
Porting the DBCSR library for
Sparse Matrix-Matrix

Multiplications
to Intel Xeon Phi systems

Jürg Hutter, Alfio Lazzaro, Ilia Sivkov
University of Zürich (CH)

IXPUG Europe Spring 2018 @ CINECA, Bologna, Italy

 Sparse Matrix-Matrix Multiplication (SpGEMM)
 Focus on Linear Scaling Density Functional Theory

 Introducing Distributed Block-Compressed
Sparse Row (DBCSR) library
 OpenMP and MPI parallelization
 CUDA parallelization

 Performance results on Intel Xeon Phi (KNL)
 Time-to-Solution (TTS) and Energy-to-Solution (ETS)

 Performance comparison
 Intel Xeon, Intel Xeon+GPU

 Conclusion and outlook

Overview

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 2

 Sparse Matrix-Matrix Multiplication (SpGEMM)
 Focus on Linear Scaling Density Functional Theory

 Introducing Distributed Block Compressed
Sparse Row (DBCSR) library
 OpenMP and MPI parallelization
 CUDA parallelization

 Performance results on Intel Xeon Phi (KNL)
 Time-to-Solution (TTS) and Energy-to-Solution (ETS)

 Performance comparison
 Intel Xeon, Intel Xeon+GPU

 Conclusion and outlook

Overview

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 3

Application Field: Electronic Structure

• Simulation of nanoparticles, electronic devices,
macromolecules, disordered systems, a small virus

• Simulation based on Density Functional Theory (DFT)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 4

Aggregated nanoparticles in
explicit solution (77,538
atoms). Relevant for 3rd

generation solar cells.
Run in 2014 with CP2K on
the CSCS Piz Daint
supercomputer (Cray XC30,
5272 hybrid compute
nodes, 7.8PF) at approx.
122s per step (requires
thousands steps)

Linear-Scaling DFT and SpGEMM (1)

• Evaluate the density matrix 𝑃 from its functional
definition

𝑃 =
1

2
𝐼 − sign 𝑆−1𝐻 − 𝜇𝐼 𝑆−1

where 𝐻 is Kohn-Sham matrix, 𝑆 is the overlap matrix, 𝐼 is
the identity matrix, and 𝜇 is the chemical potential
• The matrices are sparse with a priori unknown sparsity patterns
• Non-zero elements are small dense blocks,

e.g. 23 x 23
• Typical occupancies >10% (up to nearly dense)
• On-the-fly filtering procedure during

the product of two dense blocks

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 5

Linear-Scaling DFT and SpGEMM (2)

• The matrix sign function is defined as

sign 𝐴 = 𝐴 𝐴2 −1/2

• Compute with a simple iterative scheme
𝑋0 = 𝐴 ∙ 𝐴 −1

𝑋𝑛+1 =
1

2
𝑋𝑛 3𝐼 − 𝑋𝑛

2

𝑋∞ = sign 𝐴

 Requires SpGEMM (two multiplications per iteration)

• Sparsity can change between multiplications

• SpGEMM accounts up to 80% of the total runtime of the
simulations

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 6

 Sparse Matrix-Matrix Multiplication (SpGEMM)
 Focus on Linear Scaling Density Functional Theory

 Introducing Distributed Block Compressed
Sparse Row (DBCSR) library
 OpenMP and MPI parallelization
 CUDA parallelization

 Performance results on Intel Xeon Phi (KNL)
 Time-to-Solution (TTS) and Energy-to-Solution (ETS)

 Performance comparison
 Intel Xeon, Intel Xeon+GPU

 Conclusion and outlook

Overview

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 7

The DBCSR library

• Standalone library implemented in Fortran 2003
(https://dbcsr.cp2k.org)
• Distributed Block-Compressed Sparse Row

Address the requirements:

• Take full advantage of the block-structured sparse
nature of the matrices, including on-the-fly
filtering

