
Large-Scale Implementation of the
Density Matrix Renormalization Group Algorithm:
Performance Analysis on the Intel® Broadwell and Knights Landing Architectures

James Vance*, Marcello Dalmonte, Ivan Girotto
The Abdus Salam International Centre for Theoretical Physics
Strada Costiera 11, 34151 Trieste, Italy
*jvance@ictp.it

5 March 2018



Introduction



Two-dimensional many-body quantum systems

Figure 1: Spin-1/2 Kagome Heisenberg antiferromagnet, Yan et al
Science 2011 [1] Figure 2: J1-J2 XY model on a square lattice

• Crucial in understanding high-Tc superconductivity, frustrated magnetism, and
topological phases of matter [2–5]

• Intractable with exact diagonalization (large number of states) [6] and quantum
Monte Carlo (negative sign problem) [7]
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Density Matrix Renormalization Group (DMRG)

• Variational method originally used to study the ground state properties of
many-body quantum systems in 1D [8]

• Systematic truncation of Hilbert space, keeping onlym basis states with
minimal loss of information

• Well-established method used in condensed matter [9] and quantum
chemistry [10]
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Towards 2D Systems

• DMRG has been proven effective for 2D but requires more states to be kept
after truncation [11–13]

• Results in large sparse matrices and more intensive operations requiring a
scalable parallel solution
→ HPC approach
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Objectives

• Implement DMRG calculations for distributed-memory architectures

• Enable developed code to run efficiently on a Tier-0 world-class HPC
infrastructure

• Perform large-scale DMRG calculations on 1D and 2D frustrated magnets

• Shed light on some paradigmatic models of frustrated magnetism that are
relevant to experiments (e.g. cold gases in optical lattices and
superconducting circuits)
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Implementation



Infinite-size DMRG algorithm
Block notation: B(n,D)

block of n sites with D states [14]
Local dimension: d

e.g. for spin-1/2 systems d = 2

s1 s2 · · · sL s1s2· · ·sR
a) · · · · · ·

b) · · · · · ·

c) · · · · · ·

d) · · · · · ·
s1 s2 · · · sL+1 s1s2· · ·sR+1

Figure 3: Infinite-size algorithm [9]

a) Initial blocks
b) Add one site to each:

B(L,m) → B(L+ 1,dm)

B(R,m) → B(R+ 1,dm)

c) Build and diagonalize the Superblock:*
B(L+ R+ 2,d2m2)

d) Truncate Basis†

B(L+ 1,dm) → B(L+ 1,m)

B(R+ 1,dm) → B(R+ 1,m)

*Computationally intensive operations: Construction and diagonalization of the Hamiltonian
†Full eigendecomposition of small density matrices and rotation of block operators
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Libraries for Parallel Linear Algebra

Portable, Extensible Toolkit for Scientific Computation (PETSc)
• data structures and routines for scalable scientific applications
• overlap in computation and communication during sparse matrix-vector
multiplications (spMVM)

Scalable Library for Eigenvalue Problem Computations (SLEPc)
• eigenvalue decomposition of large sparse matrices [15]
• Eigenvalue Problem Solver (EPS) - iterative diagonalization algorithms that use
efficient spMVM from PETSc
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The Kronecker Product

Construction of the enlarged blocks and superblock involve linear combinations
of Kronecker products of matrices

C =
∑
n

anAn ⊗ Bn (1)

We provided our own implementationMatKronProdSum

• Submatrix-collection for non-local rows
• Preallocation of matrix memory
• Parallel local generation of resultant matrix elements
• Index slicing for selection of states
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Performance Analysis



System Architecture

Partition Marconi A1 (BDW) Marconi A2 (KNL)

