/88 University of
III"‘c = : f?'n' :’;;-""II Z u I'iC h e

Porting the DBCSR library for
Sparse Matrix-Matrix

Multiplications
to Intel Xeon Phi systems

Jurg Hutter, Alfio Lazzaro, llia Sivkov

University of Zirich (CH)

IXPUG Europe Spring 2018 @ CINECA, Bologna, Italy

Overview

a Sparse Matrix-Matrix Multiplication (SpGEMM)
0 Focus on Linear Scaling Density Functional Theory

0 Introducing Distributed Block-Compressed

Sparse Row (DBCSR) library

0 OpenMP and MPI parallelization

o CUDA parallelization
a Performance results on Intel Xeon Phi (KNL)

o Time-to-Solution (TTS) and Energy-to-Solution (ETS)
a Performance comparison

a Intel Xeon, Intel Xeon+GPU

0 Conclusion and outlook

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Overview

o Sparse Matrix-Matrix Multiplication (SpGEMM)
0 Focus on Linear Scaling Density Functional Theory

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Application Field: Electronic Structure

» Simulation of nanoparticles, electronic devices,
macromolecules, disordered systems, a small virus

 Simulation based on Density Functional Theory (DFT)

AL G R e T L e Bt gz e ciir | Aggregated nanoparticles in

S U St e o b S R | expllicit solution (77,538

S e e el - | gtoms). Relevant for 31
L RN generation solar cells.

e, Seleie Y | Runin 2014 with CP2K on

fedtec s the CSCS Piz Daint
supercomputer (Cray XC30,

A L Ui o o1 5272 hybrid compute

[HINSE STt | nodes, 7.8PF) at approx.

S ERC R AR EL G e s 1225 per step (requires

TR | thousands steps)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) _

Linear-Scaling DFT and SpGEMM (1)

* Evaluate the density matrix P from its functional
definition
1
P = > (I —sign(S™*H — pul))S1

where H is Kohn-Sham matrix, S is the overlap matrix, I is
the identity matrix, and u is the chemical potential
* The matrices are sparse with a priori unknown sparsity patterns
* Non-zero elements are small dense blocks, a7 |
e.g. 23 x 23 TN i
e Typical occupancies >10% (up to nearly dense) * 1
* On-the-fly filtering procedure during L X,
the product of two dense blocks

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Linear-Scaling DFT and SpGEMM (2)

* The matrix sign function is defined as
sign(4) = A(4?%)~1/?

 Compute with a simple iterative scheme

Xo =1A A~
Xn+1 = EXn(BI - X7)
X = sign(A4)

=2 Requires SpGEMM (two multiplications per iteration)

e Sparsity can change between multiplications

* SPGEMM accounts up to 80% of the total runtime of the
simulations

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) _

Overview

0 Introducing Distributed Block Compressed

Sparse Row (DBCSR) library

0 OpenMP and MPI parallelization
o CUDA parallelization

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

The DBCSR library

* Standalone library implemented in Fortran 2003
(https://dbcsr.cp2k.org)

* Distributed Block-Compressed Sparse Row

Address the requirements:

@ Take full advantage of the block-structured sparse
nature of the matrices, including on-the-fly
filtering

@ The dense limit as important as the sparse limit

© Provide good scalability for a large number of
pProcessors

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) _

https://dbcsr.cp2k.org/

Distribution and Decomposition

1. Random permutation of row and column block indices to
achieve a good load balance

* Each processor holding approximately the same amount of data, with
roughly the same amount of Flops

2. 2D grid decomposition over P processes

=>» Use optimized dense matrix-matrix multiplication algorithm

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) _

DBCSR’s multiplication scheme

a3 ™

MPI Parallelization . umGanmon)
Node |-

(- Multrec)

\ Cache Optimizatio n y

Multiplications of p N

. . CSR
blocks organized in | Stack generation)
batches, partially !l
OpenMP parallelized (Scheduler]
CPU/GPU Load balanci ng

L

[Host Driver} TR (Cuda Driver)

/\ GPU
(BLASHLib(X)SmmJ l Libcusmm l -‘

Small matrix
multiplications (SMM),
OpenMP parallelized

e LIBCUSMM is part of the DBCSR library
* LIBXSMM developed by Intel (https://github.com/hfp/libxsmm)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

https://github.com/hfp/libxsmm

Cannon’s Algorithm C += A B

e Data is decomposed such that C is always local, i.e. it
does not require communications

