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Overview

o Sparse Matrix-Matrix Multiplication (SpGEMM)
0 Focus on Linear Scaling Density Functional Theory
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Application Field: Electronic Structure

» Simulation of nanoparticles, electronic devices,
macromolecules, disordered systems, a small virus

 Simulation based on Density Functional Theory (DFT)

AL G R e T L e Bt gz e ciir | Aggregated nanoparticles in

S U St e o b S R | expllicit solution (77,538

S e e el - | gtoms). Relevant for 31
L RN generation solar cells.

e, Seleie Y | Runin 2014 with CP2K on

fedtec s the CSCS Piz Daint
supercomputer (Cray XC30,

A L Ui o o1 5272 hybrid compute

[ HINSE STt | nodes, 7.8PF) at approx.

S ERC R AR EL G e s 1225 per step (requires

TR | thousands steps)
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Linear-Scaling DFT and SpGEMM (1)

* Evaluate the density matrix P from its functional
definition
1
P = > (I —sign(S™*H — pul))S1

where H is Kohn-Sham matrix, S is the overlap matrix, I is
the identity matrix, and u is the chemical potential
* The matrices are sparse with a priori unknown sparsity patterns
* Non-zero elements are small dense blocks, a7 |
e.g. 23 x 23 TN i
e Typical occupancies >10% (up to nearly dense) * 1
* On-the-fly filtering procedure during L X,
the product of two dense blocks
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Linear-Scaling DFT and SpGEMM (2)

* The matrix sign function is defined as
sign(4) = A(4?%)~1/?

 Compute with a simple iterative scheme

Xo =1A A~
Xn+1 = EXn(BI - X7)
X = sign(A4)

=2 Requires SpGEMM (two multiplications per iteration)

e Sparsity can change between multiplications

* SPGEMM accounts up to 80% of the total runtime of the
simulations
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Overview

0 Introducing Distributed Block Compressed

Sparse Row (DBCSR) library

0 OpenMP and MPI parallelization
o CUDA parallelization
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The DBCSR library

* Standalone library implemented in Fortran 2003
(https://dbcsr.cp2k.org)

* Distributed Block-Compressed Sparse Row

Address the requirements:

@ Take full advantage of the block-structured sparse
nature of the matrices, including on-the-fly
filtering

@ The dense limit as important as the sparse limit

© Provide good scalability for a large number of
pProcessors
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https://dbcsr.cp2k.org/

Distribution and Decomposition

1. Random permutation of row and column block indices to
achieve a good load balance

* Each processor holding approximately the same amount of data, with
roughly the same amount of Flops

2. 2D grid decomposition over P processes

=>» Use optimized dense matrix-matrix multiplication algorithm
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DBCSR’s multiplication scheme

a3 ™

MPI Parallelization . umGanmon )
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blocks organized in | Stack generation )
batches, partially !l
OpenMP parallelized ( Scheduler ]
CPU/GPU Load balanci ng

L

[Host Driver} TR (Cuda Driver)

/\ GPU
(BLASHLib(X)SmmJ l Libcusmm l -‘

Small matrix
multiplications (SMM),
OpenMP parallelized

e LIBCUSMM is part of the DBCSR library
* LIBXSMM developed by Intel (https://github.com/hfp/libxsmm)
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https://github.com/hfp/libxsmm

Cannon’s Algorithm C += A B

e Data is decomposed such that C is always local, i.e. it
does not require communications

. 0(\/?) steps (“Ticks”) per each multiplication

do i=1l,nticks

call mpi waitall() - ensures communication
Tick 1 Tick 2 Tick 3 from previous iteration is complete
) ) ] (new data has arrived in current calc
Cﬂfﬂmwnkﬁ Calculation A?MQHmmn buffer, comm buffer data has been sent)
utsfa22 I, EN=c2las, Ma
[ [] | [ ] ] ht:: post mpi irecv() and mpi isend() for column
| | ! and row shifts - data is sent
[ ] from the current calc buffer,
m u and received into the comm buffer
Communication: Communication: Communication:
Fetch Fetch None perform C += A x B on current calc buffers
g/ R
B T ] ht:: comm and calc buffers are (pointer)

swapped for next iteration

end do

L. E. Cannon. 1969. A cellular computer to implement the Kalman Filter Algorithm. Ph.D. Dissertation.
Montana State University
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Cannon’s Algorithm C += A B

e Data is decomposed such that C is always local, i.e. it
does not require communications

. O(VP) steps per each multiplication, where per each
step:
1. Data transfer for A and B using non-blocking MPI calls (MPI funneled mode)

2. Local multiplication and accumulation
=» Communication and computation overlap

* The volume of communicated data by each process

scales as 0(1/@)