• The dense limit as important as the sparse limit

• Provide good scalability for a large number of
processors

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 8

1

2

3

https://dbcsr.cp2k.org/

Distribution and Decomposition

1. Random permutation of row and column block indices to
achieve a good load balance
• Each processor holding approximately the same amount of data, with

roughly the same amount of Flops

2. 2D grid decomposition over 𝑃 processes

 Use optimized dense matrix-matrix multiplication algorithm

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 9

1 2

DBCSR’s multiplication scheme

• LIBCUSMM is part of the DBCSR library

• LIBXSMM developed by Intel (https://github.com/hfp/libxsmm)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 10

Small matrix
multiplications (SMM),
OpenMP parallelized

Multiplications of
blocks organized in
batches, partially

OpenMP parallelized

MPI Parallelization

https://github.com/hfp/libxsmm

Cannon’s Algorithm 𝐶 += 𝐴 𝐵

• Data is decomposed such that 𝐶 is always local, i.e. it
does not require communications

• 𝑂 𝑃 steps (“Ticks”) per each multiplication

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 11

L. E. Cannon. 1969. A cellular computer to implement the Kalman Filter Algorithm. Ph.D. Dissertation.
Montana State University

do i=1,nticks

call mpi_waitall() - ensures communication

from previous iteration is complete

(new data has arrived in current calc

buffer, comm buffer data has been sent)

post mpi_irecv() and mpi_isend() for column

and row shifts - data is sent

from the current calc buffer,

and received into the comm buffer

perform C += A x B on current calc buffers

comm and calc buffers are (pointer)

swapped for next iteration

end do

Cannon’s Algorithm 𝐶 += 𝐴 𝐵

• Data is decomposed such that 𝐶 is always local, i.e. it
does not require communications

• 𝑂 𝑃 steps per each multiplication, where per each
step:
1. Data transfer for 𝐴 and 𝐵 using non-blocking MPI calls (MPI funneled mode)

2. Local multiplication and accumulation

 Communication and computation overlap

• The volume of communicated data by each process
scales as 𝑂 Τ1 𝑃
• The communication fraction increases with the number of MPI

ranks for a given number of nodes  keep low the number of
ranks/node

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 12

L. E. Cannon. 1969. A cellular computer to implement the Kalman Filter Algorithm. Ph.D. Dissertation.
Montana State University

Thread 3

Thread 2

Thread 1

OpenMP parallelization

• Local computation consists of the pairwise
multiplications of small dense matrix blocks
• Dimensions: (𝑚 × 𝑘) for 𝐴 blocks, (𝑘 × 𝑛) for 𝐵 blocks

• Corresponding multiplications are organized in batches
• Static assignment of batches with given 𝐴 matrix row-block

indices to OpenMP threads is employed in order to avoid race
conditions

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 13

B

Thread 0

C A

OpenMP parallelization

• Local computation consists of the pairwise
multiplications of small dense matrix blocks
• Dimensions: (𝑚 × 𝑘) for 𝐴 blocks, (𝑘 × 𝑛) for 𝐵 blocks

• Corresponding multiplications are organized in batches
• Static assignment of batches with given 𝐴 matrix row-block

indices to OpenMP threads is employed in order to avoid race
conditions

• Cache oblivious matrix traversal to fix the order in which
matrix blocks need to be computed

• Batches computed in parallel on the CPU by means of
OpenMP threads or alternatively executed on a GPU
• When the GPU is fully loaded, computation may be

simultaneously done on the CPU

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 14

Local small blocks multiplications

• Optimized libraries were developed that outperform
vendor BLAS libraries for SMM
• LIBXSMM for CPU/KNL systems (Intel architectures)

• LIBCUSMM for Nvidia GPUs with CUDA

• LIBXSMM generates executable code Just-In-Time (JIT) by
assembling the instructions in-memory
• All flavors of AVX extensions are supported

• Tests with a mini-app, which mimics DBCSR batch
multiplications of a series of kernels of interested, show an
average speed-up of 2.9x for LIBXSMM over DGEMM-MKL on
KNL (peaks at 1.9 TF/s for 𝑚 = 𝑛 = 𝑘 = 32 kernel)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 15

