

86LIBx
SMM

Intel High Performance and

Throughput Computing

Hans Pabst

Parallel Computing Lab

Intel Labs, USA

Alexander Heinecke

Evangelos Georganas

Software and Services Group,

Pathfinding, USA

Greg Henry

https://github.com/hfp/libxsmm

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL

OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL

ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,

RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer

systems, components, software, operations and functions. Any change to any of those factors may cause the results to

vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated

purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel

logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are

not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other

optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on

microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for

use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.

Notice revision #20110804

3

Modern HPC….

4

𝑺𝒑𝒆𝒆𝒅𝒖𝒑

=
1

𝑆𝑒𝑟𝑖𝑎𝑙𝑓𝑟𝑎𝑐 +
1 − 𝑆𝑒𝑟𝑖𝑎𝑙𝑓𝑟𝑎𝑐
𝑵𝒖𝒎𝑪𝒐𝒓𝒆𝒔

∗
1

𝑆𝑐𝑎𝑙𝑎𝑟𝑓𝑟𝑎𝑐 +
1 − 𝑆𝑐𝑎𝑙𝑎𝑟𝑓𝑟𝑎𝑐
𝑽𝒆𝒄𝒕𝒐𝒓𝑳𝒆𝒏𝒈𝒕𝒉

Goal: Reduce Serial Fraction and Reduce Scalar Fraction of Code

Ideal Speedup: NumCores * VectorLength (requires zero scalar, zero serial work)

Bandwidth Bound Performance

Kernels are often memory BW bound i.e.,

not enough compute intensity (flops/byte).

But: modern chips are unbalanced (high

flops/low byte/s)

Can we make better “use”

of data after we have

moved it into the chip?

Peak “Compute” Gflops/s

Peak “Compute” Gflops/s

without SIMD

Compute intensity (flops/byte)

A
tt

a
in

a
b

le
 G

fl
o

p
s
/s

Valuable Optimizations

• Maximize use of the register file

• Maximize instruction throughput

• Take maximum number of instructions

per cycle into account (FE bound).

• Consider maximum number of Bytes,

which can be decoded (FE bound).

• Limited instruction mix (BE bound)

• Address calculations incl. prefetch

Less important

• Loop unrolling; only the load/store vs.

FMA/compute-mix matters

Benchmark Primer: model the real case

accurately and measure accordingly!

Example of “false measurement”

for (i = 0; i < NREPEAT; ++i) {

DGEMM(&transa, &transb, &m, &n, &k,

&alpha, a, &lda, b, &ldb,

&beta, c, &ldc);

}

Correct*: A, B, or C need to be streamed

for (i = 0; i < NREPEAT; ++i) {

DGEMM(&transa, &transb, &m, &n, &k,

&alpha, a[i*lda*k], &lda,

b[i*ldb*n], &ldb,

&beta, c, &ldc);

}

* C is accumulated (Beta!=0), A and B are loaded

Optimizations for bandwidth-bound codes?

5

Main function domains in LIBXSMM

(S)MM (Small) Matrix Multiplication Kernels (original library)

DNN Deep Neural Network Kernels for CNNs (v1.5)

SPMDM Sparse Matrix Dense Matrix Multiplication for CNNs (v1.6)

AUX Mem. allocation, synchronization, debugging, profiling, …

There is more functionality…

• Tiled GEMM routines based on SMM kernels (also parallelized)

• Stand-alone out-of-place matrix transpose routines (non-JIT, and JIT)

• Matrix-copy kernels (JIT)

• Other “sparse routines”

6

LIBXSMM Function Domains

Highly efficient Frontend

• BLAS compatible (DGEMM, SGEMM)
including LD_PRELOAD

• Support for F77, C89/C99, F2003, C++

• Zero-overhead calls into assembly

• Two-level code cache

Code Generator

• Supports all Intel Architectures since 2005,
focus on AVX-512

• Prefetching across small GEMMs

• Can generate assembly (*.s), inline
assembly (*.h/*.c), and in-memory code

Just-In-Time (JIT) Encoder

• Encodes instructions based on basic blocks

• Very fast code generation (no compilation)

LIBXSMM, for small, dense or sparse matrix

multiplications, and small convolutions.

