
Porting the DBCSR library for 
Sparse Matrix-Matrix 

Multiplications 
to Intel Xeon Phi systems

Jürg Hutter,Alfio Lazzaro, Ilia Sivkov
University of Zürich (CH)

IXPUG Europe Spring 2018 @ CINECA, Bologna, Italy



Ç Sparse Matrix-Matrix Multiplication (SpGEMM)
Ç Focus onLinearScalingDensity FunctionalTheory

Ç Introducing Distributed Block-Compressed 
Sparse Row (DBCSR) library
Ç OpenMPand MPI parallelization
Ç CUDA parallelization

Ç Performance results on Intel Xeon Phi (KNL)
Ç Time-to-Solution (TTS) and Energy-to-Solution (ETS)

Ç Performance comparison
Ç Intel Xeon, Intel Xeon+GPU

Ç Conclusion and outlook

Overview

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 2



Ç Sparse Matrix-Matrix Multiplication (SpGEMM)
Ç Focus onLinearScalingDensity FunctionalTheory

Ç Introducing Distributed Block Compressed 
Sparse Row (DBCSR) library
Ç OpenMPand MPI parallelization
Ç CUDA parallelization

Ç Performance results on Intel Xeon Phi (KNL)
Ç Time-to-Solution (TTS) and Energy-to-Solution (ETS)

Ç Performance comparison
Ç Intel Xeon, Intel Xeon+GPU

Ç Conclusion and outlook

Overview

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 3



Application Field: Electronic Structure

ÅSimulation of nanoparticles, electronic devices, 
macromolecules, disordered systems, a small virus

ÅSimulation based on Density Functional Theory (DFT)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 4

Aggregated nanoparticles in 
explicit solution (77,538 
atoms). Relevant for 3rd

generation solar cells.
Run in 2014 with CP2Kon 
the CSCS Piz Daint
supercomputer (Cray XC30, 
5272 hybrid compute 
nodes, 7.8PF) at approx. 
122s per step (requires 
thousands steps)



Linear-Scaling DFT and SpGEMM(1)

ÅEvaluate the density matrixὖfrom its functional 
definition

ὖ
ρ

ς
Ὅ ÓÉÇÎὛ Ὄ ‘ὍὛ

where Ὄis Kohn-Sham matrix, Ὓis the overlap matrix, Ὅis 
the identity matrix, and ‘is the chemical potential
ÅThe matrices are sparse with a priori unknown sparsity patterns
ÅNon-zero elements are small dense blocks, 

e.g. 23 x 23 
ÅTypical occupancies >10% (up to nearly dense)
ÅOn-the-fly filtering procedure during 

the product of two dense blocks

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 5



Linear-Scaling DFT and SpGEMM(2)

ÅThe matrix sign function is defined as

ÓÉÇÎὃ ὃὃ Ⱦ

ÅCompute with a simple iterative scheme
ὢ ὃɇὃ

ὢ
ρ

ς
ὢ σὍὢ

ὢ ÓÉÇÎὃ

Č Requires SpGEMM(two multiplications per iteration)

ÅSparsity can change between multiplications

ÅSpGEMMaccounts up to 80% of the total runtime of the 
simulations

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 6



Ç Sparse Matrix-Matrix Multiplication (SpGEMM)
Ç Focus onLinearScalingDensity FunctionalTheory

Ç Introducing Distributed Block Compressed 
Sparse Row (DBCSR) library
Ç OpenMPand MPI parallelization
Ç CUDA parallelization

Ç Performance results on Intel Xeon Phi (KNL)
Ç Time-to-Solution (TTS) and Energy-to-Solution (ETS)

Ç Performance comparison
Ç Intel Xeon, Intel Xeon+GPU

Ç Conclusion and outlook

Overview

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 7



The DBCSR library

ÅStandalone library implemented in Fortran 2003 
(https://dbcsr.cp2k.org)
ÅDistributed Block-Compressed Sparse Row

Address the requirements:

ÅTake full advantage of the block-structured sparse 
nature of the matrices, including on-the-fly 
filtering

ÅThe dense limit as important as the sparse limit

ÅProvide good scalability for a large number of 
processors

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 8

1

2

3

https://dbcsr.cp2k.org/


Distribution and Decomposition

1. Random permutation of row and column block indices to 
achieve a good load balance
ÅEach processor holding approximately the same amount of data, with 

roughly the same amount of Flops

2. 2D grid decomposition over ὖprocesses

Č Use optimized dense matrix-matrix multiplication algorithm

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 9

1 2



5./{wΩǎ ƳǳƭǘƛǇƭƛŎŀǘƛƻƴ ǎŎƘŜƳŜ

ÅLIBCUSMM is part of the DBCSR library

ÅLIBXSMM developed by Intel (https://github.com/hfp/libxsmm)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 10

Small matrix 
multiplications (SMM),
OpenMPparallelized

Multiplications of 
blocks organized in 
batches, partially 

OpenMPparallelized

MPI Parallelization

https://github.com/hfp/libxsmm


/ŀƴƴƻƴΩǎ !ƭƎƻǊƛǘƘƳ ὅ ὃὄ

ÅData is decomposed such that ὅis always local, i.e. it 
does not require communications
Åὕ ὖ ǎǘŜǇǎ όά¢ƛŎƪǎέύ ǇŜǊ ŜŀŎƘ ƳǳƭǘƛǇƭƛŎŀǘƛƻƴ