CUDA Implementation

• A double-buffering technique, based on CUDA streams and
events, is used to maximize the occupancy of the GPU and to hide
the data transfer latency
• Overlap with MPI communications

• LIBCUSMM employs an auto-tuning framework to find optimal
kernel for each set of SMM dimensions
• Speedup in the range of 2–4x with respect to batched DGEMM in cuBLAS

• In absolute numbers,
KNL yields higher absolute
performance for smaller
kernel sizes

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 16

A. Time spent in waiting data to arrive
(MPI_Waitall for 𝐴 and 𝐵 matrices data)
 Communication time that does not overlap with

computation

B. Time spent in the batches execution
 LIBXSMM/LIBCUSMM executions
 Compute-intensive, vectorized

C. Time spent in all the rest
 Initialization/finalization of the multiplications

 Preparation of the batches
 Communication from/to GPU

 Memory-intensive

Breakdown Execution Summary

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 17

 Sparse Matrix-Matrix Multiplication (SpGEMM)
 Focus on Linear Scaling Density Functional Theory

 Introducing Distributed Block Compressed
Sparse Row (DBCSR) library
 OpenMP and MPI parallelization
 CUDA parallelization

 Performance results on Intel Xeon Phi (KNL)
 Time-to-Solution (TTS) and Energy-to-Solution (ETS)

 Performance comparison
 Intel Xeon, Intel Xeon+GPU

 Conclusion and outlook

Overview

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 18

KNL System

• Grand Tavé @ CSCS (CH)
• 164 Cray XC40 compute

nodes, with Intel Xeon
Phi 7230 (64 cores @ 1.3
GHz)

• 96 GB RAM, 16 GB HBM
• Aries routing and

communications ASIC
with Dragonfly network
topology

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 19

Benchmarks

• 3 benchmarks taken from the CP2K simulation
framework (http://www.cp2k.org)
• Representative of large-scale and long-running science runs,

hundreds of multiplications

• Only performance of the DBCSR multiplication part
• ETS based on Cray’s power management database
• We did not perform any lower-level measurements of

performance, such as based on hardware event counters
• Fluctuation up to 5% (averages of 4 independent runs)
05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 20

S-E H2O-DFT-LS AMORPH

Average Occupancy (%) 0.06 10 60

Block sizes 𝒎,𝒏, 𝒌 {6} {23} {5,13}

Rows/columns 1,119,744 158,976 141,212

http://www.cp2k.org/

Configuration

• Code compiled with Intel Fortran Compiler 17.0.4
• Similar performance with GFortran 7.1.0

• Best performance with 4 MPI ranks and 16 threads per
node
• Multiple threads in core (HT) does not give any speed-up

• All tests are executed in full CACHE mode for the
MCDRAM management and QUADRANT clustering mode

• Note that the entire CP2K application requires < 16 GB
per node, therefore it fits entirely in MCDRAM
• No significant speed-up when requiring the application to run

in MCDRAM (by using FLAT mode and forcing all allocations in
MCDRAM)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 21

Results

• TTS (s) @ 25 nodes

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 22

S-E H2O-DFT-LS AMORPH

661 686 1205

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

25 36 49 64 81

ET
S

(M
J)

