Large-Scale Implementation of the Density Matrix Renormalization Group Algorithm:

Performance Analysis on the Intel® Broadwell and Knights Landing Architectures

James VANCE^{*}, Marcello DALMONTE, Ivan GIROTTO The Abdus Salam International Centre for Theoretical Physics Strada Costiera 11, 34151 Trieste, Italy *jvance@ictp.it

5 March 2018

Introduction

Two-dimensional many-body quantum systems

Figure 1: Spin-1/2 Kagome Heisenberg antiferromagnet, Yan et al Science 2011 [1]

Figure 2: J_1 - J_2 XY model on a square lattice

- Crucial in understanding high-*T_c* superconductivity, frustrated magnetism, and topological phases of matter [2-5]
- Intractable with *exact diagonalization* (large number of states) [6] and *quantum Monte Carlo* (negative sign problem) [7]

Density Matrix Renormalization Group (DMRG)

- Variational method originally used to study the ground state properties of many-body quantum systems in 1D [8]
- Systematic truncation of Hilbert space, keeping only *m* basis states with minimal loss of information
- Well-established method used in condensed matter [9] and quantum chemistry [10]

- DMRG has been proven effective for 2D but requires more states to be kept after truncation [11-13]
- Results in large sparse matrices and more intensive operations requiring a scalable parallel solution
 - \rightarrow HPC approach

- Implement DMRG calculations for distributed-memory architectures
- Enable developed code to run efficiently on a Tier-0 world-class HPC infrastructure
- Perform large-scale DMRG calculations on 1D and 2D frustrated magnets
- Shed light on some paradigmatic models of frustrated magnetism that are relevant to experiments (e.g. cold gases in optical lattices and superconducting circuits)

Implementation

Infinite-size DMRG algorithm

Block notation: $\mathcal{B}(n, D)$

block of *n* sites with *D* states [14]

Figure 3: Infinite-size algorithm [9]

Local dimension: d

e.g. for spin-1/2 systems d = 2

- a) Initial blocks
- b) Add one site to each: $\mathcal{B}(L,m) \rightarrow \mathcal{B}(L+1,dm)$ $\mathcal{B}(R,m) \rightarrow \mathcal{B}(R+1,dm)$
- c) Build and diagonalize the Superblock:^{*} $\mathcal{B}(L+R+2, d^2m^2)$
- d) Truncate Basis[†]

 $\mathcal{B}(L+1, dm) \rightarrow \mathcal{B}(L+1, m)$ $\mathcal{B}(R+1, dm) \rightarrow \mathcal{B}(R+1, m)$

^{*}Computationally intensive operations: **Construction** and **diagonalization** of the Hamiltonian ***Full eigendecomposition** of small density matrices and **rotation** of block operators

Portable, Extensible Toolkit for Scientific Computation (PETSc)

- data structures and routines for scalable scientific applications
- overlap in computation and communication during sparse matrix-vector multiplications (spMVM)

Scalable Library for Eigenvalue Problem Computations (SLEPc)

- eigenvalue decomposition of large sparse matrices [15]
- **Eigenvalue Problem Solver** (EPS) iterative diagonalization algorithms that use efficient spMVM from PETSc

Construction of the enlarged blocks and superblock involve linear combinations of Kronecker products of matrices

$$\mathbf{C} = \sum_{n} a_{n} \mathbf{A}_{n} \otimes \mathbf{B}_{n} \tag{1}$$

We provided our own implementation MatKronProdSum

- Submatrix-collection for non-local rows
- Preallocation of matrix memory
- Parallel local generation of resultant matrix elements
- Index slicing for selection of states

Performance Analysis

Partition	Marconi A1 (BDW)	Marconi A2 (KNL)
Processors	2×18 -core Intel Xeon E5-2697 v4	68-core Intel Xeon Phi 7250 CPU
	(Broadwell) at 2.3 GHz	(Knights Landing) at 1.40 GHz
Cores	36 cores/node	68 cores/node
Extensions	AVX 2.0	AVX-512
RAM	128 GB/node	16 GB/node MCDRAM
		96 GB/node DDR4
Max Memory	76.8 GB/s [‡]	MCDRAM: 475-490 GB/s
Bandwidth		DDR4: 90 GB/s [§]
Network	Intel Omnipath, 100 Gb/s	

