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Application Field: Electronic Structure

• Simulation of nanoparticles, electronic devices, 
macromolecules, disordered systems, a small virus

• Simulation based on Density Functional Theory (DFT)
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Aggregated nanoparticles in 
explicit solution (77,538 
atoms). Relevant for 3rd

generation solar cells.
Run in 2014 with CP2K on 
the CSCS Piz Daint
supercomputer (Cray XC30, 
5272 hybrid compute 
nodes, 7.8PF) at approx. 
122s per step (requires 
thousands steps)



Linear-Scaling DFT and SpGEMM (1)

• Evaluate the density matrix 𝑃 from its functional 
definition

𝑃 =
1

2
𝐼 − sign 𝑆−1𝐻 − 𝜇𝐼 𝑆−1

where 𝐻 is Kohn-Sham matrix, 𝑆 is the overlap matrix, 𝐼 is 
the identity matrix, and 𝜇 is the chemical potential
• The matrices are sparse with a priori unknown sparsity patterns
• Non-zero elements are small dense blocks, 

e.g. 23 x 23 
• Typical occupancies >10% (up to nearly dense)
• On-the-fly filtering procedure during 

the product of two dense blocks
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Linear-Scaling DFT and SpGEMM (2)

• The matrix sign function is defined as

sign 𝐴 = 𝐴 𝐴2 −1/2

• Compute with a simple iterative scheme
𝑋0 = 𝐴 ∙ 𝐴 −1

𝑋𝑛+1 =
1

2
𝑋𝑛 3𝐼 − 𝑋𝑛

2

𝑋∞ = sign 𝐴

 Requires SpGEMM (two multiplications per iteration)

• Sparsity can change between multiplications

• SpGEMM accounts up to 80% of the total runtime of the 
simulations
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The DBCSR library

• Standalone library implemented in Fortran 2003 
(https://dbcsr.cp2k.org)
• Distributed Block-Compressed Sparse Row

Address the requirements:

• Take full advantage of the block-structured sparse 
nature of the matrices, including on-the-fly 
filtering

• The dense limit as important as the sparse limit

• Provide good scalability for a large number of 
processors
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Distribution and Decomposition

1. Random permutation of row and column block indices to 
achieve a good load balance
• Each processor holding approximately the same amount of data, with 

roughly the same amount of Flops

2. 2D grid decomposition over 𝑃 processes

 Use optimized dense matrix-matrix multiplication algorithm
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DBCSR’s multiplication scheme

• LIBCUSMM is part of the DBCSR library

• LIBXSMM developed by Intel (https://github.com/hfp/libxsmm)
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Small matrix 
multiplications (SMM),
OpenMP parallelized

Multiplications of 
blocks organized in 
batches, partially 

OpenMP parallelized

MPI Parallelization

https://github.com/hfp/libxsmm


Cannon’s Algorithm 𝐶 += 𝐴 𝐵

• Data is decomposed such that 𝐶 is always local, i.e. it 
does not require communications

• 𝑂 𝑃 steps (“Ticks”) per each multiplication

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 11

L. E. Cannon. 1969. A cellular computer to implement the Kalman Filter Algorithm. Ph.D. Dissertation. 
Montana State University

do i=1,nticks

call mpi_waitall() - ensures communication 

from previous iteration is complete 

(new data has arrived in current calc

buffer, comm buffer data has been sent)

post mpi_irecv() and mpi_isend() for column 

and row shifts - data is sent 

from the current calc buffer, 

and received into the comm buffer

perform C += A x B on current calc buffers

comm and calc buffers are (pointer) 

swapped for next iteration

end do



Cannon’s Algorithm 𝐶 += 𝐴 𝐵

• Data is decomposed such that 𝐶 is always local, i.e. it 
does not require communications

• 𝑂 𝑃 steps per each multiplication, where per each 
step:
1. Data transfer for 𝐴 and 𝐵 using non-blocking MPI calls (MPI funneled mode)

2. Local multiplication and accumulation

 Communication and computation overlap

• The volume of communicated data by each process 
scales as 𝑂 Τ1 𝑃
• The communication fraction increases with the number of MPI 

ranks for a given number of nodes  keep low the number of 
ranks/node
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Thread 3