. 0(\/?) steps (“Ticks”) per each multiplication

do i=1l,nticks

call mpi waitall() - ensures communication
Tick 1 Tick 2 Tick 3 from previous iteration is complete
))] (new data has arrived in current calc
Cﬂfﬂmwnkﬁ Calculation A?MQHmmn buffer, comm buffer data has been sent)
utsfa22 I, EN=c2las, Ma
[[] | []] ht:: post mpi irecv() and mpi isend() for column
| | ! and row shifts - data is sent
[] from the current calc buffer,
m u and received into the comm buffer
Communication: Communication: Communication:
Fetch Fetch None perform C += A x B on current calc buffers
g/ R
B T] ht:: comm and calc buffers are (pointer)

swapped for next iteration

end do

L. E. Cannon. 1969. A cellular computer to implement the Kalman Filter Algorithm. Ph.D. Dissertation.
Montana State University

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Cannon’s Algorithm C += A B

e Data is decomposed such that C is always local, i.e. it
does not require communications

. O(VP) steps per each multiplication, where per each
step:
1. Data transfer for A and B using non-blocking MPI calls (MPI funneled mode)

2. Local multiplication and accumulation
=» Communication and computation overlap

* The volume of communicated data by each process

scales as 0(1/@)

 The communication fraction increases with the number of MPI
ranks for a given number of nodes = keep low the number of
ranks/node

L. E. Cannon. 1969. A cellular computer to implement the Kalman Filter Algorithm. Ph.D. Dissertation.
Montana State University

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

OpenMP parallelization

* Local computation consists of the pairwise
multiplications of small dense matrix blocks
* Dimensions: (m X k) for A blocks, (k X n) for B blocks
e Corresponding multiplications are organized in batches

* Static assignment of batches with given A matrix row-block
indices to OpenMP threads is employed in order to avoid race

conditions
Thread 0
Thread 1
C — A B
Thread 2 + x
Thread 3

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

OpenMP parallelization

* Local computation consists of the pairwise

multiplications of small dense matrix blocks
* Dimensions: (m X k) for A blocks, (k X n) for B blocks

e Corresponding multiplications are organized in batches

* Static assignment of batches with given A matrix row-block
indices to OpenMP threads is employed in order to avoid race

conditions

e Cache oblivious matrix traversal to fix the order in which
matrix blocks need to be computed

e Batches computed in parallel on the CPU by means of
OpenMP threads or alternatively executed on a GPU

* When the GPU is fully loaded, computation may be
simultaneously done on the CPU

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Local small blocks multiplications

e Optimized libraries were developed that outperform
vendor BLAS libraries for SMVI
e LIBXSMM for CPU/KNL systems (Intel architectures)
e LIBCUSMM for Nvidia GPUs with CUDA

e LIBXSMM generates executable code Just-In-Time (JIT) by
assembling the instructions in-memory
 All flavors of AVX extensions are supported

e Tests with a mini-app, which mimics DBCSR batch
multiplications of a series of kernels of interested, show an
average speed-up of 2.9x for LIBXSMM over DGEMM-MKL on
KNL (peaks at 1.9 TF/s form = n = k = 32 kernel)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

CUDA Implementation

* A double-buffering technique, based on CUDA streams and
events, is used to maximize the occupancy of the GPU and to hide

the data transfer latency
e Overlap with MPI communications

e LIBCUSMM employs an auto-tuning framework to find optimal

kernel for each set of SMM dimensions
e Speedup in the range of 2—4x with respect to batched DGEMM in cuBLAS

* |n absolute numbers, DK]
KNL yields higher absolute —=—————ygi| [|| |
performance for smaller | - i
kernel sizes 5o BT Y

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Breakdown Execution Summary

A. Time spent in waiting data to arrive

(MPI_Waitall for A and B matrices data)

2 Communication time that does not overlap with
computation

B. Time spent in the batches execution
a LIBXSMM/LIBCUSMM executions
o Compute-intensive, vectorized

C. Time spentin all the rest

a Initialization/finalization of the multiplications
0 Preparation of the batches
o Communication from/to GPU

o Memory-intensive

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Overview

a Performance results on Intel Xeon Phi (KNL)
o Time-to-Solution (TTS) and Energy-to-Solution (ETS)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