Nodes

Energy-To-Solution

S-E H20-DFT-LS AMORPH

0.00

0.20

0.40

0.60

0.80

1.00

1.20

25 36 49 64 81

Ef
fi

ci
en

cy

Nodes

Scalability Efficiency

S-E H20-DFT-LS AMORPH

TTS Breakdown

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 23

S-E
• Small blocks size
• Low occupancy
• Dominated by batches

preparation and
communications

H2O-DFT-LS
• Large blocks size
• Medium occupancy
• Communication-bound

AMORPH
• Medium blocks sizes
• High occupancy
• Computation-bound

Absolute values (seconds) inside each bar part

161 129 140 125 133

156 120 94 77 66

345 275 228 199 180

0%

20%

40%

60%

80%

100%

25 36 49 64 81

TT
S

B
re

ak
d

o
w

n

Nodes

S-E

216 184
211 187 195

292 217
158 125

101

178 151 92 101 75

0%

20%

40%

60%

80%

100%

25 36 49 64 81

T
TS

 B
re

ak
d

o
w

n

Nodes

H2O-DFT-LS

18 25 34 28 44

935 669 503 406 324

253 197 148 116 99

0%

20%

40%

60%

80%

100%

25 36 49 64 81

T
TS

 B
re

ak
d

o
w

n

Nodes

AMORPH

All the rest Batches execution MPI_Waitall

 Sparse Matrix-Matrix Multiplication (SpGEMM)
 Focus on Linear Scaling Density Functional Theory

 Introducing Distributed Block Compressed
Sparse Row (DBCSR) library
 OpenMP and MPI parallelization
 CUDA parallelization

 Performance results on Intel Xeon Phi (KNL)
 Time-to-Solution (TTS) and Energy-to-Solution (ETS)

 Performance comparison
 Intel Xeon, Intel Xeon+GPU

 Conclusion and outlook

Overview

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 24

Systems and Configurations

1. Piz Daint – GPU @ CSCS (CH)
• 5,230 Cray XC50 with Intel Xeon E5-2690 v3 `Haswell` (12 cores,

single socket @ 2.6 GHz) and Nvidia Tesla P100
• A single MPI rank and 12 threads per node (no HT)
• GFortran 5.3.0, CUDA 8

2. Piz Daint – MC @ CSCS (CH)
• 1,431 Cray XC40 with Intel Xeon E5-2695 v4 `Broadwell` (18 cores,

dual-socket @ 2.1 GHz)
• 4 MPI ranks and 9 threads (no HT)
• GFortran 7.1.0

3. Swan – SKL28 @ Cray
• Cray XC40 with Intel Xeon Platinum 8176 `Skylake` (28 cores, dual-

socket @ 2.1 GHz)
• 4 MPI ranks and 14 threads (no HT)
• GFortran 7.3.0

• All systems: Aries network

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 25

TTS Comparison
 S-E

• Small blocks size
• Not optimal on GPU

• Dominated by batches
preparation and communications
• Daint-GPU 2x less data to communicate

(1 rank/node instead of 4 ranks/node)

 H2O-DFT-LS
• Large blocks size
• Optimal on GPU and KNL

• Communication-bound

 AMORPH
• Medium blocks sizes
• Computation-bound

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 26

>1  Tave-KNL faster
<1  Tave-KNL slower

0.97
0.93

0.87 0.86

0.770.79 0.76 0.77 0.76 0.740.75 0.74 0.75 0.74 0.74

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

25 36 49 64 81

T
TS

 r
at

io

Nodes

S-E

Daint-GPU / Tave-KNL Daint-MC / Tave-KNL Swan-SKL / Tave-KNL

0.91 0.90 0.89 0.89 0.88

1.21 1.21
1.15

1.18
1.13

0.94

1.03
1.11

1.14
1.11

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

25 36 49 64 81

T
TS

 r
at

io

Nodes

H2O-DFT-LS

Daint-GPU / Tave-KNL Daint-MC / Tave-KNL Swan-SKL / Tave-KNL

0.81 0.81 0.83 0.83 0.85

1.01 1.01 1.03 1.03 1.03

0.67
0.70

0.74
0.81

0.89

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

25 36 49 64 81

T
TS

 r
at

io

Nodes

AMORPH

Daint-GPU / Tave-KNL Daint-MC / Tave-KNL Swan-SKL / Tave-KNL

TTS Breakdown Comparison

• Average over results for all nodes
• Batches Execution: computation-bound (GPU execution), well threaded