7

Fallback

(BLAS)

Backend for static code

(driver program printing C

code with inline assembly)

and JIT code (via API)

Frontend (User API for C/C++

and Fortran, build system for

statically generated kernels,

code registry/dispatcher, and OS

portability)

Application

#include <libxsmm.h>

int main()
{

const double alpha = 1.0, beta = 1.0;
const int m = 23, n = 23, k = 23; /* some problem size */
double a[m*k], b[k*n], c[m*n]; /* init. not shown! */
libxsmm_dmmfunction xmm = NULL; /* function pointer */

libxsmm_gemm(NULL, NULL, &m, &n, &k, /* auto-dispatched */
&alpha, a, NULL, b, NULL,
&beta, c, NULL);

/* like function interface for low-level JIT’ted kernel */
libxsmm_dmm_23_23_23(a, b, c); /* specialized */

xmm = libxsmm_dmmdispatch(23, 23, 23, NULL, NULL, NULL,
&alpha, &beta, NULL, NULL);

if (xmm) { /* specialized */
for (int i = 0; i < some; ++i) {

xmm(a, b, c); /* amortized */
}

}
}

8

LIBXSMM (C API): Example

#include <libxsmm.h>

int main()
{

const double alpha = 1.0, beta = 1.0;
const int m = 23, n = 23, k = 23; /* some problem size */
double a[m*k], b[k*n], c[m*n]; /* init. not shown! */
libxsmm_dmmfunction xmm = NULL; /* function pointer */

libxsmm_gemm(NULL, NULL, &m, &n, &k, /* auto-dispatched */
&alpha, a, NULL, b, NULL,
&beta, c, NULL);

/* like function interface for low-level JIT’ted kernel */
libxsmm_dmm_23_23_23(a, b, c); /* specialized */

xmm = libxsmm_dmmdispatch(23, 23, 23, NULL, NULL, NULL,
&alpha, &beta, NULL, NULL);

if (xmm) { /* specialized */
for (int i = 0; i < some; ++i) {

xmm(a, b, c); /* amortized */
}

}
}

9

LIBXSMM (C API): Example

Explicit code generation is

not subject to a problem-

size threshold.

NULL-pointer is returned if

the request is unsupported

(alpha/beta, transpose).

GEneral Matrix Matrix routines (usually Real-SP, Real-DB, and Complex-SP/DP)

Original call/arguments LIBXSMM (history) Fixed/bound at

--

DGEMM('N', 'N', M, N, K, Static compilation JIT-compilation

ALPHA, A, LDA, JIT-compilation JIT-compilation

B, LDB, Call-time Call-time

BETA, C, LDC)

• LIBXSMM added relaxation for Alpha/Beta, TransA/B, and LDx later on
JIT: only a subset of Alpha/Beta values is supported (can be exploited for optimization)

• JIT-GEMM descriptor: M, N, K, LDA, LDB, LDC, “Flags”, and “Prefetch”
Flags: TransA & TransB, Prefetch: strategy (implies arity of JIT-code)

10

Primer about GEMM…

Dispatch flow: descriptor CRC32 hash/index [cache*] code registry

• Registry: custom data structure plus algorithm for fast code retrieval

• Registry “hit” requires at least one comparison (two descriptors)

• Due to the hash-mechanism, collisions must be handled

Registry update: custom thread-safety

• Atomic reads are used, and locks are only used to protect updates/writes

• Multiple locks (POT number to simplify bitops) used to protect writes
Multiple updates are allowed for different locations

• Code duplication is possible due to readers not participating in locks
Mainly happens because of hash key collisions and multiple writer-locks

Only happens when code generation request is contended

11

LIBXSMM: Dispatch Flow and Code Registry

* Note: [cache] is skipped here for clarity

12

Fallback (BLAS)
Backend for JIT code (via API) or statically generated code

(driver program, which prints C code with inline assembly)

Codeversion

Application

GEMM

Binary Blob (Hash / Diff.) consists of:

TRANSA, TRANSB,

M, N, K, LDA, LDB, LDC,

ALPHA, BETA

3
𝑀 𝑁 𝐾 ≤ 128

Code Registry

Call

Receive /

Call

Generate /

Store

Check

CodeversionCheck

(80 <
3
𝑀 𝑁 𝐾)

Threshold

Thread-local

Code Cache

Check Difference

Hash /

Difference

Frontend User API for C/C++ and Fortran,

call interception (static linkage, and

LD_PRELOAD), and code dispatch

Properties

• Plays well with optimized descriptor

size (multiple of SIMD width, etc.)