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 11

L. E. Cannon. 1969. A cellular computer to implement the Kalman Filter Algorithm. Ph.D. Dissertation. 
Montana State University

do i =1,nticks

call mpi_waitall () - ensures communication 

from previous iteration is complete 

(new data has arrived in current calc

buffer, comm buffer data has been sent)

post mpi_irecv () and mpi_isend () for column 

and row shifts - data is sent 

from the current calc buffer, 

and received into the comm buffer

perform C += A x B on current calc buffers

comm and calc buffers are (pointer) 

swapped for next iteration

end do



/ŀƴƴƻƴΩǎ !ƭƎƻǊƛǘƘƳ ὅ ὃὄ

ÅData is decomposed such that ὅis always local, i.e. it 
does not require communications
Åὕ ὖ steps per each multiplication, where per each 

step:
1. Data transfer for ὃand ὄusing non-blocking MPI calls (MPI funneled mode)

2. Local multiplication and accumulation

Č Communication and computation overlap

ÅThe volume of communicated data by each process 
scales asὕ ϳρ ὖ
ÅThe communication fraction increases with the number of MPI 

ranks for a given number of nodes Č keep low the number of 
ranks/node

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 12

L. E. Cannon. 1969. A cellular computer to implement the Kalman Filter Algorithm. Ph.D. Dissertation. 
Montana State University



Thread 3

Thread 2

Thread 1

OpenMPparallelization

ÅLocal computation consists of the pairwise 
multiplications of small dense matrix blocks
ÅDimensions: ά Ὧ for ὃblocks, Ὧ ὲ for ὄblocks

ÅCorresponding multiplications are organized in batches
ÅStaticassignment of batches with given ὃmatrix row-block 

indices to OpenMPthreads is employed in order to avoid race 
conditions

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 13

B

Thread 0

C A



OpenMPparallelization

ÅLocal computation consists of the pairwise 
multiplications of small dense matrix blocks
ÅDimensions: ά Ὧ for ὃblocks, Ὧ ὲ for ὄblocks

ÅCorresponding multiplications are organized in batches
ÅStaticassignment of batches with given ὃmatrix row-block 

indices to OpenMPthreads is employed in order to avoid race 
conditions

ÅCache oblivious matrix traversal to fix the order in which 
matrix blocks need to be computed

ÅBatches computed in parallel on the CPU by means of 
OpenMPthreads or alternatively executed on a GPU
ÅWhen the GPU is fully loaded, computation may be 

simultaneously done on the CPU

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 14



Local small blocks multiplications

ÅOptimized libraries were developed that outperform 
vendor BLAS libraries for SMM
ÅLIBXSMM for CPU/KNL systems (Intel architectures)

ÅLIBCUSMM for NvidiaGPUs with CUDA

ÅLIBXSMM generates executable code Just-In-Time (JIT) by 
assembling the instructions in-memory
ÅAll flavors of AVX extensions are supported

ÅTests with a mini-app, which mimics DBCSR batch 
multiplications of a series of kernels of interested, show an 
average speed-up of 2.9x for LIBXSMM over DGEMM-MKL on 
KNL (peaks at 1.9 TF/s for ά ὲ Ὧ σςkernel)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 15



CUDA Implementation

ÅA double-buffering technique, based on CUDA streams and 
events, is used to maximize the occupancy of the GPU and to hide 
the data transfer latency
ÅOverlap with MPI communications

ÅLIBCUSMM employs an auto-tuning framework to find optimal 
kernel for each set of SMM dimensions
ÅSpeedup in the range of 2ς4x with respect to batched DGEMM in cuBLAS

ÅIn absolute numbers, 
KNL yields higher absolute
performance for smaller 
kernel sizes

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 16



A. Time spent in waiting data to arrive 
(MPI_Waitallfor ὃand ὄmatrices data)
Ç Communication time that does not overlap with 

computation

B. Time spent in the batches execution
Ç LIBXSMM/LIBCUSMM executions
Ç Compute-intensive, vectorized

C. Time spent in all the rest
Ç Initialization/finalization of the multiplications

Ç Preparation of the batches
Ç Communication from/to GPU

Ç Memory-intensive

Breakdown Execution Summary

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 17



Ç Sparse Matrix-Matrix Multiplication (SpGEMM)
Ç Focus onLinearScalingDensity FunctionalTheory

Ç Introducing Distributed Block Compressed 
Sparse Row (DBCSR) library
Ç OpenMPand MPI parallelization
Ç CUDA parallelization

Ç Performance results on Intel Xeon Phi (KNL)
Ç Time-to-Solution (TTS) and Energy-to-Solution (ETS)

Ç Performance comparison
Ç Intel Xeon, Intel Xeon+GPU

Ç Conclusion and outlook

Overview

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 18



KNL System

ÅGrand Tavé@ CSCS (CH)
Å164 Cray XC40 compute 

nodes, with Intel Xeon 
Phi 7230 (64 cores @ 1.3 
GHz)
Å96 GB RAM, 16 GB HBM
ÅAries routing and 

communications ASIC 
with Dragonfly network 
topology

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 19


