
Large-Scale Implementation of the
Density Matrix Renormalization Group Algorithm:
Performance Analysis on the Intel® Broadwell and Knights Landing Architectures

James Vance*, Marcello Dalmonte, Ivan Girotto
The Abdus Salam International Centre for Theoretical Physics
Strada Costiera 11, 34151 Trieste, Italy
*jvance@ictp.it

5 March 2018

Introduction

Two-dimensional many-body quantum systems

Figure 1: Spin-1/2 Kagome Heisenberg antiferromagnet, Yan et al
Science 2011 [1] Figure 2: J1-J2 XY model on a square lattice

• Crucial in understanding high-Tc superconductivity, frustrated magnetism, and
topological phases of matter [2–5]

• Intractable with exact diagonalization (large number of states) [6] and quantum
Monte Carlo (negative sign problem) [7]

1

Density Matrix Renormalization Group (DMRG)

• Variational method originally used to study the ground state properties of
many-body quantum systems in 1D [8]

• Systematic truncation of Hilbert space, keeping onlym basis states with
minimal loss of information

• Well-established method used in condensed matter [9] and quantum
chemistry [10]

2

Towards 2D Systems

• DMRG has been proven effective for 2D but requires more states to be kept
after truncation [11–13]

• Results in large sparse matrices and more intensive operations requiring a
scalable parallel solution
→ HPC approach

3

Objectives

• Implement DMRG calculations for distributed-memory architectures

• Enable developed code to run efficiently on a Tier-0 world-class HPC
infrastructure

• Perform large-scale DMRG calculations on 1D and 2D frustrated magnets

• Shed light on some paradigmatic models of frustrated magnetism that are
relevant to experiments (e.g. cold gases in optical lattices and
superconducting circuits)

4

Implementation

Infinite-size DMRG algorithm
Block notation: B(n,D)

block of n sites with D states [14]
Local dimension: d

e.g. for spin-1/2 systems d = 2

s1 s2 · · · sL s1s2· · ·sR
a) · · · · · ·

b) · · · · · ·

c) · · · · · ·

d) · · · · · ·
s1 s2 · · · sL+1 s1s2· · ·sR+1

Figure 3: Infinite-size algorithm [9]

a) Initial blocks
b) Add one site to each:

B(L,m) → B(L+ 1,dm)

B(R,m) → B(R+ 1,dm)

c) Build and diagonalize the Superblock:*
B(L+ R+ 2,d2m2)

d) Truncate Basis†

B(L+ 1,dm) → B(L+ 1,m)

B(R+ 1,dm) → B(R+ 1,m)

*Computationally intensive operations: Construction and diagonalization of the Hamiltonian
†Full eigendecomposition of small density matrices and rotation of block operators

5

Libraries for Parallel Linear Algebra

Portable, Extensible Toolkit for Scientific Computation (PETSc)
• data structures and routines for scalable scientific applications
• overlap in computation and communication during sparse matrix-vector
multiplications (spMVM)

Scalable Library for Eigenvalue Problem Computations (SLEPc)
• eigenvalue decomposition of large sparse matrices [15]
• Eigenvalue Problem Solver (EPS) - iterative diagonalization algorithms that use
efficient spMVM from PETSc

6

The Kronecker Product

Construction of the enlarged blocks and superblock involve linear combinations
of Kronecker products of matrices

C =
∑
n

anAn ⊗ Bn (1)

We provided our own implementationMatKronProdSum

• Submatrix-collection for non-local rows
• Preallocation of matrix memory
• Parallel local generation of resultant matrix elements
• Index slicing for selection of states

7

Performance Analysis

System Architecture

Partition Marconi A1 (BDW) Marconi A2 (KNL)

Processors 2× 18-core Intel Xeon E5-2697 v4
(Broadwell) at 2.3 GHz

68-core Intel Xeon Phi 7250 CPU
(Knights Landing) at 1.40 GHz

Cores 36 cores/node 68 cores/node
Extensions AVX 2.0 AVX-512

RAM 128 GB/node 16 GB/node MCDRAM
96 GB/node DDR4

Max Memory
Bandwidth 76.8 GB/s‡ MCDRAM: 475-490 GB/s

DDR4: 90 GB/s §
Network Intel Omnipath, 100 Gb/s

‡Intel specifications [16]
§Streams benchmark [17] in FLAT mode; Marconi A2 operates in CACHE mode

