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Motivation

● Bring the popular Apache Spark processing engine to HPC

● Run the software without any cluster side setup requirements

● Bypass rootless execution environments limitations

● Provide an optimized Apache Spark configuration for Frontera cluster
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Overview

● Apache Spark distributed computing engine:
○ task dispatching
○ scheduling
○ communication over compute cluster

● Spark cluster managers requiring dedicated clusters:
○ Hadoop YARN
○ Apache MESOS
○ Kubernetes

● Rootless execution context challenges:
○ software dependencies hard to keep over HPC environment
○ no guarantee that same software list is available on each cluster
○ restricted service deployment in operating system user space
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Frontera HPC Cluster

The experience takes place over Frontera 
primary computing system:

● Provided by Dell EMC with 8008 nodes
● Intel Xeon Platinum 8280 “Cascade Lake”
● 56 cores/node - 28 cores/socket
● Clock rate 2.7Ghz (Base Frequency)
● Peak Node Performance 4.8TF, Double 

Precision
● Memory/Node 192GB DDR-4
● Local Disk with 480GB SSD drive
● Mellanox Infiniband, HDR-100, capable of 

200Gbps
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Frontera HPC Cluster

The experience takes place over Frontera 
primary computing system:

● LINPACK benchmark: 23.5PF
● Theoretical peak performance: 38.7PF
● Storage composed by LUSTRE distributed 

file system:
○ based storage of 60PB
○ fast flash storage of 3PB

● LUSTRE OSTs (object storage targets):
○ based storage: home, work and scratch
○ flash storage: flash

● home: code and collected logs
● scratch: application workspace

6



Apache Spark

● Analytics engine for large-scale data 
processing

● High level API in multiple languages (our 
example uses python)

● MLlib provide tools for machine learning
● RDD: resilient distributed dataset

○ working set for distributed programs over 
distributed shared memory

○ bypass limitations in the MapReduce 
cluster computing paradigm such as forced 
linear dataflow structure
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● Processing workflow managed as a 
directed acyclic graph (DAG)
○ nodes are the RDDs
○ edges are the applied operations over the 

RDDs

● Handle acyclic and cyclic graphs that 
allows representation of iterative 
methods

● DAG iterative methods representation 
bypass another MapReduce limitation, 
providing a solution to express iterative 
algorithms



Apache Spark

● Engine deployment requires
○ a cluster manager
○ distributed storage system

● Cluster Manager: standalone Spark cluster
○ allows better control over the cluster 

operation
○ bypass rootless environment limitations 
○ allocate resources across applications
○ send application code to the executors

● SparkContext: Spark driver program
○ responsible to send application code and 

its tasks to the executors

● Executors: spawn on the nodes
○ run the computations
○ manage the application data
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Apache Spark

● Block Manager:
○ application data cache
○ key-value store for data blocks
○ acts as a local cache for the driver and 

executors on every node
○ provides interface for upload and fetch 

blocks locally and remotely using memory, 
disk and external block stores

● Client execution modes:
○ cluster mode: driver process is launched on 

a worker node
○ client mode: driver remains on the client 

node that submitted the application
○ local mode: all processes of the application 

run on a single machine
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Apache Spark

● Local execution mode is used in our base 
tests with a single node

● With implemented Cluster Manager 
support scripts for multi-node tests it is 
possible to achieve cluster mode, 
bypassing client mode limitation of 
standalone deployment

● Support scripts are developed using bash 
command language:
○ manage deployment jobs
○ always available in any site
○ lesser maintenance effort since command 

language assure regression testing for any 
release

● Use apptainer to deploy the required 
software
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Benchmark with Pi estimation

● Pi value estimation with Monte Carlo sampling methods
○ direct sampling
○ importance sampling
○ rejection sampling

● Best fit method for Pi value estimation is rejection sampling
○ allows to select samples within a region of the sampled distribution
○ simulate random points in a 2-D plane
○ domain is a square around a circle
○ square size equal the diameter of the circle
○ random number of points are generated inside the square
○ estimation is the ratio between points inside the circle and

total number of generated points
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Performance Optimization

Single Node

● Base test of 10^10 samples
● This test uses all resources of a 

single node
● Algorithm tends to be more CPU 

intensive
● Best speedup when leaving one 

core available for the operating 
system and driver for this 
environment
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Performance Optimization

Executors multi-node scaling

● We only use 140GB (at least 
2.5GB per task)  to keep 
executor memory equal in all 
nodes

● Start to scale out the single 
node test sample to different 
number of nodes

● We noted the superscalar effect 
of Intel processor caches that 
brought great speedups
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Performance Optimization

Executors multi-node scaling

● Next step scaled up 10 times 
the sample

● This can still run over the 4 
nodes available memory

● The performance with this 
sample have better results now 
with more nodes

● Communication takes lesser 
overhead with applied 
optimizations
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Performance Optimization

Executors multi-node scaling

● Next step scaled up 1000 
times the initial sample

● To run this simulation we 
need at least 256 nodes 
because of required memory 
size

● Here the superscalar effect 
overwhelms the previous 
results, turning evident the 
Frontera execution cost 
optimization for this job sizes
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● BigHPC consortium for supporting my research work on this case study

● To TACC team a special thanks with the research work around Frontera

● To LIP that is providing in Portugal the access to another HPC cluster to 
continue this research work and validate the optimizations with different 
hardware
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