[§]Streams benchmark [17] in FLAT mode; Marconi A2 operates in CACHE mode

[‡]Intel specifications [16]

Implementation Details

PETSc 3.7 and SLEPc 3.7

- BDW: Pre-compiled binaries on Marconi
- KNL:--x0PTFLAGS="-g -xMIC-AVX512 -03 -mP20PT_hpo_vec_remainder=F" --with-memalign=64

EPS Solver

- Type: Krylov-Schur (Thick-Restart Lanczos)
- Relative Tolerance: 10⁻¹²

Test Case: 1D Heisenberg XXZ Hamiltonian

$$H = \sum_{i=1}^{N-1} \left(J_z \mathbf{S}_i^z \mathbf{S}_{i+1}^z + \frac{J}{2} \left[\mathbf{S}_i^+ \mathbf{S}_{i+1}^- + \mathbf{S}_i^- \mathbf{S}_{i+1}^+ \right] \right)$$

Quantum Number Conservation

- Implemented conservation of total magnetization $S_{tot}^z \equiv S_L^z + S_{\sigma^L}^z + S_{\sigma^R}^z + S_R^z = \text{const}$
- Superblock Hamiltonian HLOOR matrix size is reduced
- Reduced density matrices ρ_{Lo} become **block-diagonal**

Figure 4: Memory consumption (left) and time to solution (right) comparing with and without targeting magnetization sector *S*^z, as measured on 4-8 nodes of Marconi KNL

Figure 5: Elapsed times for m = 768 on 1-2 nodes with varying number of MPI processes

Figure 6: Parallel efficiency for m = 768 on 1-2 nodes with varying number of MPI processes

Full-Node vs Half-Node

	Full-node case	Half-node case
BDW	36 procs/node	18 procs/node
KNL	68 procs/node	34 procs/node

Motivation for Running at Half-Node

- Greater memory bandwidth for each process
- Reduced memory capacity pressure
- More unknowns assigned to each process means less communication vs. computation during spMVM

Performance Results m = 1024 on **BDW**

Figure 7: Elapsed times for m = 1024 kept states on BDW for full-node (left) and half-node (right) cases

Performance Results m = 1024 on KNL

Figure 8: Elapsed times for m = 1024 kept states on KNL for full-node (left) and half-node (right) cases

Figure 9: Parallel efficiencies for the *full-node case* (left) and *half-node case* (*right*) with m = 1024 kept states, shown for \blacksquare all steps, \blacksquare BuildSuperBlock and \blacksquare SolveGroundState

Performance Results m = 1536 on **BDW**

Figure 10: Elapsed times for m = 1536 kept states on BDW for full-node (left) and half-node (right) cases

Performance Results m = 1536 on KNL

Figure 11: Elapsed times for m = 1536 kept states on KNL for full-node (left) and half-node (right) cases

Figure 12: Parallel efficiency for the full-node case (left) and half-node case (right) with m = 1536 kept states

Figure 13: Elapsed times for the half-node case with m = 2048 kept states

Figure 14: Parallel efficiency for the half-node case with m = 2048 kept states. KNL exhibits superscaling effects due to MCDRAM and DDR4 having a large difference in memory bandwidth

General Observations

- Good scaling behavior of BuildSuperBlock for all cases due to optimally parallel MatKronProdSum routine
- Scalability of **SolveGroundState** (SLEPc) is better in the **half-node case**
- BDW is **faster** but KNL has **better parallel efficiency** and exhibits superscaling due to high-bandwidth memory

Scaling of Computational Resources: Memory/Iteration

Figure 15: Scaling behavior of memory consumed with the number of kept states *m* on 16 nodes of Marconi KNL (\approx 100 GB/node)

Estimation:

Given 3600 KNL nodes with 310TB of memory, we can target up to m = 22,000 states

Scaling of Computational Resources: Elapsed Time/Iteration

Figure 16: Scaling behavior of elapsed time with the number of kept states *m* on 16 nodes of Marconi KNL running at half-node

Estimation:

If we target m = 22000 states on 3600 KNL nodes, we would consume 85,000 cpu-h/iteration

Discussion

Limitations to scalability

- 1. Eigensolver is limited by computation vs communication during spMVMs
- 2. Different *m* require different minimum numbers of nodes
- 3. spMVM is also limited by the memory bandwidth per core

To achieve best performance

- 1. Limit the total number of processes to reduce communication vs computation
- 2. Use enough nodes to fit the problem in memory
- 3. Identify a good minimum number of processes per node so that each process still gets high memory bandwidth

Conclusions

Conclusions

- Presented our massively parallel DMRG implementation
- Assessed its performance on up to thousands of cores on the KNL and BDW sections of Marconi
- Identified limitations in scalability: communication bottlenecks, memory size, and memory bandwidth
- **Measured scaling of resources** allowing us to predict time and memory needed for any *m*
- **Demonstrated the framework** for full DMRG calculations of 2D systems for large number of kept states, allowing us to provide compelling evidence of topological order in experimentally relevant model systems

Ongoing and Future Work

- ISCRA C project to study topological phases in 2D
- 2D finite-size DMRG same workflow but more Hamiltonian terms and greater memory consumption
- Efficient matrix-free approach using MATSHELL
- Exploit KNL in flat mode using memkind to control data between MCDRAM and DDR4

Thank you for your attention!

Special thanks:

CINECA ICTP-TRIL

References I

- S Yan, D A Huse, and S R White. "Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet". In: *Science* 332.6034 (2011), pp. 1173-1176.
- Patrick a. Lee, Naoto Nagaosa, and Xiao-Gang Wen. "Doping a Mott insulator: Physics of high-temperature superconductivity". In: *Rev. Mod. Phys.* 78.1 (2006), pp. 17–85. ISSN: 0034-6861. DOI: 10.1103/RevModPhys.78.17. URL: http://link.aps.org/doi/10.1103/RevModPhys.78.17.
- [3] C. Lacroix, P. Mendels, and F. Mila, eds. Introduction to Frustrated Magnetism. Springer Series in Solid-State Sciences Vol. 164, 2010.
- [4] H C Jiang, Z Y Weng, and D N Sheng. "Density Matrix Renormalization Group Numerical Study of the Kagome Antiferromagnet". In: *Physical Review Letters* 101.11 (Sept. 2008), pp. 117203-4.

References II

- [5] E Gibney and D Castelvecchi. *Physics of 2D exotic matter wins Nobel*. Vol. 538. Nature, 2016.
- [6] Mischa Thesberg and Erik S Sørensen. "An Exact Diagonalization Study of the Anisotropic Triangular Lattice Heisenberg Model Using Twisted Boundary Conditions". In: arXiv.org 1 (June 2014), p. 115117. arXiv: 1406.4083v2 [cond-mat.str-el].
- [7] M Troyer and U J Wiese. "Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations". In: *Physical Review Letters* 95.12 (2005).
- [8] Steven R White. "Density matrix formulation for quantum renormalization groups". In: *Physical Review Letters* 69.19 (1992), pp. 2863–2866.
- U Schollwöck. "The density-matrix renormalization group". In: Reviews of Modern Physics 77.1 (Jan. 2005), pp. 259–315.