• All the rest: memory-bound, partially threaded

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 27

S-E H2O-DFT-LS AMORPH

Daint-GPU / Tave-KNL 0.97 0.62 0.70

Daint-MC / Tave-KNL 0.83 1.62 1.02

Swan-SKL / Tave-KNL 0.47 0.63 0.52

S-E H2O-DFT-LS AMORPH

Daint-GPU / Tave-KNL 0.82 1.27 1.07

Daint-MC / Tave-KNL 0.49 1.13 0.82

Swan-SKL / Tave-KNL 0.44 1.13 0.93

>1  Tave-KNL faster
<1  Tave-KNL slower

Threading performance

• Speed-up when varying the number of threads with respect to the
single thread execution of the DBCSR execution @ 25 nodes
• The number of MPI ranks is fixed for the corresponding system

• Identified a performance bottleneck (load imbalance) due to the a
priori static distribution of the SMM among threads

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 28

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

d
-u

p

Threads

S-E

Daint-GPU Daint-MC
Swan-SKL Tave-KNL

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

d
-u

p

Threads

H2O-DFT-LS

Daint-GPU Daint-MC
Swan-SKL Tave-KNL

1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

d
-u

p

Threads

AMORPH

Daint-GPU Daint-MC
Swan-SKL Tave-KNL

• Average over results for all nodes

• Daint-GPU is the most energy-efficient

ETS Comparison

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 29

>1  KNL consumes less energy
<1  KNL consumes more energy

S-E H2O-DFT-LS AMORPH

Daint-GPU / Tave-KNL 0.78 0.81 0.80

Daint-MC / Tave-KNL 0.95 1.48 1.21

Swan-SKL / Tave-KNL 1.45 1.70 1.21

 Sparse Matrix-Matrix Multiplication (SpGEMM)
 Focus on Linear Scaling Density Functional Theory

 Introducing Distributed Block Compressed
Sparse Row (DBCSR) library
 OpenMP and MPI parallelization
 CUDA parallelization

 Performance results on Intel Xeon Phi (KNL)
 Time-to-Solution (TTS) and Energy-to-Solution (ETS)

 Performance comparison
 Intel Xeon, Intel Xeon+GPU

 Conclusion and outlook

Overview

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 30

Conclusion and Outlook

• At the same number of nodes, we found that DBCSR
executions on a Cray XC40 KNL-based system are:
• 11%-17% slower and 20% less energy-efficient than on a

hybrid Cray XC50 GPU based system with Nvidia P100 cards
• Up to 17% faster and 70% more energy-efficient that on a Cray

XC40 system equipped with dual socket Intel Xeon CPUs

• Bottlenecks (ongoing developments)
• MPI Communication and load-imbalance

• Partially implemented a communication optimal algorithm with
dynamically distributed load-balancing, implemented with remote
memory access MPI communications

• Threading load-imbalance due to the a priori static
distribution of the SMM among threads
• Plan to change the algorithm to be dynamic by using OpenMP tasks

(G. Gibb et al., EPCC)

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 31

Other References

• Urban Borštnik et al., Sparse matrix multiplication: The distributed block-
compressed sparse row library, Parallel Computing, 2014, Volume 40, Issues 5–6,
pp 47–58

• Ole Schütt et al., GPU Accelerated Sparse Matrix Matrix Multiplication for Linear
Scaling Density Functional Theory, chapter in “Electronic Structure Calculations on
Graphics Processing Units”, John Wiley and Sons, ISBN 9781118661789

• Alfio Lazzaro et al., Increasing the Efficiency of Sparse Matrix-Matrix Multiplication
with a 2.5D Algorithm and One-Sided MPI. In Proceedings of the Platform for
Advanced Scientific Computing Conference, PASC ’17, pages 3:1–3:9, New York,
NY, USA, 2017, ACM.

• http://dbcsr.cp2k.org

• http://cp2k.org

Thanks to CSCS and Cray for providing access to their systems, the
Swiss PASC projects for the funding

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 32

Thanks!
Questions?