 The communication fraction increases with the number of MPI
ranks for a given number of nodes = keep low the number of
ranks/node

L. E. Cannon. 1969. A cellular computer to implement the Kalman Filter Algorithm. Ph.D. Dissertation.
Montana State University
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OpenMP parallelization

* Local computation consists of the pairwise
multiplications of small dense matrix blocks
* Dimensions: (m X k) for A blocks, (k X n) for B blocks
e Corresponding multiplications are organized in batches

* Static assignment of batches with given A matrix row-block
indices to OpenMP threads is employed in order to avoid race

conditions
Thread 0
Thread 1
C — A B
Thread 2 + x
Thread 3
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OpenMP parallelization

* Local computation consists of the pairwise

multiplications of small dense matrix blocks
* Dimensions: (m X k) for A blocks, (k X n) for B blocks

e Corresponding multiplications are organized in batches

* Static assignment of batches with given A matrix row-block
indices to OpenMP threads is employed in order to avoid race

conditions

e Cache oblivious matrix traversal to fix the order in which
matrix blocks need to be computed

e Batches computed in parallel on the CPU by means of
OpenMP threads or alternatively executed on a GPU

* When the GPU is fully loaded, computation may be
simultaneously done on the CPU
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Local small blocks multiplications

e Optimized libraries were developed that outperform
vendor BLAS libraries for SMVI
e LIBXSMM for CPU/KNL systems (Intel architectures)
e LIBCUSMM for Nvidia GPUs with CUDA

e LIBXSMM generates executable code Just-In-Time (JIT) by
assembling the instructions in-memory
 All flavors of AVX extensions are supported

e Tests with a mini-app, which mimics DBCSR batch
multiplications of a series of kernels of interested, show an
average speed-up of 2.9x for LIBXSMM over DGEMM-MKL on
KNL (peaks at 1.9 TF/s form = n = k = 32 kernel)
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CUDA Implementation

* A double-buffering technique, based on CUDA streams and
events, is used to maximize the occupancy of the GPU and to hide

the data transfer latency
e Overlap with MPI communications

e LIBCUSMM employs an auto-tuning framework to find optimal

kernel for each set of SMM dimensions
e Speedup in the range of 2—4x with respect to batched DGEMM in cuBLAS

* |n absolute numbers, DK ]
KNL yields higher absolute —=—————ygi| [ || |
performance for smaller | - i
kernel sizes 5o BT Y
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Breakdown Execution Summary

A. Time spent in waiting data to arrive

(MPI_Waitall for A and B matrices data)

2 Communication time that does not overlap with
computation

B. Time spent in the batches execution
a LIBXSMM/LIBCUSMM executions
o Compute-intensive, vectorized

C. Time spentin all the rest

a Initialization/finalization of the multiplications
0 Preparation of the batches
o Communication from/to GPU

o Memory-intensive
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Overview

a Performance results on Intel Xeon Phi (KNL)
o Time-to-Solution (TTS) and Energy-to-Solution (ETS)
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KNL System

* Grand Tavé @ CSCS (CH)

* 164 Cray XC40 compute
nodes, with Intel Xeon
Phi 7230 (64 cores @ 1.3
GHz)

* 96 GB RAM, 16 GB HBM

* Aries routing and
communications ASIC
with Dragonfly network
topology

S
\\0‘0 CSCS“
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Benchmarks

* 3 benchmarks taken from the CP2K simulation
framework (http://www.cp2k.org)

* Representative of large-scale and long-running science runs,
hundreds of multiplications

| S-E | H20-DFT-LS | AMORPH

Average Occupancy (%) 0.06 10 60
Block sizes (m, n, k) {6} {23} {5,13}
# Rows/columns 1,119,744 158,976 141,212

* Only performance of the DBCSR multiplication part
* ETS based on Cray’s power management database

* We did not perform any lower-level measurements of
performance, such as based on hardware event counters

e Fluctuation up to 5% (averages of 4 independent runs)
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http://www.cp2k.org/

Configuration

e Code compiled with Intel Fortran Compiler 17.0.4
e Similar performance with GFortran 7.1.0

* Best performance with 4 MPI ranks and 16 threads per

node
* Multiple threads in core (HT) does not give any speed-up

* All tests are executed in full CACHE mode for the
MCDRAM management and QUADRANT clustering mode

* Note that the entire CP2K application requires < 16 GB
per node, therefore it fits entirely in MCDRAM
* No significant speed-up when requiring the application to run

in MCDRAM (by using FLAT mode and forcing all allocations in
MCDRAM)
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Results