• Small capacity (default: 4 entries)

• Fully associative cache

• LRU-style eviction

Purpose

• Accelerate calls via GEMM interface

(a.k.a. auto-dispatched)

Cache Primer

• Direct Mapped Cache: simplest form

of cache, check for a hit without

search (only one possible place which

may hold an address). Drawback:

same cache location shared for many

addresses (depends on cache /

memory size ratio).

• Fully Associative Cache: best hit

ratio since any cache location can hold

any address. Drawback: full search

needed (expensive).

• N-Way Set Associative Cache:

addresses fall into bins of fixed

capacity; search needed within hit-bin.

Compromise between DMC and FAC.

LIBXSMM: Code Cache

13

Evaluation of suitable JIT code generators

• Numerous projects evaluated: jitasm, libgccjit, etc.

• Selection/rejection criterions

• Support for recent Intel Architectures,

• Active development

• Interesting candidates reviewed in 2015 (incl. comments)

• LLVM Full-blown (with IR, phases, etc.), “slow” code gen., complex

• Xbyak compiler and JIT-assembler, incomplete AVX-512 (2015!)

• XED Closed source (Dec. 2016: https://github.com/intelxed/xed)

• Xbyak: adopted by MKL/MKL-DNN in July 2016

Decision in 2015: own development needed for LIBXSMM (“JIT Assembler”)

• Typically few instruction families are needed to cover a domain (still true)

• No legacy support (AVX/2 and beyond is fine), SSE added in 2018

14

JIT Technologies (2015)

https://github.com/intelxed/xed

Idea*: leveraged GNU Compiler extension “Computed GOTO”

LABEL1:

c = a + b;

LABEL2:

memcpy(code, &&LABEL1, &&LABEL2 - &&LABEL1);

Reality: LIBXSMM manually encodes all instructions needed

• Basic form is encoded with placeholder(s) for varying parts (immediates)

• Emitting an instruction: call a function (arguments may cover instruction

variants and/or immediates), to write a whole kernel is like using a DSL

(“assembly programming domain”)

15

LIBXSMM Backend: Runtime Code Generation

(Very High Level Idea)

* https://eli.thegreenplace.net/2012/07/12/computed-goto-for-efficient-dispatch-tables

Quick facts about LIBXSMM’s in-memory JIT code generation

• No intermediate representation

• No automatic register allocation “JIT assembler”

• No (compiler-)optimizations

What is the advantage of JIT code?

• It is able to leverage instruction variants/immediates to hardcode runtime

knowledge (hard to statically compile equivalent code!)

Example: hard-coded stride for load instruction address (e.g., broadcast-ld.)

• Why is there a particular focus on AVX-512? There is a lot of potential in the

instruction set e.g., EVEX may also encode certain values into instruction

• All cases can be captured (avoids upfront code-generation and dispatch)

16

LIBXSMM Backend: Code Generation (cont.)

17

LIBXSMM Backend: JIT Overhead (incl. OS calls)

0

500

1000

1500

2000

2500

0

20

40

60

80

100

120

2 4 6 8 10 12 14 16 18 20 J
IT

 c
o

m
p

il
e

 t
im

e
 i
n

 M
K

L
 c

a
ll
s

J
IT

 c
o

m
p

il
e

 t
im

e
 i
n

m

ir
c
o

s
e
c
o

n
d

s

M=N=K

Xeon E5-2697v4 - JIT compile time in microseconds

Xeon E5-2697v4 - JIT compile time in MKL calls

18

LIBXSMM Backend: JIT Overhead (incl. OS calls)

0

500

1000

1500

2000

2500

0

20

40

60

80

100

120

2 4 6 8 10 12 14 16 18 20 J
IT

 c
o

m
p

il
e

 t
im

e
 i
n

 M
K

L
 c

a
ll
s

J
IT

 c
o

m
p

il
e

 t
im

e
 i
n

m

ir
c
o

s
e
c
o

n
d

s

M=N=K

Xeon E5-2697v4 - JIT compile time in microseconds

Xeon E5-2697v4 - JIT compile time in MKL calls

Updated measurements* (see release notes):

https://github.com/hfp/libxsmm/releases/tag/1.8.3

Code gen. (typical system): < 25 µs Microseconds

Code dispatch (non-cached): < 50x vs. empty fn. :

Code dispatch (cached): < 15x vs. empty fn. Nanoseconds

* single-threaded code-generation of matrix kernels with M,N,K := 4...64 using equally distributed random numbers

• Column-major storage; working

on all 9 columns and 8 rows

simultaneously

• Loads to A (vmovapd) are spaced

out to cover L1$ misses; K-loop is

fully unrolled

• B-elements are broadcasted

within the FMA instruction to save

execution slots (SIB)

• SIB addressing mode to keep

instruction size <= 8 byte for

2 decodes per cycle (16 byte I-

fetch per cycle)

• Multiple accumulators (zmm31-

xmm23 and zmm22-zmm14) for

hiding FMA latencies

LIBXSMM AVX512 code for N=9

19

 Max. theoretical efficiency: 90%!