KNL System

* Grand Tavé @ CSCS (CH)

* 164 Cray XC40 compute
nodes, with Intel Xeon
Phi 7230 (64 cores @ 1.3
GHz)

* 96 GB RAM, 16 GB HBM

* Aries routing and
communications ASIC
with Dragonfly network
topology

S
\\0‘0 CSCS“

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Benchmarks

* 3 benchmarks taken from the CP2K simulation
framework (http://www.cp2k.org)

* Representative of large-scale and long-running science runs,
hundreds of multiplications

| S-E | H20-DFT-LS | AMORPH

Average Occupancy (%) 0.06 10 60
Block sizes (m, n, k) {6} {23} {5,13}
Rows/columns 1,119,744 158,976 141,212

* Only performance of the DBCSR multiplication part
* ETS based on Cray’s power management database

* We did not perform any lower-level measurements of
performance, such as based on hardware event counters

e Fluctuation up to 5% (averages of 4 independent runs)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

http://www.cp2k.org/

Configuration

e Code compiled with Intel Fortran Compiler 17.0.4
e Similar performance with GFortran 7.1.0

* Best performance with 4 MPI ranks and 16 threads per

node
* Multiple threads in core (HT) does not give any speed-up

* All tests are executed in full CACHE mode for the
MCDRAM management and QUADRANT clustering mode

* Note that the entire CP2K application requires < 16 GB
per node, therefore it fits entirely in MCDRAM
* No significant speed-up when requiring the application to run

in MCDRAM (by using FLAT mode and forcing all allocations in
MCDRAM)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Results

* TTS (s) @ 25 nodes “ H20-DFT-LS | AMORPH
686 1205
Scalability Efficiency Energy-To-Solution
1.20 9.00
8.00 f
1.00
7.00 |
2 0.80 p = 6.00
c =
Q2 — 5.00
§ 0.60 E 4.00
= :
0.40 3.00
2.00
0.20 100
0.00 0.00
25 36 49 64 81 25 36 49 64 81
Nodes # Nodes
--S-E =+-H20-DFT-LS --AMORPH —--S-E =-H20-DFT-LS ---AMORPH

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

TTS Breakdown

Absolute values (seconds) inside each bar part

oo S-E

zz:f] I I I [> S_E

; * Small blocks size
- 00 B . * Low occupancy

* Dominated by batches
H20-DFT LS preparation and

communications

' »H20-DFT-LS

o | " " » . * Large blocks size
AMORPH * Medium occupancy

« Communication-bound
> AMORPH
e Medium blocks sizes

o o & * High occupancy
 All the rest M Batches execution H MPI_Waitall) CO m p utat I O n _ bo u n d

N
o
X

TTS Breakdown
N
o
X

TTS Breakdown
N
o o
X X

N
o
X

TTS Breakdown
iy
o
x

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Overview

a Performance comparison
0 Intel Xeon, Intel Xeon+GPU

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Systems and Configurations

1. Piz Daint — GPU @ CSCS (CH)
e 5,230 Cray XC50 with Intel Xeon E5-2690 v3 "Haswell” (12 cores,
single socket @ 2.6 GHz) and Nvidia Tesla P100
e Asingle MPI rank and 12 threads per node (no HT)
* GFortran 5.3.0, CUDA 8

2. Piz Daint — MC @ CSCS (CH)
e 1,431 Cray XC40 with Intel Xeon E5-2695 v4 'Broadwell” (18 cores,
dual-socket @ 2.1 GHz)
* 4 MPI ranks and 9 threads (no HT)
* GFortran 7.1.0

3. Swan — SKL28 @ Cray
e Cray XC40 with Intel Xeon Platinum 8176 "Skylake™ (28 cores, dual-
socket @ 2.1 GHz)
e 4 MPI ranks and 14 threads (no HT)
* GFortran 7.3.0

* All systems: Aries network

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

TTS ratio

TTS Comparison

S

0.97 0.93

25 36

076 074 077 974 0.74

49 64 81
Nodes

TTS ratio

H20-DFT-LS

1.21 1.21

25 36

1.15 111 1.14

49 64 81

Nodes

TTS ratio

AMORPH

1.01 1.01

25 36

m Daint-GPU / Tave-KNL

05/03/2018

1.03 1.03 1.03

49 64 81
Nodes
W Daint-MC / Tave-KNL m Swan-SKL / Tave-KNL

> S-E
* Small blocks size
* Not optimal on GPU

* Dominated by batches

preparation and communications
* Daint-GPU 2x less data to communicate
(1 rank/node instead of 4 ranks/node)