* TTS (s) @ 25 nodes “ H20-DFT-LS | AMORPH
686 1205
Scalability Efficiency Energy-To-Solution
1.20 9.00
8.00 f
1.00
7.00 |
2 0.80 p = 6.00
c =
Q2 — 5.00
§ 0.60 E 4.00
= :
0.40 3.00
2.00
0.20 100
0.00 0.00
25 36 49 64 81 25 36 49 64 81
# Nodes # Nodes
--S-E =+-H20-DFT-LS --AMORPH —--S-E =-H20-DFT-LS ---AMORPH
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TTS Breakdown

Absolute values (seconds) inside each bar part
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communications
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Overview

a Performance comparison
0 Intel Xeon, Intel Xeon+GPU
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Systems and Configurations

1. Piz Daint — GPU @ CSCS (CH)
e 5,230 Cray XC50 with Intel Xeon E5-2690 v3 "Haswell” (12 cores,
single socket @ 2.6 GHz) and Nvidia Tesla P100
e Asingle MPI rank and 12 threads per node (no HT)
* GFortran 5.3.0, CUDA 8

2. Piz Daint — MC @ CSCS (CH)
e 1,431 Cray XC40 with Intel Xeon E5-2695 v4 'Broadwell” (18 cores,
dual-socket @ 2.1 GHz)
* 4 MPI ranks and 9 threads (no HT)
* GFortran 7.1.0

3. Swan — SKL28 @ Cray
e Cray XC40 with Intel Xeon Platinum 8176 "Skylake™ (28 cores, dual-
socket @ 2.1 GHz)
e 4 MPI ranks and 14 threads (no HT)
* GFortran 7.3.0

* All systems: Aries network
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TTS ratio

TTS Comparison

S

0.97 0.93

25 36

076 074 077 974 0.74

49 64 81
# Nodes

TTS ratio

H20-DFT-LS

1.21 1.21

25 36

1.15 111 1.14

49 64 81

# Nodes

TTS ratio

AMORPH

1.01 1.01

25 36

m Daint-GPU / Tave-KNL

05/03/2018

1.03 1.03 1.03

49 64 81
# Nodes
W Daint-MC / Tave-KNL m Swan-SKL / Tave-KNL

> S-E
* Small blocks size
* Not optimal on GPU

* Dominated by batches

preparation and communications
* Daint-GPU 2x less data to communicate
(1 rank/node instead of 4 ranks/node)

» H20-DFT-LS

* Large blocks size
e Optimal on GPU and KNL

e Communication-bound

» AMORPH

* Medium blocks sizes
* Computation-bound

>1 =» Tave-KNL faster

<1 =» Tave-KNL slower
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TTS Breakdown Comparison

>1 =» Tave-KNL faster

» Average over results for all nodes BEe@EERAEREIE,
* Batches Execution: computation-bound (GPU execution), well threaded

| S-E | H20-DFT-LS | AMORPH
Daint-GPU / Tave-KNL 0.97 0.62 0.70
Daint-MC / Tave-KNL 0.83 1.62 1.02

Swan-SKL / Tave-KNL 0.47 0.63 0.52

* All the rest: memory-bound, partially threaded

| S-E | H20-DFT-LS | AMORPH

Daint-GPU / Tave-KNL 0.82 1.27 1.07

Daint-MC / Tave-KNL 0.49 1.13 0.82
Swan-SKL / Tave-KNL 0.44 1.13 0.93
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Threading performance

* Speed-up when varying the number of threads with respect to the
single thread execution of the DBCSR execution @ 25 nodes
* The number of MPI ranks is fixed for the corresponding system

S-E H20-DFT-LS AMORPH
5 7 12
11
6 10
o 4 o a 9
2 3 5 > 8
o Ro] go]
o 3 g 4 g ¢
o o o
2 4
2 3
2
1 1 1
123456 7 8 910111213141516 1234567 8 910111213141516 123456 7 8 910111213141516
# Threads # Threads # Threads
-s-Daint-GPU -a-Daint-MC —e—Daint-GPU -=-Daint-MC -o-Daint-GPU --Daint-MC
—-Swan-SKL ——Tave-KNL —-Swan-SKL ——Tave-KNL —-Swan-SKL ——Tave-KNL

* |dentified a performance bottleneck (load imbalance) due to the a
priori static distribution of the SMM among threads
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ETS Comparison

* Average over results for all nodes

>1 =» KNL consumes less energy
<1 =» KNL consumes more energy

| SE | H20-DFT-LS | AMORPH

Daint-GPU / Tave-KNL 0.78 0.81 0.80
Daint-MC / Tave-KNL 0.95 1.48 1.21
Swan-SKL / Tave-KNL 1.45 1.70 1.21

* Daint-GPU is the most energy-efficient
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Overview