Motivation “Architectural insight rather than Autotuning.”

• Example for successful auto-tuning: CP2K (libsmm, libcusmm)

 Large amount of code generated upfront (thousands of kernels)
– CP2K‘s libsmm collects best GEMMs from various libraries; build-run-and-select

process can take many CPU-hours (cluster job); last version (Haswell-only)
ended up with more than 85% of the kernels taken from LIBXSMM

• Architectural insight with focus on AVX-512 instruction family

• Insight is sourced from ahead-of-release HW knowledge (R&D)
e.g., may be sourced from a “cycle accurate simulator”

• Exploiting the register file to the maximum extent

• Knowing about (x86-)addressing modes (SIB)

 LIBXSMM

Ninja Gap

• Knowing about what’s possible, but also what’s left on the table…

20

The “Ninja Performance Gap”

21

310.7

100.7

0

100

200

300

400

500

600

700

800

900

1000

G
F

L
O

P
S

/s
 (

D
o
u
b
le

 P
re

c
is

io
n
)

LIBXSMM vs. Intel MKL-2017u5 (OpenMP loop / DGEMM)
2 GB stream of A and B matrices* (C += A x B) on Intel Xeon-SP Platinum-8180

XSMM MKL (DIRECT_CALL)* No synchronization among C-accesses

22

238.3

154.0

0

100

200

300

400

500

600

700

800

G
F

L
O

P
S

/s
 (

D
o
u
b
le

 P
re

c
is

io
n
)

LIBXSMM vs. Intel MKL-2017u5 (Parallel Batch Interface)
2 GB stream of A and B matrices* (C += A x B) on Intel Xeon-SP Platinum-8180

XSMM MKL* Synchronization among C-accesses

23

238.3

154.0

0

100

200

300

400

500

600

700

800

G
F

L
O

P
S

/s
 (

D
o
u
b
le

 P
re

c
is

io
n
)

LIBXSMM vs. Intel MKL-2017u5 (Parallel Batch Interface)
2 GB stream of A and B matrices* (C += A x B) on Intel Xeon-SP Platinum-8180

XSMM MKL* Synchronization among C-accesses

• Contention distributed

across multiple locks.

• Lock-”snoop” to

eventually carry-fwd.

locked location.

[1] https://cp2k.org/: Open Source Molecular Dynamics with its DBCSR component processing batches of

small matrix multiplications ("matrix stacks") out of a problem-specific distributed block-sparse matrix. Starting

with CP2K 3.0, LIBXSMM can be used to substitute CP2K's 'libsmm' library. Prior to CP2K 3.0, only the Intel-

branch of CP2K integrated LIBXSMM (see https://github.com/hfp/libxsmm/raw/master/documentation/cp2k.pdf).

[2] https://github.com/SeisSol/SeisSol/: SeisSol is one of the leading codes for earthquake scenarios, for

simulating dynamic rupture processes. LIBXSMM provides highly optimized assembly kernels which form the

computational back-bone of SeisSol (see https://github.com/TUM-I5/seissol_kernels/).

[3] https://github.com/NekBox/NekBox: NekBox is a highly scalable and portable spectral element code,

which is inspired by the Nek5000 code. NekBox is specialized for box geometries, and intended for prototyping

new methods as well as leveraging FORTRAN beyond the FORTRAN 77 standard. LIBXSMM can be used to

substitute the MXM_STD code. Please also note LIBXSMM's NekBox reproducer.

[4] https://github.com/Nek5000/Nek5000: Nek5000 is the open-source, highly-scalable, always-portable

spectral element code from https://nek5000.mcs.anl.gov/. The development branch of the Nek5000 code

incorporates LIBXSMM.