Thread 2

Thread 1

OpenMP parallelization

• Local computation consists of the pairwise 
multiplications of small dense matrix blocks
• Dimensions: (𝑚 × 𝑘) for 𝐴 blocks, (𝑘 × 𝑛) for 𝐵 blocks

• Corresponding multiplications are organized in batches
• Static assignment of batches with given 𝐴 matrix row-block 

indices to OpenMP threads is employed in order to avoid race 
conditions
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OpenMP parallelization

• Local computation consists of the pairwise 
multiplications of small dense matrix blocks
• Dimensions: (𝑚 × 𝑘) for 𝐴 blocks, (𝑘 × 𝑛) for 𝐵 blocks

• Corresponding multiplications are organized in batches
• Static assignment of batches with given 𝐴 matrix row-block 

indices to OpenMP threads is employed in order to avoid race 
conditions

• Cache oblivious matrix traversal to fix the order in which 
matrix blocks need to be computed

• Batches computed in parallel on the CPU by means of 
OpenMP threads or alternatively executed on a GPU
• When the GPU is fully loaded, computation may be 

simultaneously done on the CPU
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Local small blocks multiplications

• Optimized libraries were developed that outperform 
vendor BLAS libraries for SMM
• LIBXSMM for CPU/KNL systems (Intel architectures)

• LIBCUSMM for Nvidia GPUs with CUDA

• LIBXSMM generates executable code Just-In-Time (JIT) by 
assembling the instructions in-memory
• All flavors of AVX extensions are supported

• Tests with a mini-app, which mimics DBCSR batch 
multiplications of a series of kernels of interested, show an 
average speed-up of 2.9x for LIBXSMM over DGEMM-MKL on 
KNL (peaks at 1.9 TF/s for 𝑚 = 𝑛 = 𝑘 = 32 kernel)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 15



CUDA Implementation

• A double-buffering technique, based on CUDA streams and 
events, is used to maximize the occupancy of the GPU and to hide 
the data transfer latency
• Overlap with MPI communications

• LIBCUSMM employs an auto-tuning framework to find optimal 
kernel for each set of SMM dimensions
• Speedup in the range of 2–4x with respect to batched DGEMM in cuBLAS

• In absolute numbers, 
KNL yields higher absolute
performance for smaller 
kernel sizes
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A. Time spent in waiting data to arrive 
(MPI_Waitall for 𝐴 and 𝐵 matrices data)
 Communication time that does not overlap with 

computation

B. Time spent in the batches execution
 LIBXSMM/LIBCUSMM executions
 Compute-intensive, vectorized

C. Time spent in all the rest
 Initialization/finalization of the multiplications

 Preparation of the batches
 Communication from/to GPU

 Memory-intensive

Breakdown Execution Summary
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KNL System

• Grand Tavé @ CSCS (CH)
• 164 Cray XC40 compute 

nodes, with Intel Xeon 
Phi 7230 (64 cores @ 1.3 
GHz)

• 96 GB RAM, 16 GB HBM
• Aries routing and 

communications ASIC 
with Dragonfly network 
topology
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Benchmarks

• 3 benchmarks taken from the CP2K simulation 
framework (http://www.cp2k.org) 
• Representative of large-scale and long-running science runs, 

hundreds of multiplications

• Only performance of the DBCSR multiplication part
• ETS based on Cray’s power management database
• We did not perform any lower-level measurements of 

performance, such as based on hardware event counters
• Fluctuation up to 5% (averages of 4 independent runs)
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S-E H2O-DFT-LS AMORPH

Average Occupancy (%) 0.06 10 60

Block sizes 𝒎,𝒏, 𝒌 {6} {23} {5,13}

# Rows/columns 1,119,744 158,976 141,212

http://www.cp2k.org/


Configuration

• Code compiled with Intel Fortran Compiler 17.0.4
• Similar performance with GFortran 7.1.0

• Best performance with 4 MPI ranks and 16 threads per 
node
• Multiple threads in core (HT) does not give any speed-up

• All tests are executed in full CACHE mode for the 
MCDRAM management and QUADRANT clustering mode