Processors 2× 18-core Intel Xeon E5-2697 v4
(Broadwell) at 2.3 GHz

68-core Intel Xeon Phi 7250 CPU
(Knights Landing) at 1.40 GHz

Cores 36 cores/node 68 cores/node
Extensions AVX 2.0 AVX-512

RAM 128 GB/node 16 GB/node MCDRAM
96 GB/node DDR4

Max Memory
Bandwidth 76.8 GB/s‡ MCDRAM: 475-490 GB/s

DDR4: 90 GB/s §
Network Intel Omnipath, 100 Gb/s

‡Intel specifications [16]
§Streams benchmark [17] in FLAT mode; Marconi A2 operates in CACHE mode
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Implementation Details

PETSc 3.7 and SLEPc 3.7
• BDW: Pre-compiled binaries on Marconi
• KNL: --xOPTFLAGS="-g -xMIC-AVX512 -O3 -mP2OPT_hpo_vec_remainder=F"

--with-memalign=64

EPS Solver
• Type: Krylov-Schur (Thick-Restart Lanczos)
• Relative Tolerance: 10−12

Test Case: 1D Heisenberg XXZ Hamiltonian

· · ·

s1 s2 s3 sN−2sN−1 sN H =
N−1∑
i=1

(
JzSzi Szi+1 +

J
2
[S+i S−i+1 + S−i S+i+1

])
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Quantum Number Conservation

• Implemented conservation of total magnetization Sztot ≡ SzL + SzσL + SzσR + SzR = const
• Superblock Hamiltonian HL◦◦R matrix size is reduced
• Reduced density matrices ρL◦ become block-diagonal
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Performance Results m = 768
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Performance Results m = 768
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Figure 6: Parallel efficiency form = 768 on 1-2 nodes with varying number of MPI processes
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Performance Results (Towards largerm)

Full-Node vs Half-Node

Full-node case Half-node case
BDW 36 procs/node 18 procs/node
KNL 68 procs/node 34 procs/node

Motivation for Running at Half-Node

• Greater memory bandwidth for each process
• Reduced memory capacity pressure
• More unknowns assigned to each process means less communication vs.
computation during spMVM
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Performance Results m = 1024 on BDW
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Figure 7: Elapsed times form = 1024 kept states on BDW for full-node (left) and half-node (right) cases
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Performance Results m = 1024 on KNL

2 (136) 4 (272) 8 (544) 16 (1088) 32 (2176)

No. of nodes (No. of processes)

0

200

400

600

800

1000

1200
T
im

e
el
ap
se
d
(s
)

KNL, 68 procs/node, m = 1024

2 (68) 4 (136) 8 (272) 16 (544) 32 (1088)

No. of nodes (No. of processes)

0

200

400

600

800

1000

1200

T
im

e
el
ap
se
d
(s
)

KNL, 34 procs/node, m = 1024

TruncateOperators

GetRotationMatrices

BuildReducedDMs

SolveGroundState

BuildSuperBlock

BuildBlockRight

BuildBlockLeft
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Performance Results m = 1024
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Performance Results m = 1536 on BDW
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Figure 10: Elapsed times form = 1536 kept states on BDW for full-node (left) and half-node (right) cases

17



Performance Results m = 1536 on KNL
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Figure 11: Elapsed times form = 1536 kept states on KNL for full-node (left) and half-node (right) cases
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Performance Results m = 1536
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Figure 12: Parallel efficiency for the full-node case (left) and half-node case (right) withm = 1536 kept states
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Performance Results m = 2048
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Performance Results m = 2048
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Figure 14: Parallel efficiency for the half-node case withm = 2048 kept states. KNL exhibits superscaling
effects due to MCDRAM and DDR4 having a large difference in memory bandwidth

21



Performance Analysis

General Observations

• Good scaling behavior of BuildSuperBlock for all cases due to optimally
parallelMatKronProdSum routine

• Scalability of SolveGroundState (SLEPc) is better in the half-node case
• BDW is faster but KNL has better parallel efficiency and exhibits
superscaling due to high-bandwidth memory
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Scaling of Computational Resources: Memory/Iteration
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Figure 15: Scaling behavior of memory consumed with the number of kept statesm on 16 nodes of Marconi
KNL (≈ 100 GB/node)