References III

- [10] Garnet Kin-Lic Chan and Sandeep Sharma. "The Density Matrix Renormalization Group in Quantum Chemistry". In: Annual Review of Physical Chemistry 62.1 (May 2011), pp. 465-481.
- [11] Susumu Yamada, Masahiko Okumura, and Masahiko Machida. "Direct Extension of Density-Matrix Renormalization Group to Two-Dimensional Quantum Lattice Systems: Studies of Parallel Algorithm, Accuracy, and Performance". In: *Journal of the Physical Society of Japan* 78.9 (Sept. 2009), pp. 094004–5.
- [12] E M Stoudenmire and Steven R White. "Studying Two-Dimensional Systems with the Density Matrix Renormalization Group". In: Annual Review of Condensed Matter Physics 3.1 (Mar. 2012), pp. 111-128.
- [13] F B Ramos and J C Xavier. "N-leg spin-S Heisenberg ladders: A density-matrix renormalization group study". In: *Physical Review B* 89.9 (Mar. 2014), pp. 094424-7.

References IV

- [14] Gabriele De Chiara et al. "Density Matrix Renormalization Group for Dummies". In: Journal of Computational and Theoretical Nanoscience 5.7 (July 2008), pp. 1277–1288.
- [15] J. E. Roman et al. SLEPc Users Manual. Tech. rep. DSIC-II/24/02 Revision 3.7. D. Sistemes Informàtics i Computació, Universitat Politècnica de València, 2016.
- [16] Intel. Intel Xeon Processor E5-2697 v4. accessed 24 November 2017. 2017. URL: https://ark.intel.com/products/91755/Intel-Xeon-Processor-E5-2697v4-45M-Cache-2_30-GHz.
- [17] Karthik Raman (Intel). Optimizing Memory Bandwidth in Knights Landing on Stream Triad. accessed 24 November 2017. 2017. URL: https://software.intel.com/en-us/articles/optimizing-memorybandwidth-in-knights-landing-on-stream-triad.

Single DMRG Iteration

BuildBlockLeft and **BuildBlockRight** Grow blocks by adding one site dim(L) = $m \rightarrow dim(L\circ) = dm$

$$\mathbf{O}_{L\circ} = \sum_{n} \mathbf{O}_{L,n} \otimes \mathbf{s}_{n}$$
(2)

BuildSuperBlock*

Form the superblock Hamiltonian $\dim(L \circ \circ R) = \frac{d^2m^2}{d^2m^2}$

$$\mathbf{H}_{L\circ\circ R} = \sum_{n} a_{n} \mathbf{O}_{L\circ,n} \otimes \mathbf{O}_{\circ R,n}$$
(3)

SolveGroundState*

Diagonalize using Lanczos iteration

$$\mathbf{H}_{L \circ \circ R} |\psi_0\rangle = E_0 |\psi_0\rangle \tag{4}$$

*Computationally-intensive operations

BuildReducedDMs

Obtain the reduced density matrices

$$\rho_{L\circ} = \operatorname{Tr}_{\circ R} |\psi_0\rangle \langle \psi_0| \tag{5}$$

GetRotationMatrices

Get *m* largest eigenstates of $\rho_{L\circ}$ and form $dm \times m$ matrix $U_{L\circ}$

$$\rho_{L\circ} \approx \sum_{\alpha=1}^{m} \omega_{\alpha} |\alpha\rangle_{L\circ L\circ} \langle \alpha| \equiv U_{L\circ}$$
 (6)

TruncateOperators

Rotate each operator to the new basis $\dim(L\circ) = \frac{dm}{dm} \rightarrow \dim(L\circ) = \frac{dm}{dm}$

$$\tilde{\mathbf{O}}_{L\circ} = (U_{L\circ})^{\dagger} \, \mathbf{O}_{L\circ} U_{L\circ} \tag{7}$$

Infinite and Finite DMRG Algorithms

- Infinite DMRG (left) is computationally cheap but convergence is poorer especially since the shape of our 2D lattice is not preserved
- Finite-size DMRG (right) helps correct this by applying sweeps and optimizing the wave function

Scaling of Computational Resources

Figure 17: Scaling behavior of elapsed time with the number of kept states *m* on 16 nodes of Marconi BDW running at half-node

Scaling of Computational Resources

Figure 18: Scaling behavior of memory consumed with the number of kept states *m* on 16 nodes of Marconi BDW

1D Traversal of Square Lattice

Figure 19: One-dimensional traversal of the square lattice creating long-range interactions