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Neural Network Internals: classification problem

Given a single input, a trained neural network is able to predict a distribution of probability:

ŷ = f(x;θ)

input NN parametersprediction

NN paramaters are chosen in order to minimize the average error on a given training set{
x(i),y(i)

}
i=1,...,N

:

J(θ) =
1
N

N∑
1

L
(
f(x(i);θ),y(i)

)
a Stochastic Gradient Descent (SGD) algorithm step is:

θ(k+1) = θ(k)− εkĝ(k) where ĝ(k) =
1
n
∇θ

∑
l∈batch

L(f(x(l);θ(k)),y(l)), n= #batch
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Convolutional Neural Networks

ImageNet Large Scale Visual Recognition Competition (ILSVRC):
annual software contest (since 2010);
tasks: image classification, object localization/detection, scene detection;

Tested Networks:
AlexNet: winner of 2012 classification task,
Overfeat: winner of 2013 localization task, remarkable results also in classification and detection
VGG: winner of 2014 localization task, second place on classification

Russakovsky et al., ImageNet Large Scale Visual Recognition Challenge, 2015
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https://arxiv.org/abs/1409.0575


www.cineca.it

AlexNet (Krizhevsky, Sutskever, Hinton, 2012)

Structure:
five convolutional layers:

I kernel sizes 11 × 11, 5 × 5, three 3 × 3;
I output channels 64, 192, 384, 256, 256;

three max-pool layers (kernel 3×3, stride 2×2);
three fully-connected layers;
Rectified Linear Unit (ReLU) as nonlinear activation function.

A note on benchmarked network:
original version exploited multiple GPUs, to overcome memory limits;
benchmarked version: AlexNet_v2 (one device),

Krizhevsky, Sutskever, Hinton, ImageNet Classification with Deep Convolutional Neural Networks, 2012
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OverFeat (Sermanet et al., 2014)

Structure (fast model):
five convolutional layers

I kernel sizes 11 × 11, 5 × 5, three 3 × 3;
I output channels 96, 256, 512, 1024, 1024;

three max-pool layers (kernel 2×2, stride 2×2);
three fully-connected layers;
Rectified Linear Unit (ReLU) as nonlinear activation function

Differences w.r.t. AlexNet:
remarkable size increase of output channels of convolutional layers (larger number of filters);
no overlap on max-pool layers;

Sermanet et al., Overfeat: Integrated recognition, localization and detection using convolutional networks, 2014
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VGG (Simonyan, Zisserman, 2014)

Structure (vgg_a/vgg11 network):
eight convolutional layers

I fixed kernel size 3 × 3;
I output channels 64, 128, 2 × 256, 4 × 512;

five max-pool layers (kernel 2×2, stride 2×2);
three fully-connected layers;
Rectified Linear Unit (ReLU) as nonlinear activation function

Differences w.r.t. AlexNet:
slight size increase of output channels of convolutional layers;
remarkable depth increase (conv layers: five → eight);
smaller kernels;
no overlap on max-pool layers;

Simonyan, Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014

R. Zanella DL on CINECA KNL 7/25
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Systems description

CPU architectures:
2x Intel Broadwell, 2x Intel Xeon E5-2697 v4@2.3GHz, 36 cores (total), 128 GB RAM
Intel Knights Landing, Intel Xeon Phi7250 @1.4GHz, 68 cores, 96 GB RAM (+16 GB MCDRAM)
2x Intel Skylake, 2x Intel Xeon 8160 @2.1GHz, 2x Intel Xeon 8160 @2.1GHz, 48 cores (total), 192 GB
RAM

GPU architectures1:
Nvidia K80: 5.6 Tflops peak performance (sp), 24 GB RAM
Nvidia P100 (PCIe): 10.6 Tflops peak performance (sp), 16 GB RAM

Knights Landing settings:
Hyper-Threading is enabled;
Memory Mode is cache;
Cluster Mode is quadrant;
Network type: Intel Omnipath, 100 Gb/s

1

hosted on: Intel Haswell, 2x Intel Xeon 2630 v3 @2.4GHz, 16 cores (total), 128 GB RAM

R. Zanella DL on CINECA KNL 8/25
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Tested software
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Caffe

Berkeley Vision and Learning Center (BVLC)
C++, Matlab, Python APIs
prototxt text file for network definition
GPU: CUDA, cuDNN, (+nccl for single-node multi-gpu)
CPU: BLAS implementation (ATLAS, MKL, or OpenBlas)
tested configuration: BVLC/Caffe 1.0.0, CUDA 8.0, cuDNN 6.0

Intel branch of original project
prerequisites: mkl-dnn (based on mklml)
tested configuration: intel/Caffe 1.0.0, mkl-dnn 0.9

Projects status:
7 BVLC/Caffe: project closed with 1.0 (18 Apr 2017), development efforts moved to Caffe2;
3 Intel/Caffe: latest release is 1.1.0 (13 Jan 2018).