[5] http://pyfr.org/: PyFR is an open-source Python based framework for solving advection-diffusion type

problems on streaming architectures using the flux reconstruction approach. PyFR 1.6.0 optionally incorporates

LIBXSMM as a matrix multiplication provider for the OpenMP backend. Please also note LIBXSMM's PyFR-

related code sample.

[6] http://dial3343.org/about/: The Extreme-scale Discontinuous Galerkin Environment (EDGE) is a solver for

hyperbolic partial differential equations with emphasis on seismic simulations. EDGE optionally uses LIBXSMM,

but highly recommends the library due to severe performance-limitations of the vanilla kernels.

24

LIBXSMM: Applications HPC

https://www.cp2k.org/version_history
https://github.com/cp2k/cp2k/tree/intel
https://github.com/hfp/libxsmm/raw/master/documentation/cp2k.pdf
https://github.com/TUM-I5/seissol_kernels/
https://nek5000.mcs.anl.gov/
https://github.com/Nek5000/NekBox/blob/box/mxm_std.F90
https://github.com/hfp/libxsmm/tree/master/samples/nek#nek-sample-collection
https://nek5000.mcs.anl.gov/
https://github.com/Nek5000/Nek5000/blob/develop/core/mxm_wrapper.f
http://pyfr.org/user_guide.php
https://github.com/hfp/libxsmm/tree/master/samples/pyfr

Popular automated-driving workloads such as Extended Kalman

Filter (EKF) comprise several small DGEMM operations.

EKF fuses RADAR- and LIDAR- sensor data and localizes

tracked objects.

EKF comprises two stages:

EKF operates on matrices with specific dimensions:

Automated-driving community typically uses Eigen,

a C++ math library, for DGEMMs on small matrices.

We benchmark DGEMM using Eigen, Eigen with Intel MKL,

and Eigen with LIBXSMM with GNU and Intel compilers on

Intel Xeon Gold 6148 CPU @ 2.40GHz.

We accelerate EKF that uses native Eigen in its implementation

by using MKL and LIBXSMM through Eigen.

0.0

5.0

2 4 6 8 10 12 14 16 18 20 32

S
p

e
e

d
u

p
 …

Matrix dimensions (M=N=K)

Eigen + LIBXSMM (g++)

Benchmarking DGEMM in Eigen, Eigen + Intel® MKL, and Eigen + LIBXSMM
Small Matrix-Matrix Multiplication in Automated

Driving Workloads—Extended Kalman Filter

Self-driving car image source: http://blogs.intel.com/iot/files/2016/01/connectedCar2.png

Extended Kalman filter image: Udacity Self-Driving Nano Degree course

Accelerating the Extended Kalman Filter

Intel HPC Developer Conference 2017

Accelerating Eigen Math Library for Automated Driving Workloads
Steena Monteiro Gaurav Bansal

Automated Driving Engineering, Software & Services Group
Intel Corporation, Santa Clara, California Intel Corporation, Hillsboro, Oregon

Steena.Monteiro@intel.com Gaurav2.Bansal@intel.com

Matrix rows columns Matrix rows columns

x 4 1 P 4 4

F 4 4 H 2 or 3 4

R 2 or 3 2 or 3

X’ = F *x + u
P’ = F * P *FT + Q

y = z – H’ * x
S = H * P’ * HT + R
K = P’ * HT * S-1

x = x’ + K * y
P = (I – K * H) * P’

Predictio

n

Measurement update

Best Eigen Variant per Matrix Dimension

0.0
5.0

2 6 10 14 18 32

S
p

…

Matrix …

Eigen + MKL (icpc)Eigen + LIBXSMM (g++)Native Eigen (icpc)Eigen + LIBXSMM (icpc)

2… 2…
0
5

Eigen + MKL (g++)Eigen +libxsmm (g++)
S

p
…

~

* https://software.seek.intel.com/accelerating-eigen-math-library

http://blogs.intel.com/iot/files/2016/01/connectedCar2.png

86LIBx
SMM

CPUID-dispatched (critical) code paths

Makes LIBXSMM suitable for Linux
distributions where the code path (target
system) is unpredictable (1 package)

Link-time and Runtime Wrapper

Intercepts existing xGEMM calls at
runtime (LD_PRELOAD) or at link-time
(LD’s --wrap)

JIT Profiling

Support for Intel VTune Amplifier and
Linux Perf (contributed by Google)

Self-introspection (TRACE)

Ability to print function name of caller, etc.
Used to collect advanced statistics

libxsmm_hsw_dnn_23x23x23_23_23_23_a1_b1_p0::jit

• Encodes an Intel AVX-512 (“knl") double-precision

kernel ("d") which is multiplying matrices without

transposing them ("nn"),

• Rest of the name encodes M=N=K=LDA=LDB=LDC=23,

Alpha=Beta=1.0 (all similar to GEMM),

• No prefetch strategy ("p0").