8

Implementation Details

PETSc 3.7 and SLEPc 3.7
• BDW: Pre-compiled binaries on Marconi
• KNL: --xOPTFLAGS="-g -xMIC-AVX512 -O3 -mP2OPT_hpo_vec_remainder=F"

--with-memalign=64

EPS Solver
• Type: Krylov-Schur (Thick-Restart Lanczos)
• Relative Tolerance: 10−12

Test Case: 1D Heisenberg XXZ Hamiltonian

· · ·

s1 s2 s3 sN−2sN−1 sN H =
N−1∑
i=1

(
JzSzi Szi+1 +

J
2
[S+i S−i+1 + S−i S+i+1

])
9

Quantum Number Conservation

• Implemented conservation of total magnetization Sztot ≡ SzL + SzσL + SzσR + SzR = const
• Superblock Hamiltonian HL◦◦R matrix size is reduced
• Reduced density matrices ρL◦ become block-diagonal

Matrix Vector Direct Solver

Object Type

0

50

100

150

200

250

M
em

or
y
(G

B
yt
es
)

All S
z sectors

Target S
z
tot = 0

4 (272) 8 (544)

Number of nodes (Number of processes)

0

1000

2000

3000

4000

5000

6000

7000

T
im

e
el
ap
se
d
(s
)

All Sz sectors

S
z
tot

= 0

All Sz sectors

S
z
tot = 0

TruncateOperators

GetRotationMatrices

BuildReducedDMs

SolveGroundState

BuildSuperBlock

BuildBlockRight

BuildBlockLeft

Figure 4: Memory consumption (left) and time to solution (right) comparing with and without targeting
magnetization sector Sz, as measured on 4-8 nodes of Marconi KNL

10

Performance Results m = 768

4 8 16 32 64

Number of MPI processes

0

250

500

750

1000

1250

1500

T
im

e
el
ap
se
d
(s
)

BDW, m = 768

TruncateOperators

GetRotationMatrices

BuildReducedDMs

SolveGroundState

BuildSuperBlock

BuildBlockRight

BuildBlockLeft

4 8 16 32 64

Number of MPI processes

0

1000

2000

3000

4000

5000

6000

T
im

e
el
ap
se
d
(s
)

KNL, m = 768

Figure 5: Elapsed times form = 768 on 1-2 nodes with varying number of MPI processes

11

Performance Results m = 768

10 20 30 40 50 60

Number of MPI processes

0.0

0.2

0.4

0.6

0.8

1.0
P
a
ra
ll
el
E
ffi
ci
en
cy

BDW

m = 768 Total

m = 768 BuildSuperBlock

m = 768 SolveGroundState

10 20 30 40 50 60

Number of MPI processes

0.0

0.2

0.4

0.6

0.8

1.0

P
a
ra
ll
el
E
ffi
ci
en
cy

KNL

m = 768 Total

m = 768 BuildSuperBlock

m = 768 SolveGroundState

Figure 6: Parallel efficiency form = 768 on 1-2 nodes with varying number of MPI processes

12

Performance Results (Towards largerm)

Full-Node vs Half-Node

Full-node case Half-node case
BDW 36 procs/node 18 procs/node
KNL 68 procs/node 34 procs/node

Motivation for Running at Half-Node

• Greater memory bandwidth for each process
• Reduced memory capacity pressure
• More unknowns assigned to each process means less communication vs.
computation during spMVM

13

Performance Results m = 1024 on BDW

2 (72) 4 (144) 8 (288) 16 (576) 32 (1152)

No. of nodes (No. of processes)

0

100

200

300

400

500

600

700
T
im

e
el
ap
se
d
(s
)

BDW, 36 procs/node, m = 1024

2 (36) 4 (72) 8 (144) 16 (288) 32 (576)