R. Zanella DL on CINECA KNL 10/25



www.cineca.it

Caffe

Berkeley Vision and Learning Center (BVLC)
C++, Matlab, Python APIs
prototxt text file for network definition
GPU: CUDA, cuDNN, (+nccl for single-node multi-gpu)
CPU: BLAS implementation (ATLAS, MKL, or OpenBlas)
tested configuration: BVLC/Caffe 1.0.0, CUDA 8.0, cuDNN 6.0

Intel branch of original project
prerequisites: mkl-dnn (based on mklml)
tested configuration: intel/Caffe 1.0.0, mkl-dnn 0.9

Projects status:
7 BVLC/Caffe: project closed with 1.0 (18 Apr 2017), development efforts moved to Caffe2;
3 Intel/Caffe: latest release is 1.1.0 (13 Jan 2018).

R. Zanella DL on CINECA KNL 10/25



www.cineca.it

Caffe

Berkeley Vision and Learning Center (BVLC)
C++, Matlab, Python APIs
prototxt text file for network definition
GPU: CUDA, cuDNN, (+nccl for single-node multi-gpu)
CPU: BLAS implementation (ATLAS, MKL, or OpenBlas)
tested configuration: BVLC/Caffe 1.0.0, CUDA 8.0, cuDNN 6.0

Intel branch of original project
prerequisites: mkl-dnn (based on mklml)
tested configuration: intel/Caffe 1.0.0, mkl-dnn 0.9

Projects status:
7 BVLC/Caffe: project closed with 1.0 (18 Apr 2017), development efforts moved to Caffe2;
3 Intel/Caffe: latest release is 1.1.0 (13 Jan 2018).

R. Zanella DL on CINECA KNL 10/25



www.cineca.it

Theano

Montreal Institute for Learning Algorithms (MILA)
Python API (dynamic C code generation)
prerequisites: CUDA, cuDNN, libgpuarray
tested configuration: MILA/Theano (git: 12/07/2017), CUDA 8.0,
cuDNN 6.0, libgpuarray 0.6.8

Intel branch of original project
prerequisites: MKL
tested configuration: intel/Theano 1.1, MKL 2017

Projects status:
7 Mila/Theano: development closed, latest bug fix is 1.0.1 (7 Dec 2017);
? Intel/Theano: latest release is 1.1.0 (1 Apr 2017).

R. Zanella DL on CINECA KNL 11/25
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Neon

Intel (previously Nervana Systems)
Python API
prerequisites: CUDA
tested configuration: Neon 2.1.0, CUDA 8.0, (mklml_lnx_2018)

Projects status:
3 Nervana/Neon: latest release is 2.6.0 (5 Jan 2018).
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TensorFlow

Google
Python API
prerequisites: CUDA,
tested configuration:

I CPU: TensorFlow (git: 18/07/2017), (mklml_lnx_2018)
I GPU: Tensorflow 1.2.1, CUDA 8.0

Project status:
3 tensorflow/tensorflow: latest release 1.6.0 (28 Feb 2018)

https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture

R. Zanella DL on CINECA KNL 13/25
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Software summary

CPU GPU

Intel/Caffe BVLC/Caffe

Intel/Theano MILA/Theano

TensorFlow

Neon

R. Zanella DL on CINECA KNL 14/25
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Single node benchmark settings

Network structures are simplified:
no preprocessing phase is implemented;
input data is in-memory generated;
no dropout is considered;
classification task: 1000 classes.

Network source codes:
Caffe/Theano/Tensorflow: convnet-benchmarks source code is used;
Neon: code is in Neon sources.

Chosen performance measure: number of images per second, considering:
forward step: the evaluation of the network on a batch (inference);
forward-backward step: fwd step + the backpropagation of the errors on a batch (training).

R. Zanella DL on CINECA KNL 15/25
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multinode benchmark

Based on official TensorFlow benchmark suite: https://github.com/tensorflow/benchmarks

input data can be in-memory generated, or from dataset (+preprocessing);
contains definitions of fully functional neural networks (dropout is present);
support for multinode (and multinode, multi-GPU runs);
support for larger (and growing) number of models;

but the support is for TensorFlow only.