LIBXSMM: Portable Code-Multiversioning and

Dispatch, Link-time BLAS-Wrapper, JIT-Profiling

27

Intel Compiler: automatic and manual dispatch

• Automatic: heuristic selects code worth to be retargeted

• Manual dispatch: still automatically dispatched (CPUID)

• Allows to write processor-specific code (using intrinsics, or assembly),
or allows to compile the same or different code for different targets

• Mechanism: __declspec(cpu_dispatch(cpuid,cpuid…)

LIBXSMM: uses GCC’s function attributes (also available with Clang, and ICC)

Two groups of compilers can be identified wrt how Intrinsics are supported:

1. Intel, CRAY, Microsoft, and others: target flag (compiler’s command line) is independent
of Intrinsic’s target requirements. In the past: intrinsics were treated like WYSIWYG.
Intrinsics may be “uplifted” when command line target flag permits (e.g., AVX intrinsics may
be recompiled to AVX2 code). Intel Compiler also supports function attributes (see below).

2. GCC, Clang, and others: static code path must match Intrinsic requirements. In the past
(legacy) e.g., AVX code required -mavx. Later: target attribute allows to decorate functions
with individual target. Intrinsics may be “uplifted”, however this is prevented by the target
attribute (otherwise “AVX intrinsics” are dispatched but may cause an illegal instruction
because of being uplifted to AVX2 code!)

28

Code-Multiversioning and Dispatch

Intel Compiler: Manual Dispatch Example

#include <stdio.h>

__declspec(cpu_dispatch(generic, core_5th_gen_avx))

void dispatch_func() {};

__declspec(cpu_specific(generic))

void dispatch_func() {

printf("Code for non-Intel processors\and generic Intel\n");

}

__declspec(cpu_specific(core_5th_gen_avx))

void dispatch_func() {

printf("Code for 5th generation Intel Core processors goes here\n");

}

int main() {

dispatch_func();

printf("Return from dispatch_func\n"); return 0;

}

29

Intel Compiler: Manual Dispatch Example

#include <stdio.h>

__declspec(cpu_dispatch(generic, core_5th_gen_avx))

void dispatch_func() {};

__declspec(cpu_specific(generic))

void dispatch_func() {

printf("Code for non-Intel processors\and generic Intel\n");

}

__declspec(cpu_specific(core_5th_gen_avx))

void dispatch_func() {

printf("Code for 5th generation Intel Core processors goes here\n");

}

int main() {

dispatch_func();

printf("Return from dispatch_func\n"); return 0;

}

30

One can essentiually

"overload" function

(names) similar to

C++ even with C-

code.

One can essentiually

"overload" function

(names) similar to

C++ even with C-

code.

One can essentially

"overload" function

(names) similar to

C++ even with C-

code!

Using function attributes for target-specific dispatch (CPUID)

• Target-specific functions must be named different (C code)

• Target-specific functions must be decorated with target

• Dispatch function (using CPUID) calls target-specific versions

LIBXSMM implements portable Multiversioning and Dispatch

• Header-only: no need for target flags on command line;

still best performance due to specific targets

• Enables easier code contributions (using Intriniscs);

not all code requires JIT-code gen. (like assembly)

• Optimized Linux package*

31

Portable Code-Multiversioning and Dispatch

* Most distributions do not accept target flags when building a “general package” (i.e., no SSE3, SSE4, AVX/2, or AVX-512 code).

Maybe useful for internal/special data formats

• Best possible code may need a specific data format. For example:

• BLAS(-like) functions using an internal “compact format”.

• Convolutions: NCHW (channel first) vs. NHWC (channel last).

• AoS to SoA conversion (improved vectorization).

• Format-conversion shall be relatively rare, however copy-in (and copy-out)

can be parallelized.

• Internal buffers may be required “scratch memory”

Problems

• Frequent allocations may be unsuitable

• Thread-safety is burden (malloc/free)

32

LIBXSMM: Scratch Memory Allocation

Scope oriented allocators are very fast

• Scratch memory buffer is kept around (no free) and allocation only

atomically increments a “head” pointer (no thread-safe free list, etc.)

