
Apache Spark over Frontera cluster
Earlier Experiences

Outline

● Motivation
● Overview
● Frontera
● Apache Spark
● Benchmark
● Performance optimization
● Thanks

2

Motivation

● Bring the popular Apache Spark processing engine to HPC

● Run the software without any cluster side setup requirements

● Bypass rootless execution environments limitations

● Provide an optimized Apache Spark configuration for Frontera cluster

3

Overview

● Apache Spark distributed computing engine:
○ task dispatching
○ scheduling
○ communication over compute cluster

● Spark cluster managers requiring dedicated clusters:
○ Hadoop YARN
○ Apache MESOS
○ Kubernetes

● Rootless execution context challenges:
○ software dependencies hard to keep over HPC environment
○ no guarantee that same software list is available on each cluster
○ restricted service deployment in operating system user space

4

Frontera HPC Cluster

The experience takes place over Frontera
primary computing system:

● Provided by Dell EMC with 8008 nodes
● Intel Xeon Platinum 8280 “Cascade Lake”
● 56 cores/node - 28 cores/socket
● Clock rate 2.7Ghz (Base Frequency)
● Peak Node Performance 4.8TF, Double

Precision
● Memory/Node 192GB DDR-4
● Local Disk with 480GB SSD drive
● Mellanox Infiniband, HDR-100, capable of

200Gbps

5

Frontera HPC Cluster

The experience takes place over Frontera
primary computing system:

● LINPACK benchmark: 23.5PF
● Theoretical peak performance: 38.7PF
● Storage composed by LUSTRE distributed

file system:
○ based storage of 60PB
○ fast flash storage of 3PB

● LUSTRE OSTs (object storage targets):
○ based storage: home, work and scratch
○ flash storage: flash

● home: code and collected logs
● scratch: application workspace

6

Apache Spark

● Analytics engine for large-scale data
processing

● High level API in multiple languages (our
example uses python)

● MLlib provide tools for machine learning
● RDD: resilient distributed dataset

○ working set for distributed programs over
distributed shared memory

○ bypass limitations in the MapReduce
cluster computing paradigm such as forced
linear dataflow structure

7

● Processing workflow managed as a
directed acyclic graph (DAG)
○ nodes are the RDDs
○ edges are the applied operations over the

RDDs

● Handle acyclic and cyclic graphs that
allows representation of iterative
methods

● DAG iterative methods representation
bypass another MapReduce limitation,
providing a solution to express iterative
algorithms

Apache Spark

● Engine deployment requires
○ a cluster manager
○ distributed storage system

● Cluster Manager: standalone Spark cluster
○ allows better control over the cluster

operation
○ bypass rootless environment limitations
○ allocate resources across applications
○ send application code to the executors

● SparkContext: Spark driver program
○ responsible to send application code and

its tasks to the executors

● Executors: spawn on the nodes
○ run the computations
○ manage the application data

8

Apache Spark

● Block Manager:
○ application data cache
○ key-value store for data blocks
○ acts as a local cache for the driver and

executors on every node
○ provides interface for upload and fetch

blocks locally and remotely using memory,
disk and external block stores

● Client execution modes:
○ cluster mode: driver process is launched on

a worker node
○ client mode: driver remains on the client

node that submitted the application
○ local mode: all processes of the application

run on a single machine

9

Apache Spark

● Local execution mode is used in our base
tests with a single node

● With implemented Cluster Manager
support scripts for multi-node tests it is
possible to achieve cluster mode,
bypassing client mode limitation of
standalone deployment

● Support scripts are developed using bash
command language:
○ manage deployment jobs
○ always available in any site
○ lesser maintenance effort since command

language assure regression testing for any
release

● Use apptainer to deploy the required
software

10

Benchmark with Pi estimation

● Pi value estimation with Monte Carlo sampling methods
○ direct sampling
○ importance sampling
○ rejection sampling

● Best fit method for Pi value estimation is rejection sampling
○ allows to select samples within a region of the sampled distribution
○ simulate random points in a 2-D plane
○ domain is a square around a circle
○ square size equal the diameter of the circle
○ random number of points are generated inside the square
○ estimation is the ratio between points inside the circle and

total number of generated points

11

Performance Optimization

Single Node

● Base test of 10^10 samples
● This test uses all resources of a

single node
● Algorithm tends to be more CPU

intensive
● Best speedup when leaving one

core available for the operating
system and driver for this
environment

12

Performance Optimization

Executors multi-node scaling

● We only use 140GB (at least
2.5GB per task) to keep
executor memory equal in all
nodes

● Start to scale out the single
node test sample to different
number of nodes

● We noted the superscalar effect
of Intel processor caches that
brought great speedups

13

Performance Optimization

Executors multi-node scaling

● Next step scaled up 10 times
the sample

● This can still run over the 4
nodes available memory

● The performance with this
sample have better results now
with more nodes

● Communication takes lesser
overhead with applied
optimizations

14

Performance Optimization

Executors multi-node scaling

● Next step scaled up 1000
times the initial sample

● To run this simulation we
need at least 256 nodes
because of required memory
size

● Here the superscalar effect
overwhelms the previous
results, turning evident the
Frontera execution cost
optimization for this job sizes

15

Thanks

● BigHPC consortium for supporting my research work on this case study

● To TACC team a special thanks with the research work around Frontera

● To LIP that is providing in Portugal the access to another HPC cluster to
continue this research work and validate the optimizations with different
hardware

16

Funding:

Partners:

17

