STAMPEDE 2 UPDATE
STAMPEDE 2

- Funded by NSF as a renewal of the original Stampede project.
- Follow the legacy of success of the first machine as a supercomputer for a *broad* range of workloads, large and small.
- Install without ever having a break in service – in the same footprint.
STAMPEDE 1 RECAP

- Awarded by NSF as an XSEDE resource in September 2011.
- Stampede was constructed in 2012, and went into production on January 7th, 2013.
 - Through 5 years, more than 8M simulations and more than 3B hours delivered to 13,000+ users on more than 3,500 projects.
 - #6 on Nov. 2012 top 500 list – stayed in top 10 for 7 lists (fell to 17 in Nov. 2016 at end of original life)
- Request rate to XSEDE 5-6x available capacity *every* quarter.
- A true national resource – UT accounted for <7% of usage; 400+ institutions represented.
- TACC staff answered more than 15,000 tickets.
A DATA/WORKLOAD DRIVEN DESIGN

- We keep a massive amount of data about what runs on our system *and* how well it runs.

 - **TACC Stats**
 - Low level performance counter data, sampled at a very course grain, every 10 minutes, for last ~9 million jobs
 - (Now integrated with XDMOD reporting)

 - **XALT**
 - Binary/shared library tracking for life of Stampede.

 - **Lustre instrumentation**
 - Metadata traffic, other filesystem instrumentation, for life of Stampede.
STAMPEDE-2 DESIGN

▶ Support the high-end, MPI user:
 ▶ Majority of cycles on Stampede consumed by MPI-based binaries
 ▶ 70% of computational capacity on Stampede 2 in KNL/Xeon Phi
▶ But that user isn’t everyone, and not all codes run well on KNL
 ▶ Some users running serial/small scale codes or scripting languages that want high clock rate
 ▶ 30% in Xeon processor – but wait for the new generation, since it will be used for four years
▶ Broader trend towards Exascale is more cores – so we didn’t build a “head in the sand” system towards the future.
STAMPEDE 2 DESIGN

- Stampede 2 supports a wide range of use cases – but not all of them.
- However, innovation in the software/operations approach lets us support many more things than a “traditional” leadership machine.
 - Stampede 2, like all TACC systems, has a REST API that will support gateways/web applications/automated workflows.
 - Through Singularity, we have increased our support for Life Sciences codes to more than 2,000 applications.
 - Software Defined Vis for in-situ vis work.
STAMPEDE 2 -- COMPONENTS

- Phase 1 – June 2017
 - 4,204 Intel Xeon Phi 7250 "Knights Landing" (KNL) nodes
 - ~20PB (usable) Lustre Filesystem (Seagate), 310GB/s to /scratch.
 - Intel OmniPath Architecture (OPA) Fabric – Fat Tree topology
 - Ethernet fabric and (some) management infrastructure.

- Phase 2 – December 2017
 - 1,736 Intel Xeon Platinum 8160 “Skylake” two-socket nodes
 - (Associated rack level networking, but core in phase 1).
 - Balance of management hardware, new Skylake servers

- Phase 3 – 2nd half 2018
 - 3D Xpoint NVDIMMS as an experimental component in a small subset of the system.
HARDWARE OVERVIEW

- Stampede 2 Phase 1 compute nodes, 285,882 cores
 - 924 Dell C6320P chassis, 4 nodes per chassis
 - 3,696 total compute nodes
 - Intel Xeon Phi 7250 CPU, 68 cores, 1.4GHz
 - 96 GB (6x16GB) 2400MHz DDR4
 - 200 GB SSD
 - Redundant 1600W power supplies
 - 126 Intel PCSD chassis, 4 nodes per chassis (originally Stampede 1.5)
 - 508 total compute nodes
 - Intel Xeon Phi 7250 CPU, 68 cores, 1.4GHz
 - 96 GB (6x16GB) 2400MHz DDR4
 - 120 GB SSD
STORAGE SUBSYSTEM (PHASE 1)