No. of nodes (No. of processes)

0

100

200

300

400

500

600

700

T
im

e
el
ap
se
d
(s
)

BDW, 18 procs/node, m = 1024

TruncateOperators

GetRotationMatrices

BuildReducedDMs

SolveGroundState

BuildSuperBlock

BuildBlockRight

BuildBlockLeft

Figure 7: Elapsed times form = 1024 kept states on BDW for full-node (left) and half-node (right) cases

14

Performance Results m = 1024 on KNL

2 (136) 4 (272) 8 (544) 16 (1088) 32 (2176)

No. of nodes (No. of processes)

0

200

400

600

800

1000

1200
T
im

e
el
ap
se
d
(s
)

KNL, 68 procs/node, m = 1024

2 (68) 4 (136) 8 (272) 16 (544) 32 (1088)

No. of nodes (No. of processes)

0

200

400

600

800

1000

1200

T
im

e
el
ap
se
d
(s
)

KNL, 34 procs/node, m = 1024

TruncateOperators

GetRotationMatrices

BuildReducedDMs

SolveGroundState

BuildSuperBlock

BuildBlockRight

BuildBlockLeft

Figure 8: Elapsed times form = 1024 kept states on KNL for full-node (left) and half-node (right) cases

15

Performance Results m = 1024

0 4 8 12 16 20 24 28 32

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

P
a
ra
ll
el

E
ffi
ci
en
cy

m = 1024

36 ppn, BDW

68 ppn, KNL

0 4 8 12 16 20 24 28 32

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

P
a
ra
ll
el

E
ffi
ci
en
cy

m = 1024

18 ppn, BDW

34 ppn, KNL

Figure 9: Parallel efficiencies for the full-node case (left) and half-node case (right) withm = 1024 kept states,
shown for ■ all steps, ■ BuildSuperBlock and ■ SolveGroundState

16

Performance Results m = 1536 on BDW

4

(144)
6

(216)
8

(288)
12

(432)
16

(576)
24

(864)
32

(1152)

No. of nodes (No. of processes)

0

200

400

600

800

1000

1200

T
im

e
el
ap
se
d
(s
)

BDW, 36 procs/node, m = 1536

4

(72)
6

(108)
8

(144)
12

(216)
16

(288)
24

(432)
32

(576)

No. of nodes (No. of processes)

0

200

400

600

800

1000

1200

T
im

e
el
ap
se
d
(s
)

BDW, 18 procs/node, m = 1536

TruncateOperators

GetRotationMatrices

BuildReducedDMs

SolveGroundState

BuildSuperBlock

BuildBlockRight

BuildBlockLeft

Figure 10: Elapsed times form = 1536 kept states on BDW for full-node (left) and half-node (right) cases

17

Performance Results m = 1536 on KNL

6

(408)
8

(544)
12

(816)
16

(1088)
24

(1632)
32

(2176)

No. of nodes (No. of processes)

0

500

1000

1500

2000

2500
T
im

e
el
ap
se
d
(s
)

KNL, 68 procs/node, m = 1536

6

(204)
8

(272)
12

(408)
16

(544)
24

(816)
32

(1088)

No. of nodes (No. of processes)

0

500

1000

1500

2000

2500

T
im

e
el
ap
se
d
(s
)

KNL, 34 procs/node, m = 1536

TruncateOperators

GetRotationMatrices

BuildReducedDMs

SolveGroundState

BuildSuperBlock

BuildBlockRight

BuildBlockLeft

Figure 11: Elapsed times form = 1536 kept states on KNL for full-node (left) and half-node (right) cases

18

Performance Results m = 1536

4 8 12 16 20 24 28 32

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
a
ra
ll
el

E
ffi
ci
en
cy

m = 1536

36 ppn, BDW

68 ppn, KNL

4 8 12 16 20 24 28 32

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
a
ra
ll
el

E
ffi
ci
en
cy

m = 1536

18 ppn, BDW

34 ppn, KNL

Figure 12: Parallel efficiency for the full-node case (left) and half-node case (right) withm = 1536 kept states