• Watermark only grows perhaps doubling the buffer size (if insufficient).

• Severe limitations: only one consumer at a time can use the allocator.

LIBXSMM: scope-oriented scratch allocator with “allocation sites”

• An allocation site might be a different thread or a different scope

• Different scopes usually have different lifetimes of req. buffer

Main-problem solved: different lifetimes usually prevent growing the scratch

needed to serve a new site (at least one consumer still uses the scratch).

33

LIBXSMM: Scratch Memory Allocation (cont.)

34

LIBXSMM: Scratch Memory Allocation (cont.)

Concurrency

(threads)

Malloc/Free* [kHz] LIBXSMM [kHz]

Intel i7-4770T (Debian 9.3) 1 188 1057

2 32 379

4 8 103

Intel Xeon 8168 (RHEL 7.4) 1 6 99

2 3 27

4 2 9

* LIBXSMM_SCRATCH_POOLS=0 ./scratch.sh 100 4 2 (https://github.com/hfp/libxsmm/tree/master/samples/scratch#scratch-memory-allocation-microbenchmark). The best result

out of three consecutive runs has been reported (“allocation+free calls/s”).

How to interpret the performance results:

• OS impact can be high (different GLIBC versions; even settings such as

huge pages served or not impact the memory allocation performance).

• Results are not valid for comparison between different CPUs, but rather to

compare plain Malloc/free and LIBXSMM’s scratch memory allocation.

LIBXSMM‘s scratch allocation is a specialized strategy, and not a general

memory allocation; a high memory consumption (watermark) is possible.

Internal OpenMP region

libxsmm_dgemm_omp(

&transa, &transb, &m, &n, &k,

&alpha, a, &lda, b, &ldb,

&beta, c, &ldc);

OpenMP Tasking

pragma omp parallel

pragma omp single nowait

libxsmm_dgemm_omp(

&transa, &transb, &m, &n, &k,

&alpha, a, &lda, b, &ldb,

&beta, c, &ldc);

Bonus: non-OpenMP threads

libxsmm_mmbatch(…,

int tid, int nthreads);

Flow inside of libxsmm_dgemm_omp:

If (sufficient-problem-size)

If (0 == omp_get_active_level())

… execution is within a parallel region

… and at top-most nesting level

… tasks may be assumed.

Test requires OpenMP 3.0.

if (0 == omp_in_parallel())

… execution is within a parallel region

… still consider cache-blocking.

Compiler is legacy (no OpenMP 3.0)

Else: use sequential implementation

(no cache blocking needed)

Transparent Threading and Tasking

35

[1] http://sc17.supercomputing.org/SC17%20Archive/tech_poster/tech_poster_pages

/post190.html: Understanding the Performance of Small Convolution Operations for CNN

on Intel Architecture (poster and abstract). SC’17: The International Conference for High

Performance Computing, Networking, Storage and Analysis, Denver (Colorado).

[2] https://software.intel.com/en-us/articles/intel-xeon-phi-delivers-competitive-

performance-for-deep-learning-and-getting-better-fast: Intel Xeon Phi Delivers

Competitive Performance For Deep Learning - And Getting Better Fast. Article mentioning

LIBXSMM's performance of convolution kernels with DeepBench. Intel Corporation, 2016.

[3] http://sc16.supercomputing.org/presentation/?id=pap364&sess=sess153:

LIBXSMM: Accelerating Small Matrix Multiplications by Runtime Code Generation (paper).

SC'16: The International Conference for High Performance Computing, Networking,

Storage and Analysis, Salt Lake City (Utah).

[4] http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_p

oster_pages/post137.html: LIBXSMM: A High Performance Library for Small Matrix

Multiplications (poster and abstract). SC'15: The International Conference for High

Performance Computing, Networking, Storage and Analysis, Austin (Texas).

36

LIBXSMM: References

http://sc17.supercomputing.org/SC17 Archive/tech_poster/poster_files/post190s2-file2.pdf
http://sc17.supercomputing.org/SC17 Archive/tech_poster/poster_files/post190s2-file3.pdf
https://github.com/baidu-research/DeepBench/tree/master/code/intel/convolution/libxsmm_conv
http://www.computer.org/csdl/proceedings/sc/2016/8815/00/8815a981.pdf
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/poster_files/post137s2-file2.pdf
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/poster_files/post137s2-file3.pdf