» H20-DFT-LS

* Large blocks size
e Optimal on GPU and KNL

e Communication-bound

» AMORPH

* Medium blocks sizes
* Computation-bound

>1 =» Tave-KNL faster

<1 =» Tave-KNL slower

Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

TTS Breakdown Comparison

>1 =» Tave-KNL faster

» Average over results for all nodes BEe@EERAEREIE,
* Batches Execution: computation-bound (GPU execution), well threaded

| S-E | H20-DFT-LS | AMORPH
Daint-GPU / Tave-KNL 0.97 0.62 0.70
Daint-MC / Tave-KNL 0.83 1.62 1.02

Swan-SKL / Tave-KNL 0.47 0.63 0.52

* All the rest: memory-bound, partially threaded

| S-E | H20-DFT-LS | AMORPH

Daint-GPU / Tave-KNL 0.82 1.27 1.07

Daint-MC / Tave-KNL 0.49 1.13 0.82
Swan-SKL / Tave-KNL 0.44 1.13 0.93

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Threading performance

* Speed-up when varying the number of threads with respect to the
single thread execution of the DBCSR execution @ 25 nodes
* The number of MPI ranks is fixed for the corresponding system

S-E H20-DFT-LS AMORPH
5 7 12
11
6 10
o 4 o a 9
2 3 5 > 8
o Ro] go]
o 3 g 4 g ¢
o o o
2 4
2 3
2
1 1 1
123456 7 8 910111213141516 1234567 8 910111213141516 123456 7 8 910111213141516
Threads # Threads # Threads
-s-Daint-GPU -a-Daint-MC —e—Daint-GPU -=-Daint-MC -o-Daint-GPU --Daint-MC
—-Swan-SKL ——Tave-KNL —-Swan-SKL ——Tave-KNL —-Swan-SKL ——Tave-KNL

* |dentified a performance bottleneck (load imbalance) due to the a
priori static distribution of the SMM among threads

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

ETS Comparison

* Average over results for all nodes

>1 =» KNL consumes less energy
<1 =» KNL consumes more energy

| SE | H20-DFT-LS | AMORPH

Daint-GPU / Tave-KNL 0.78 0.81 0.80
Daint-MC / Tave-KNL 0.95 1.48 1.21
Swan-SKL / Tave-KNL 1.45 1.70 1.21

* Daint-GPU is the most energy-efficient

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Overview

0 Conclusion and outlook

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Conclusion and Outlook

* At the same number of nodes, we found that DBCSR

executions on a Cray XC40 KNL-based system are:
* 11%-17% slower and 20% less energy-efficient than on a
hybrid Cray XC50 GPU based system with Nvidia P100 cards
* Up to 17% faster and 70% more energy-efficient that on a Cray
XC40 system equipped with dual socket Intel Xeon CPUs

* Bottlenecks (ongoing developments)

* MPI Communication and load-imbalance
* Partially implemented a communication optimal algorithm with
dynamically distributed load-balancing, implemented with remote
memory access MPI communications

* Threading load-imbalance due to the a priori static
distribution of the SMM among threads

* Plan to change the algorithm to be dynamic by using OpenMP tasks
(G. Gibb et al., EPCC)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Other References

* Urban Borstnik et al., Sparse matrix multiplication: The distributed block-
compressed sparse row library, Parallel Computing, 2014, Volume 40, Issues 5-6,
pp 47-58

e Ole Schitt et al., GPU Accelerated Sparse Matrix Matrix Multiplication for Linear
Scaling Density Functional Theory, chapter in “Electronic Structure Calculations on
Graphics Processing Units”, John Wiley and Sons, ISBN 9781118661789

» Alfio Lazzaro et al., Increasing the Efficiency of Sparse Matrix-Matrix Multiplication
with a 2.5D Algorithm and One-Sided MPI. In Proceedings of the Platform for
Advanced Scientific Computing Conference, PASC’17, pages 3:1-3:9, New York,
NY, USA, 2017, ACM.