19

Performance Results m = 2048

12

(216)
16

(288)
24

(432)
32

(576)
40

(720)
64

(1152)

No. of nodes (No. of processes)

0

200

400

600

800

1000

1200
T
im

e
el
ap
se
d
(s
)

BDW, 18 procs/node, m = 2048

12

(408)
16

(544)
24

(816)
32

(1088)
40

(1360)
64

(2176)

No. of nodes (No. of processes)

0

1000

2000

3000

4000

T
im

e
el
ap
se
d
(s
)

KNL, 34 procs/node, m = 2048

TruncateOperators

GetRotationMatrices

BuildReducedDMs

SolveGroundState

BuildSuperBlock

BuildBlockRight

BuildBlockLeft

Figure 13: Elapsed times for the half-node case withm = 2048 kept states

20

Performance Results m = 2048

12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

P
a
ra
ll
el

E
ffi
ci
en
cy

m = 2048

18 ppn, BDW

34 ppn, KNL

Figure 14: Parallel efficiency for the half-node case withm = 2048 kept states. KNL exhibits superscaling
effects due to MCDRAM and DDR4 having a large difference in memory bandwidth

21

Performance Analysis

General Observations

• Good scaling behavior of BuildSuperBlock for all cases due to optimally
parallelMatKronProdSum routine

• Scalability of SolveGroundState (SLEPc) is better in the half-node case
• BDW is faster but KNL has better parallel efficiency and exhibits
superscaling due to high-bandwidth memory

22

Scaling of Computational Resources: Memory/Iteration

512 768 1024 1536 2048

Number of kept states, m

0

200

400

600

800

1000

1200

1400

M
em

or
y
/
it
er
at
io
n
(G

B
yt
es
)

Matrix

Direct Solver

Vector

Others

9.0 9.5 10.0 10.5 11.0
log2(m)

6

7

8

9

10

lo
g

2
(m

em
/

G
B
)

log2(mem/GB) = 2.33log2(m)−15.41, R
2 = 0.998

Figure 15: Scaling behavior of memory consumed with the number of kept statesm on 16 nodes of Marconi
KNL (≈ 100 GB/node)

Estimation:
Given 3600 KNL nodes with 310TB of memory, we can target up tom = 22,000 states 23

Scaling of Computational Resources: Elapsed Time/Iteration

512 768 1024 1536 2048

Number of kept states, m

0

100

200

300

400

500
T
im

e
el
ap
se
d
/
it
er
at
io
n
,

t
(s
)

TruncateOperators

GetRotationMatrices

BuildReducedDMs

SolveGroundState

BuildSuperBlock

BuildBlockRight

BuildBlockLeft

9.0 9.5 10.0 10.5 11.0
log2(m)

3

4

5

6

7

8

9

lo
g

2
(t
/

s)

log2(t/s) = 2.67log2(m)−20.85, R
2 = 0.985

Figure 16: Scaling behavior of elapsed time with the number of kept statesm on 16 nodes of Marconi KNL
running at half-node

Estimation:
If we targetm = 22000 states on 3600 KNL nodes, we would consume 85,000 cpu-h/iteration 24

Discussion

Limitations to scalability

1. Eigensolver is limited by computation vs communication during spMVMs
2. Differentm require different minimum numbers of nodes
3. spMVM is also limited by the memory bandwidth per core

To achieve best performance

1. Limit the total number of processes to reduce communication vs
computation

2. Use enough nodes to fit the problem in memory
3. Identify a good minimum number of processes per node so that each

process still gets high memory bandwidth

25

Conclusions

Conclusions

• Presented ourmassively parallel DMRG implementation
• Assessed its performance on up to thousands of cores on the KNL and
BDW sections of Marconi

• Identified limitations in scalability: communication bottlenecks, memory
size, and memory bandwidth

• Measured scaling of resources allowing us to predict time and memory
needed for anym

• Demonstrated the framework for full DMRG calculations of 2D systems for
large number of kept states, allowing us to provide compelling evidence of
topological order in experimentally relevant model systems

26

Ongoing and Future Work

Ongoing and Future Work

• ISCRA C project to study topological phases in 2D
• 2D finite-size DMRG - same workflow but more Hamiltonian terms and
greater memory consumption

• Efficient matrix-free approach using MATSHELL
• Exploit KNL in flat mode using memkind to control data between MCDRAM
and DDR4

27

Special thanks:

ICTP-TRIL

Thank you
for your attention!