0 Conclusion and outlook
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Conclusion and Outlook

* At the same number of nodes, we found that DBCSR

executions on a Cray XC40 KNL-based system are:
* 11%-17% slower and 20% less energy-efficient than on a
hybrid Cray XC50 GPU based system with Nvidia P100 cards
* Up to 17% faster and 70% more energy-efficient that on a Cray
XC40 system equipped with dual socket Intel Xeon CPUs

* Bottlenecks (ongoing developments)

* MPI Communication and load-imbalance
* Partially implemented a communication optimal algorithm with
dynamically distributed load-balancing, implemented with remote
memory access MPI communications

* Threading load-imbalance due to the a priori static
distribution of the SMM among threads

* Plan to change the algorithm to be dynamic by using OpenMP tasks
(G. Gibb et al., EPCC)
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S-E Baselines @ 25 nodes

e TTS Ratio: Row Value / Column Value

HWS-1T-GPU HSW-12T  HSW-12T-GPU BDW-3T BDW-9T SKL-3T SKL-9T SKL-14T KNL-3T KNL-9T KNL-14T KNL-16T
HSW-1T 1.27 4.46 4.44 4.03 5.46 4.49 5.70 5.73 2.05 3.69 4.21 4.30
HWS-1T-GPU 3.50 3.49 3.16 4.28 3.52 4.47 4.49 1.61 2.90 3.30 3.37
HSW-12T 1.00 0.90 1.22 1.01 1.28 1.28 0.46 0.83 0.94 0.96
HSW-12T-GPU 0.91 1.23 1.01 1.28 1.29 0.46 0.83 0.95 0.97
BDW-3T 1.35 1.11 1.41 1.42 0.51 0.92 1.04 1.07
BDW-9T 0.82 1.04 1.05 0.38 0.68 0.77 0.79
SKL-3T 1.27 1.28 0.46 0.82 0.94 0.96
SKL-9T 1.00 0.36 0.65 0.74 0.75
SKL-14T 0.36 0.64 0.73 0.75
KNL-3T 1.80 2.05 2.10
KNL-9T 1.14 1.16
KNL-14T 1.02
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H20O-DFT-LS Baselines @ 25 nodes

e TTS Ratio: Row Value / Column Value

HWS-1T-GPU ~ HSW-12T  HSW-12T-GPU BDW-3T BDW-9T SKL-3T SKL-9T SKL-14T KNL-3T KNL-9T KNL-14T KNL-16T
HSW-1T 8.65 7.33 15.44 6.55 11.58 10.14 14.20 14.85 5.34 10.79 13.30 14.03
HWS-1T-GPU 0.85 1.78 0.76 1.34 1.17 1.64 1.72 0.62 1.25 1.54 1.62
HSW-12T 2.11 0.89 1.58 1.38 1.94 2.03 0.73 1.47 1.81 1.91
HSW-12T-GPU 0.42 0.75 0.66 0.92 0.96 0.35 0.70 0.86 0.91
BDW-3T 1.77 1.55 2.17 2.27 0.82 1.65 2.03 2.14
BDW-9T 0.88 1.23 1.28 0.46 0.93 1.15 1.21
SKL-3T 1.40 1.46 0.53 1.06 1.31 1.38
SKL-9T 1.05 0.38 0.76 0.94 0.99
SKL-14T 0.36 0.73 0.90 0.94
KNL-3T 2.02 2.49 2.63
KNL-9T 1.23 1.30
KNL-14T 1.06
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AMORPH Baselines @ 25 nodes

e TTS Ratio: Row Value / Column Value

HWS-1T-GPU HSW-12T  HSW-12T-GPU BDW-3T BDW-9T SKL-3T SKL-9T SKL-14T KNL-3T KNL-9T KNL-14T KNL-16T
HSW-1T 2.33 6.85 15.45 6.68 12.45 9.08 16.68 18.84 2.83 7.79 11.11 12.53
HWS-1T-GPU 2.94 6.62 2.86 5.34 3.89 7.15 8.07 1.21 3.34 4.76 5.37
HSW-12T 2.26 0.97 1.82 1.33 2.43 2.75 0.41 1.14 1.62 1.83
HSW-12T-GPU 0.43 0.81 0.59 1.08 1.22 0.18 0.50 0.72 0.81
BDW-3T 1.87 1.36 2.50 2.82 0.42 1.17 1.66 1.88
BDW-9T 0.73 1.34 1.51 0.23 0.63 0.89 1.01
SKL-3T 1.84 2.07 0.31 0.86 1.22 1.38
SKL-9T 1.13 0.17 0.47 0.67 0.75
SKL-14T 0.15 0.41 0.59 0.67
KNL-3T 2.75 3.92 4.42
KNL-9T 1.43 1.61
KNL-14T 1.13
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