• Note that the entire CP2K application requires < 16 GB 
per node, therefore it fits entirely in MCDRAM
• No significant speed-up when requiring the application to run 

in MCDRAM (by using FLAT mode and forcing all allocations in 
MCDRAM)
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Results

• TTS (s) @ 25 nodes
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S-E H2O-DFT-LS AMORPH
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TTS Breakdown
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S-E
• Small blocks size
• Low occupancy
• Dominated by batches 

preparation and 
communications

H2O-DFT-LS
• Large blocks size
• Medium occupancy
• Communication-bound

AMORPH
• Medium blocks sizes
• High occupancy
• Computation-bound

Absolute values (seconds) inside each bar part
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Systems and Configurations

1. Piz Daint – GPU @ CSCS (CH)
• 5,230 Cray XC50 with Intel Xeon E5-2690 v3 `Haswell` (12 cores, 

single socket @ 2.6 GHz) and Nvidia Tesla P100
• A single MPI rank and 12 threads per node (no HT)
• GFortran 5.3.0, CUDA  8 

2. Piz Daint – MC @ CSCS (CH)
• 1,431 Cray XC40 with Intel Xeon E5-2695 v4 `Broadwell` (18 cores, 

dual-socket @ 2.1 GHz)
• 4 MPI ranks and 9 threads (no HT)
• GFortran 7.1.0

3. Swan – SKL28 @ Cray
• Cray XC40 with Intel Xeon Platinum 8176 `Skylake` (28 cores, dual-

socket @ 2.1 GHz)
• 4 MPI ranks and 14 threads (no HT)
• GFortran 7.3.0

• All systems: Aries network
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TTS Comparison
 S-E

• Small blocks size
• Not optimal on GPU

• Dominated by batches 
preparation and communications
• Daint-GPU 2x less data to communicate 

(1 rank/node instead of 4 ranks/node)

 H2O-DFT-LS
• Large blocks size
• Optimal on GPU and KNL

• Communication-bound

 AMORPH
• Medium blocks sizes
• Computation-bound
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>1  Tave-KNL faster
<1  Tave-KNL slower
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TTS Breakdown Comparison 

• Average over results for all nodes
• Batches Execution: computation-bound (GPU execution), well threaded

• All the rest: memory-bound, partially threaded
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S-E H2O-DFT-LS AMORPH

Daint-GPU / Tave-KNL 0.97 0.62 0.70

Daint-MC / Tave-KNL 0.83 1.62 1.02

Swan-SKL / Tave-KNL 0.47 0.63 0.52

S-E H2O-DFT-LS AMORPH

Daint-GPU / Tave-KNL 0.82 1.27 1.07

Daint-MC / Tave-KNL 0.49 1.13 0.82

Swan-SKL / Tave-KNL 0.44 1.13 0.93

>1  Tave-KNL faster
<1  Tave-KNL slower



Threading performance

• Speed-up when varying the number of threads with respect to the 
single thread execution of the DBCSR execution @ 25 nodes
• The number of MPI ranks is fixed for the corresponding system

• Identified a performance bottleneck (load imbalance) due to the a 
priori static distribution of the SMM among threads
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• Average over results for all nodes

• Daint-GPU is the most energy-efficient

ETS Comparison
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>1  KNL consumes less energy
<1  KNL consumes more energy

S-E H2O-DFT-LS AMORPH

Daint-GPU / Tave-KNL 0.78 0.81 0.80

Daint-MC / Tave-KNL 0.95 1.48 1.21

Swan-SKL / Tave-KNL 1.45 1.70 1.21
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Conclusion and Outlook

• At the same number of nodes, we found that DBCSR 
executions on a Cray XC40 KNL-based system are:
• 11%-17% slower and 20% less energy-efficient than on a 

hybrid Cray XC50 GPU based system with Nvidia P100 cards
• Up to 17% faster and 70% more energy-efficient that on a Cray 

XC40 system equipped with dual socket Intel Xeon CPUs

• Bottlenecks (ongoing developments)
• MPI Communication and load-imbalance

• Partially implemented a communication optimal algorithm with 
dynamically distributed load-balancing, implemented with remote 
memory access MPI communications

• Threading load-imbalance due to the a priori static 
distribution of the SMM among threads
• Plan to change the algorithm to be dynamic by using OpenMP tasks 

(G. Gibb et al., EPCC)
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Thanks!
Questions?