References I

[1] S Yan, D A Huse, and S R White. “Spin-Liquid Ground State of the S = 1/2 Kagome
Heisenberg Antiferromagnet”. In: Science 332.6034 (2011), pp. 1173–1176.

[2] Patrick a. Lee, Naoto Nagaosa, and Xiao-Gang Wen. “Doping a Mott insulator: Physics of
high-temperature superconductivity”. In: Rev. Mod. Phys. 78.1 (2006), pp. 17–85. issn:
0034-6861. doi: 10.1103/RevModPhys.78.17. url:
http://link.aps.org/doi/10.1103/RevModPhys.78.17.

[3] C. Lacroix, P. Mendels, and F. Mila, eds. Introduction to Frustrated Magnetism. Springer
Series in Solid-State Sciences Vol. 164, 2010.

[4] H C Jiang, Z Y Weng, and D N Sheng. “Density Matrix Renormalization Group Numerical
Study of the Kagome Antiferromagnet”. In: Physical Review Letters 101.11 (Sept. 2008),
pp. 117203–4.

http://dx.doi.org/10.1103/RevModPhys.78.17
http://link.aps.org/doi/10.1103/RevModPhys.78.17

References II

[5] E Gibney and D Castelvecchi. Physics of 2D exotic matter wins Nobel. Vol. 538. Nature,
2016.

[6] Mischa Thesberg and Erik S Sørensen. “An Exact Diagonalization Study of the Anisotropic
Triangular Lattice Heisenberg Model Using Twisted Boundary Conditions”. In: arXiv.org 1
(June 2014), p. 115117. arXiv: 1406.4083v2 [cond-mat.str-el].

[7] M Troyer and U J Wiese. “Computational complexity and fundamental limitations to
fermionic quantum Monte Carlo simulations”. In: Physical Review Letters 95.12 (2005).

[8] Steven R White. “Density matrix formulation for quantum renormalization groups”. In:
Physical Review Letters 69.19 (1992), pp. 2863–2866.

[9] U Schollwöck. “The density-matrix renormalization group”. In: Reviews of Modern Physics
77.1 (Jan. 2005), pp. 259–315.

http://arxiv.org/abs/1406.4083v2

References III

[10] Garnet Kin-Lic Chan and Sandeep Sharma. “The Density Matrix Renormalization Group in
Quantum Chemistry”. In: Annual Review of Physical Chemistry 62.1 (May 2011),
pp. 465–481.

[11] Susumu Yamada, Masahiko Okumura, and Masahiko Machida. “Direct Extension of
Density-Matrix Renormalization Group to Two-Dimensional Quantum Lattice Systems:
Studies of Parallel Algorithm, Accuracy, and Performance”. In: Journal of the Physical
Society of Japan 78.9 (Sept. 2009), pp. 094004–5.

[12] E M Stoudenmire and Steven R White. “Studying Two-Dimensional Systems with the
Density Matrix Renormalization Group”. In: Annual Review of Condensed Matter Physics
3.1 (Mar. 2012), pp. 111–128.

[13] F B Ramos and J C Xavier. “N-leg spin-S Heisenberg ladders: A density-matrix
renormalization group study”. In: Physical Review B 89.9 (Mar. 2014), pp. 094424–7.

References IV

[14] Gabriele De Chiara et al. “Density Matrix Renormalization Group for Dummies”. In: Journal
of Computational and Theoretical Nanoscience 5.7 (July 2008), pp. 1277–1288.

[15] J. E. Roman et al. SLEPc Users Manual. Tech. rep. DSIC-II/24/02 - Revision 3.7. D. Sistemes
Informàtics i Computació, Universitat Politècnica de València, 2016.