- Seagate (now Cray) ClusterStor 300
 - 35 Scalable Storage Units (SSU)
 - Pair of servers configured for high availability with active/active failover
 - 82 10TB drives, 41 drives per LUN in declustered parity (GridRAID), two drives act as filesystem external journal
 - Each SSU designed to provide ~10GB/s of performance
 - 3 Metadata Management Units (MMU)
 - Pair of Lustre meta-data servers with active/active failover
 - Disk to support up to 4 billion inodes per MMU
 - 2 System Management Units (SMU)
 - Pair of management servers, primary and secondary
 - Used to configure and manage the filesystems
 - 6 racks with two GigE and two OPA switches per rack
STORAGE FILESYSTEMS

- Seagate storage provides two Lustre filesystems
 - Home: 2 SSUs, 1 MMU, 1 SMU; quota and backed up to archive
 - Scratch: 33 SSUs, 2 MMUs, 1SMU; no quota but purged, designed for >300GB/s bandwidth

- Stockyard provides /work site-wide filesystem
 - DataDirect Networks 25PB Lustre filesystem
OPA FABRIC TOPOLOGY

- Fat-tree topology design with 7:5 oversubscription
- Each top of rack switch connects to twenty different line cards to flatten topology
 - Up to sixteen ToR switches per director class core switch line card
 - Switches in the same rack always connect to same line card
- Adjacent racks connected to same line card as much as possible
 - E.g. first 8 racks connect to same line card
- I/O switches spread across line cards to avoid I/O bottlenecks
- Custom cable management panels to allow for easy cabling of core switches
RESULTS SO FAR – REALLY BROAD GENERALIZATIONS

- Everything runs on KNL, but...
 - Carefully tuned codes are doing pretty well, but with work.
 - “Traditional” MPI codes, especially with OpenMP in it do relatively well, but not great.
 - Some codes, particularly, not very parallel ones, are pretty slow, and probably best run on regular Xeon processors.
- The Intel Xeon Scalable Processors are far exceeding original performance expectations
OUR EXPERIENCE WITH XEON PHI

- Xeon Phi looks to be the most cost and power efficient way to deliver performance to highly parallel codes.

- In many cases, it will not be the fastest. For things that only scale to a few threads, it is *definitely* not the fastest.

- But what is under-discussed:
 - A dual-socket Xeon node costs 1.6x what a KNL node costs, even after discounts.
 - A dual-socket, dual GPU node is probably >3x a Xeon Phi node.
 - A KNL node uses 100 less watts per node than a dual-socket Xeon node.
List from June at ISC17 in Frankfurt

Stampede-2 uses half the power of a roughly equivalent performance system (see 11 vs 12)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>System</th>
<th>Cores</th>
<th>Rmax (TFlop/s)</th>
<th>Rpeak (TFlop/s)</th>
<th>Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>DOE/NNSA/LANL/SNL, United States</td>
<td>Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.</td>
<td>301,056</td>
<td>8,100.9</td>
<td>11,078.9</td>
<td>4,233</td>
</tr>
<tr>
<td>11</td>
<td>United Kingdom Meteorological Office, United Kingdom</td>
<td>Cray XC40, Xeon E5-2695v4 18C 2.1GHz, Aries interconnect Cray Inc.</td>
<td>241,920</td>
<td>7,038.9</td>
<td>8,128.5</td>
<td>3,629</td>
</tr>
<tr>
<td>12</td>
<td>Texas Advanced Computing Center/Univ. of Texas, United States</td>
<td>Stampede2 - PowerEdge C6320P, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path Dell</td>
<td>285,600</td>
<td>6,807.1</td>
<td>12,794.9</td>
<td>1,890</td>
</tr>
</tbody>
</table>
DEPLOYMENT SUMMARY

- All phase 1&2 racks/chassis/nodes installed and operational as part of Stampede2
- Updated BIOS and firmware have resolved all major stability and performance issues encountered during the phase 2 deployment
- Performance of phase 2 nodes exceeding all expectations
INTEL XEON “SKYLAKE” PERFORMANCE

- Platinum 8160 processor exceeding expectations
- STREAM: expected 175 GB/s, measuring > 200 GB/s
- HPL: expected 1.9 TFlops, measuring 2.3-2.4 TFlops
- Latency: expected 0.8 μs, measuring < 0.5 μs
- One limitation, single core memory bandwidth: 13GB/s

- Processor frequency range, 1.6 GHz – 3.7 GHz
- Frequency depends on cores active AND instruction set compiled/executed in application.
THANKS!

QUESTIONS?

Tommy Minyard
minyard@tacc.utexas.edu