Estimation:
Given 3600 KNL nodes with 310TB of memory, we can target up tom = 22,000 states 23



Scaling of Computational Resources: Elapsed Time/Iteration
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Estimation:
If we targetm = 22000 states on 3600 KNL nodes, we would consume 85,000 cpu-h/iteration 24



Discussion

Limitations to scalability

1. Eigensolver is limited by computation vs communication during spMVMs
2. Differentm require different minimum numbers of nodes
3. spMVM is also limited by the memory bandwidth per core

To achieve best performance

1. Limit the total number of processes to reduce communication vs
computation

2. Use enough nodes to fit the problem in memory
3. Identify a good minimum number of processes per node so that each

process still gets high memory bandwidth
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Conclusions



Conclusions

• Presented ourmassively parallel DMRG implementation
• Assessed its performance on up to thousands of cores on the KNL and
BDW sections of Marconi

• Identified limitations in scalability: communication bottlenecks, memory
size, and memory bandwidth

• Measured scaling of resources allowing us to predict time and memory
needed for anym

• Demonstrated the framework for full DMRG calculations of 2D systems for
large number of kept states, allowing us to provide compelling evidence of
topological order in experimentally relevant model systems
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Ongoing and Future Work



Ongoing and Future Work

• ISCRA C project to study topological phases in 2D
• 2D finite-size DMRG - same workflow but more Hamiltonian terms and
greater memory consumption

• Efficient matrix-free approach using MATSHELL
• Exploit KNL in flat mode using memkind to control data between MCDRAM
and DDR4
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Single DMRG Iteration

BuildBlockLeft and BuildBlockRight
Grow blocks by adding one site dim(L) = m→
dim(L◦) = dm

OL◦ =
∑
n
OL,n ⊗ sn (2)

BuildSuperBlock*
Form the superblock Hamiltonian
dim(L ◦ ◦R) = d2m2

HL◦◦R =
∑
n

anOL◦,n ⊗O◦R,n (3)

SolveGroundState*
Diagonalize using Lanczos iteration

HL◦◦R|ψ0⟩ = E0|ψ0⟩ (4)

BuildReducedDMs
Obtain the reduced density matrices

ρL◦ = Tr◦R |ψ0⟩⟨ψ0| (5)

GetRotationMatrices
Getm largest eigenstates of ρL◦
and form dm×mmatrix UL◦

ρL◦ ≈
m∑

α=1
ωα |α⟩L◦ L◦⟨α| ≡ UL◦ (6)

TruncateOperators
Rotate each operator to the new basis
dim(L◦) = dm→ dim(L◦) = m

ÕL◦ = (UL◦)
† OL◦UL◦ (7)

*Computationally-intensive operations



Infinite and Finite DMRG Algorithms

• Infinite DMRG (left) is computationally cheap but convergence is poorer
especially since the shape of our 2D lattice is not preserved

• Finite-size DMRG (right) helps correct this by applying sweeps and
optimizing the wave function

Source: Schollwöck, 2011



Scaling of Computational Resources

512 768 1024 1536 2048

Number of kept states, m

0

25

50

75

100

125

150

175

T
im

e
el
ap
se
d
/
it
er
at
io
n
,

t
(s
)

TruncateOperators

GetRotationMatrices

BuildReducedDMs

SolveGroundState

BuildSuperBlock

BuildBlockRight

BuildBlockLeft

9.0 9.5 10.0 10.5 11.0
log2(m)

2

3

4

5

6

7

lo
g

2
(t
/

s)

log2(t/s) = 2.75log2(m)−23.08, R
2 = 0.997

Figure 17: Scaling behavior of elapsed time with the number of kept statesm on 16 nodes of Marconi BDW
running at half-node



Scaling of Computational Resources
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Figure 18: Scaling behavior of memory consumed with the number of kept statesm on 16 nodes of Marconi
BDW



1D Traversal of Square Lattice

Figure 19: One-dimensional traversal of the square lattice creating long-range interactions
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