Backup
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S-E Baselines @ 25 nodes
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HWS-1T-GPU HSW-12T HSW-12T-GPU BDW-3T BDW-9T SKL-3T SKL-9T SKL-14T KNL-3T KNL-9T KNL-14T KNL-16T

HSW-1T 1.27 4.46 4.44 4.03 5.46 4.49 5.70 5.73 2.05 3.69 4.21 4.30

HWS-1T-GPU 3.50 3.49 3.16 4.28 3.52 4.47 4.49 1.61 2.90 3.30 3.37

HSW-12T 1.00 0.90 1.22 1.01 1.28 1.28 0.46 0.83 0.94 0.96

HSW-12T-GPU 0.91 1.23 1.01 1.28 1.29 0.46 0.83 0.95 0.97

BDW-3T 1.35 1.11 1.41 1.42 0.51 0.92 1.04 1.07

BDW-9T 0.82 1.04 1.05 0.38 0.68 0.77 0.79

SKL-3T 1.27 1.28 0.46 0.82 0.94 0.96

SKL-9T 1.00 0.36 0.65 0.74 0.75

SKL-14T 0.36 0.64 0.73 0.75

KNL-3T 1.80 2.05 2.10

KNL-9T 1.14 1.16

KNL-14T 1.02

• TTS Ratio: Row Value / Column Value 



H2O-DFT-LS Baselines @ 25 nodes

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 35

• TTS Ratio: Row Value / Column Value 

HWS-1T-GPU HSW-12T HSW-12T-GPU BDW-3T BDW-9T SKL-3T SKL-9T SKL-14T KNL-3T KNL-9T KNL-14T KNL-16T

HSW-1T 8.65 7.33 15.44 6.55 11.58 10.14 14.20 14.85 5.34 10.79 13.30 14.03

HWS-1T-GPU 0.85 1.78 0.76 1.34 1.17 1.64 1.72 0.62 1.25 1.54 1.62

HSW-12T 2.11 0.89 1.58 1.38 1.94 2.03 0.73 1.47 1.81 1.91

HSW-12T-GPU 0.42 0.75 0.66 0.92 0.96 0.35 0.70 0.86 0.91

BDW-3T 1.77 1.55 2.17 2.27 0.82 1.65 2.03 2.14

BDW-9T 0.88 1.23 1.28 0.46 0.93 1.15 1.21

SKL-3T 1.40 1.46 0.53 1.06 1.31 1.38

SKL-9T 1.05 0.38 0.76 0.94 0.99

SKL-14T 0.36 0.73 0.90 0.94

KNL-3T 2.02 2.49 2.63

KNL-9T 1.23 1.30

KNL-14T 1.06



AMORPH Baselines @ 25 nodes
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• TTS Ratio: Row Value / Column Value 

HWS-1T-GPU HSW-12T HSW-12T-GPU BDW-3T BDW-9T SKL-3T SKL-9T SKL-14T KNL-3T KNL-9T KNL-14T KNL-16T

HSW-1T 2.33 6.85 15.45 6.68 12.45 9.08 16.68 18.84 2.83 7.79 11.11 12.53

HWS-1T-GPU 2.94 6.62 2.86 5.34 3.89 7.15 8.07 1.21 3.34 4.76 5.37

HSW-12T 2.26 0.97 1.82 1.33 2.43 2.75 0.41 1.14 1.62 1.83

HSW-12T-GPU 0.43 0.81 0.59 1.08 1.22 0.18 0.50 0.72 0.81

BDW-3T 1.87 1.36 2.50 2.82 0.42 1.17 1.66 1.88

BDW-9T 0.73 1.34 1.51 0.23 0.63 0.89 1.01

SKL-3T 1.84 2.07 0.31 0.86 1.22 1.38

SKL-9T 1.13 0.17 0.47 0.67 0.75

SKL-14T 0.15 0.41 0.59 0.67

KNL-3T 2.75 3.92 4.42

KNL-9T 1.43 1.61

KNL-14T 1.13