* http://dbcsr.cp2k.org Th an kS !
* http://cp2k.org Questi0n57

Thanks to CSCS and Cray for providing access to their systems, the
Swiss PASC projects for the funding

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

S-E Baselines @ 25 nodes

e TTS Ratio: Row Value / Column Value

HWS-1T-GPU HSW-12T HSW-12T-GPU BDW-3T BDW-9T SKL-3T SKL-9T SKL-14T KNL-3T KNL-9T KNL-14T KNL-16T
HSW-1T 1.27 4.46 4.44 4.03 5.46 4.49 5.70 5.73 2.05 3.69 4.21 4.30
HWS-1T-GPU 3.50 3.49 3.16 4.28 3.52 4.47 4.49 1.61 2.90 3.30 3.37
HSW-12T 1.00 0.90 1.22 1.01 1.28 1.28 0.46 0.83 0.94 0.96
HSW-12T-GPU 0.91 1.23 1.01 1.28 1.29 0.46 0.83 0.95 0.97
BDW-3T 1.35 1.11 1.41 1.42 0.51 0.92 1.04 1.07
BDW-9T 0.82 1.04 1.05 0.38 0.68 0.77 0.79
SKL-3T 1.27 1.28 0.46 0.82 0.94 0.96
SKL-9T 1.00 0.36 0.65 0.74 0.75
SKL-14T 0.36 0.64 0.73 0.75
KNL-3T 1.80 2.05 2.10
KNL-9T 1.14 1.16
KNL-14T 1.02

o (alfio.lazzaro@chem.uzh

H20O-DFT-LS Baselines @ 25 nodes

e TTS Ratio: Row Value / Column Value

HWS-1T-GPU ~ HSW-12T HSW-12T-GPU BDW-3T BDW-9T SKL-3T SKL-9T SKL-14T KNL-3T KNL-9T KNL-14T KNL-16T
HSW-1T 8.65 7.33 15.44 6.55 11.58 10.14 14.20 14.85 5.34 10.79 13.30 14.03
HWS-1T-GPU 0.85 1.78 0.76 1.34 1.17 1.64 1.72 0.62 1.25 1.54 1.62
HSW-12T 2.11 0.89 1.58 1.38 1.94 2.03 0.73 1.47 1.81 1.91
HSW-12T-GPU 0.42 0.75 0.66 0.92 0.96 0.35 0.70 0.86 0.91
BDW-3T 1.77 1.55 2.17 2.27 0.82 1.65 2.03 2.14
BDW-9T 0.88 1.23 1.28 0.46 0.93 1.15 1.21
SKL-3T 1.40 1.46 0.53 1.06 1.31 1.38
SKL-9T 1.05 0.38 0.76 0.94 0.99
SKL-14T 0.36 0.73 0.90 0.94
KNL-3T 2.02 2.49 2.63
KNL-9T 1.23 1.30
KNL-14T 1.06

o (alfio.lazzaro@chem.uzh

AMORPH Baselines @ 25 nodes

e TTS Ratio: Row Value / Column Value

HWS-1T-GPU HSW-12T HSW-12T-GPU BDW-3T BDW-9T SKL-3T SKL-9T SKL-14T KNL-3T KNL-9T KNL-14T KNL-16T
HSW-1T 2.33 6.85 15.45 6.68 12.45 9.08 16.68 18.84 2.83 7.79 11.11 12.53
HWS-1T-GPU 2.94 6.62 2.86 5.34 3.89 7.15 8.07 1.21 3.34 4.76 5.37
HSW-12T 2.26 0.97 1.82 1.33 2.43 2.75 0.41 1.14 1.62 1.83
HSW-12T-GPU 0.43 0.81 0.59 1.08 1.22 0.18 0.50 0.72 0.81
BDW-3T 1.87 1.36 2.50 2.82 0.42 1.17 1.66 1.88
BDW-9T 0.73 1.34 1.51 0.23 0.63 0.89 1.01
SKL-3T 1.84 2.07 0.31 0.86 1.22 1.38
SKL-9T 1.13 0.17 0.47 0.67 0.75
SKL-14T 0.15 0.41 0.59 0.67
KNL-3T 2.75 3.92 4.42
KNL-9T 1.43 1.61
KNL-14T 1.13

o (alfio.lazzaro@chem.uzh