Multi node parallelization approach: given n= #batch,M = #nodes

θ(k+1) = θ(k)− εkĝ(k) where ĝ(k) =
1
Mn
∇θ

∑
m∈nodes

∑
l∈batchm

L(f(x(l);θ(k)),y(l))

Goyal et al., Accurate, Large Minibatch SGD Training ImageNet in 1 Hour, 2017
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Supported communication protocols

TensorFlow supported protocols:
gRPC: google Remote Procedure Call
gRPC+VERBS:

I gRPC for administrative tasks (set up RDMA path),
I RDMA (Remote Direct Memory Access) for actual tensors (weights, gradients, etc) exchange.

gRPC+MPI: [not tested yet]

Supported variable management procedures:
parameter server: variables are stored on a parameter server that holds the master copy of the variable.
For each step, each wn gets a copy of the variables from the ps, and sends its gradients to the ps;
distributed replicated: wn has a copy of the variables, and updates its copy after the ps are all updated
with the gradients from all wn [not tested yet].

Chosen performance measure: average number of images per second per node, considering:
fwd step + the backpropagation of the errors on a batch (training);
fixed local batch size comparison: overall batch size grows with nodes.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/verbs/README.md
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gRPC (forward-backward,VGG)
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gRPC+VERBS (forward-backward,VGG)
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Conclusions

Single node benchmarks:
Best combination is Nvidia P100 and Neon.
Nodes composed by a single Intel Knights Landing or 2x intel Skylake can achieve comparable, or slightly
superior performances to a single Nvidia K80.
Concerning CPU systems, no software outperforms the others.
TensorFlow exhibit good performances in both architectures.

Multinode benchmarks (TensorFlow only):
RDMA (gRPC+VERBS) is fundamental for acceptable efficiency.

Ongoing work:
Caffe and Theano can exploit Intel Machine Learning Scaling Library (MLSL);
TensorFlow can exploit also MPI.

R. Zanella DL on CINECA KNL 24/25
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Net structures recap

AlexNet OverFeat VGG_a (vgg11)
input RGB image

conv: k 11×11, ch 64, stride 4 conv: k 11×11, ch 96, stride 4 conv: k 3×3, ch 64, stride 1
maxpool: k 3×3, stride 2 maxpool: k 2×2, stride 2 maxpool: k 2×2, stride 2

conv: k 5×5, ch 192, stride 1 conv: k 5×5, ch 256, stride 1 conv: k 3×3, ch 128, stride 1
maxpool: k 3×3, stride 2 maxpool: k 2×2, stride 2 maxpool: k 2×2, stride 2

conv: k 3×3, ch 384, stride 1 conv: k 3×3, ch 512, stride 1 conv: k 3×3, ch 256, stride 1
conv: k 3×3, ch 256, stride 1
maxpool: k 2×2, stride 2

conv: k 3×3, ch 256, stride 1 conv: k 3×3, ch 1024, stride 1 conv: k 3×3, ch 512, stride 1
conv: k 3×3, ch 512, stride 1
maxpool: k 2×2, stride 2

conv: k 3×3, ch 256, stride 1 conv: k 3×3, ch 1024, stride 1 conv: k 3×3, ch 512, stride 1
conv: k 3×3, ch 512, stride 1

maxpool: k 3×3, stride 2 maxpool: k 2×2, stride 2 maxpool: k 2×2, stride 2
FC: output 4096 FC: output 3072 FC: output 4096
FC: output 4096 FC: output 4096 FC: output 4096
FC: output 1000 FC: output 1000 FC: output 1000

Table: Convolutional and fully-connected layers are followed by ReLU nonlinear function.
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Reviewers feedbacks

Not familiar with applications, so the legend on the graphs is unclear. Unless you want to compare across
FWD and FWD-BWD, I would put the graphs on separate slides so that you can increase their sizes. I
hope the talk includes a brief discussion about how the applications are different. It isn’t clear how the
work is being distributed and there are many gaps in the results.

This seems a nice benchmark for a relevant case study. I suggest to improve the quality of the slide 6:
what is on the y axis? Too many columns make the comparison difficult: I suggest to split the plots. On
slide 7: capitalize Intel;
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Reviewers questions

You state that only TensorFlow supports MPI. Does that mean that all of the applications
are running OpenMP-only for this work?
Single-node benckmark results are obtained with applications running OpenMP-only. Multinode
TensorFlow resides on gRPC or gRPC+VERBS.
Why aren’t there results for 4096 NEON? Why are the GPU results missing 4096? Why
are half of the GPU results missing 2048?
K80 has a total of 24 GB of memory: for large batch sizes, all SDKs runs out of memory.

Were any of the results surprising?
Intel efforts on CPU based Deep Learning allows TensorFlow to request comparable cpu time either on
KNL or on K80.
Are there remaining challenges or questions to be answered?

Comment on the parallelization of Neon: multithreading?
All tested SDKs are exploiting multitreading parallelization.

R. Zanella DL on CINECA KNL 28/25


	Problem description
	Tested Neural Networks
	Architectures and Software
	Single node benchmark
	Multinode benchmark
	Conclusions