Backup

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 33

S-E Baselines @ 25 nodes

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 34

HWS-1T-GPU HSW-12T HSW-12T-GPU BDW-3T BDW-9T SKL-3T SKL-9T SKL-14T KNL-3T KNL-9T KNL-14T KNL-16T

HSW-1T 1.27 4.46 4.44 4.03 5.46 4.49 5.70 5.73 2.05 3.69 4.21 4.30

HWS-1T-GPU 3.50 3.49 3.16 4.28 3.52 4.47 4.49 1.61 2.90 3.30 3.37

HSW-12T 1.00 0.90 1.22 1.01 1.28 1.28 0.46 0.83 0.94 0.96

HSW-12T-GPU 0.91 1.23 1.01 1.28 1.29 0.46 0.83 0.95 0.97

BDW-3T 1.35 1.11 1.41 1.42 0.51 0.92 1.04 1.07

BDW-9T 0.82 1.04 1.05 0.38 0.68 0.77 0.79

SKL-3T 1.27 1.28 0.46 0.82 0.94 0.96

SKL-9T 1.00 0.36 0.65 0.74 0.75

SKL-14T 0.36 0.64 0.73 0.75

KNL-3T 1.80 2.05 2.10

KNL-9T 1.14 1.16

KNL-14T 1.02

• TTS Ratio: Row Value / Column Value

H2O-DFT-LS Baselines @ 25 nodes

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 35

• TTS Ratio: Row Value / Column Value

HWS-1T-GPU HSW-12T HSW-12T-GPU BDW-3T BDW-9T SKL-3T SKL-9T SKL-14T KNL-3T KNL-9T KNL-14T KNL-16T

HSW-1T 8.65 7.33 15.44 6.55 11.58 10.14 14.20 14.85 5.34 10.79 13.30 14.03

HWS-1T-GPU 0.85 1.78 0.76 1.34 1.17 1.64 1.72 0.62 1.25 1.54 1.62

HSW-12T 2.11 0.89 1.58 1.38 1.94 2.03 0.73 1.47 1.81 1.91

HSW-12T-GPU 0.42 0.75 0.66 0.92 0.96 0.35 0.70 0.86 0.91

BDW-3T 1.77 1.55 2.17 2.27 0.82 1.65 2.03 2.14

BDW-9T 0.88 1.23 1.28 0.46 0.93 1.15 1.21

SKL-3T 1.40 1.46 0.53 1.06 1.31 1.38

SKL-9T 1.05 0.38 0.76 0.94 0.99

SKL-14T 0.36 0.73 0.90 0.94

KNL-3T 2.02 2.49 2.63

KNL-9T 1.23 1.30

KNL-14T 1.06

AMORPH Baselines @ 25 nodes

05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 36

• TTS Ratio: Row Value / Column Value

HWS-1T-GPU HSW-12T HSW-12T-GPU BDW-3T BDW-9T SKL-3T SKL-9T SKL-14T KNL-3T KNL-9T KNL-14T KNL-16T

HSW-1T 2.33 6.85 15.45 6.68 12.45 9.08 16.68 18.84 2.83 7.79 11.11 12.53

HWS-1T-GPU 2.94 6.62 2.86 5.34 3.89 7.15 8.07 1.21 3.34 4.76 5.37

HSW-12T 2.26 0.97 1.82 1.33 2.43 2.75 0.41 1.14 1.62 1.83

HSW-12T-GPU 0.43 0.81 0.59 1.08 1.22 0.18 0.50 0.72 0.81

BDW-3T 1.87 1.36 2.50 2.82 0.42 1.17 1.66 1.88

BDW-9T 0.73 1.34 1.51 0.23 0.63 0.89 1.01

SKL-3T 1.84 2.07 0.31 0.86 1.22 1.38

SKL-9T 1.13 0.17 0.47 0.67 0.75

SKL-14T 0.15 0.41 0.59 0.67

KNL-3T 2.75 3.92 4.42

KNL-9T 1.43 1.61

KNL-14T 1.13