[16] Intel. Intel Xeon Processor E5-2697 v4. accessed 24 November 2017. 2017. url:
https://ark.intel.com/products/91755/Intel-Xeon-Processor-E5-2697-
v4-45M-Cache-2_30-GHz.

[17] Karthik Raman (Intel). Optimizing Memory Bandwidth in Knights Landing on Stream Triad.
accessed 24 November 2017. 2017. url:
https://software.intel.com/en-us/articles/optimizing-memory-
bandwidth-in-knights-landing-on-stream-triad.

https://ark.intel.com/products/91755/Intel-Xeon-Processor-E5-2697-v4-45M-Cache-2_30-GHz
https://ark.intel.com/products/91755/Intel-Xeon-Processor-E5-2697-v4-45M-Cache-2_30-GHz
https://software.intel.com/en-us/articles/optimizing-memory-bandwidth-in-knights-landing-on-stream-triad
https://software.intel.com/en-us/articles/optimizing-memory-bandwidth-in-knights-landing-on-stream-triad

Single DMRG Iteration

BuildBlockLeft and BuildBlockRight
Grow blocks by adding one site dim(L) = m→
dim(L◦) = dm

OL◦ =
∑
n
OL,n ⊗ sn (2)

BuildSuperBlock*
Form the superblock Hamiltonian
dim(L ◦ ◦R) = d2m2

HL◦◦R =
∑
n

anOL◦,n ⊗O◦R,n (3)

SolveGroundState*
Diagonalize using Lanczos iteration

HL◦◦R|ψ0⟩ = E0|ψ0⟩ (4)

BuildReducedDMs
Obtain the reduced density matrices

ρL◦ = Tr◦R |ψ0⟩⟨ψ0| (5)

GetRotationMatrices
Getm largest eigenstates of ρL◦
and form dm×mmatrix UL◦

ρL◦ ≈
m∑

α=1
ωα |α⟩L◦ L◦⟨α| ≡ UL◦ (6)

TruncateOperators
Rotate each operator to the new basis
dim(L◦) = dm→ dim(L◦) = m

ÕL◦ = (UL◦)
† OL◦UL◦ (7)

*Computationally-intensive operations

Infinite and Finite DMRG Algorithms

• Infinite DMRG (left) is computationally cheap but convergence is poorer
especially since the shape of our 2D lattice is not preserved

• Finite-size DMRG (right) helps correct this by applying sweeps and
optimizing the wave function

Source: Schollwöck, 2011

Scaling of Computational Resources

512 768 1024 1536 2048

Number of kept states, m

0

25

50

75

100

125

150

175

T
im

e
el
ap
se
d
/
it
er
at
io
n
,

t
(s
)

TruncateOperators

GetRotationMatrices

BuildReducedDMs

SolveGroundState

BuildSuperBlock

BuildBlockRight

BuildBlockLeft

9.0 9.5 10.0 10.5 11.0
log2(m)

2

3

4

5

6

7

lo
g

2
(t
/

s)

log2(t/s) = 2.75log2(m)−23.08, R
2 = 0.997

Figure 17: Scaling behavior of elapsed time with the number of kept statesm on 16 nodes of Marconi BDW
running at half-node

Scaling of Computational Resources

512 768 1024 1536 2048

Number of kept states, m

0

200

400

600

800

1000
M
em

or
y
/
it
er
at
io
n
(G

B
yt
es
)

Matrix

Direct Solver

Vector

Others

9.0 9.5 10.0 10.5 11.0
log2(m)

5

6

7

8

9

10

lo
g

2
(m

em
/

G
B
)

log2(mem/GB) = 2.57log2(m)−18.42, R
2 = 0.999

Figure 18: Scaling behavior of memory consumed with the number of kept statesm on 16 nodes of Marconi
BDW

1D Traversal of Square Lattice

Figure 19: One-dimensional traversal of the square lattice creating long-range interactions

	Introduction
	Implementation
	Performance Analysis
	Conclusions
	Ongoing and Future Work
	Appendix

