- False
mirror -od use_y = False
mirror mod.use z = True

#selection at the end
mirror ob.select= 1
modifier ob.select=1

bpy.context.scene.objects.a€tive = modifier_ob

EPC -

RN

uﬂu—u‘.‘
- - -

--.--...-04 e

-
'.
= *
~— d
o~ -
-add back the deselected mirro :
e > v . ‘

print(“Selected” + str(wodifier_ob)) # modifier ob is the acti yel - -
Suirror ob.select ~ 0

Fh»

Apache Spark over Frontera cluster

Earlier Experiences

MPUTING

JA ST
RFORMANCE

TEXAS ADVANCED COMPUTING CENTER

PErgo Lisb®20%° #3520 FCT = [

UTAustin
Portugal




Outline

Motivation

Overview

Frontera

Apache Spark

Benchmark

Performance optimization
Thanks

PC



Motivation E4PC

e Bring the popular Apache Spark processing engine to HPC
e Run the software without any cluster side setup requirements
e Bypass rootless execution environments limitations

e Provide an optimized Apache Spark configuration for Frontera cluster



Overview E4PC

e Apache Spark distributed computing engine:
o task dispatching
o scheduling
o communication over compute cluster
e Spark cluster managers requiring dedicated clusters:
o Hadoop YARN
o Apache MESOS
o Kubernetes
e Rootless execution context challenges:

o software dependencies hard to keep over HPC environment
o no guarantee that same software list is available on each cluster
o restricted service deployment in operating system user space



Frontera HPC Cluster

The experience takes place over Frontera
primary computing system:

Provided by Dell EMC with 8008 nodes
Intel Xeon Platinum 8280 “Cascade Lake”
56 cores/node - 28 cores/socket

Clock rate 2.7Ghz (Base Frequency)

Peak Node Performance 4.8TF, Double
Precision

Memory/Node 192GB DDR-4

Local Disk with 480GB SSD drive
Mellanox Infiniband, HDR-100, capable of
200Gbps




Frontera HPC Cluster

The experience takes place over Frontera
primary computing system:

e LINPACK benchmark: 23.5PF

e Theoretical peak performance: 38.7PF

e Storage composed by LUSTRE distributed
file system:

o  basedstorage of 60PB
o  fast flash storage of 3PB

e | USTRE OSTs (object storage targets):

o  based storage: home, work and scratch
o  flash storage: flash

e home: code and collected logs
e scratch: application workspace




Apache Spark

Analytics engine for large-scale data
processing

High level APl in multiple languages (our
example uses python)

MLLlib provide tools for machine learning

RDD: resilient distributed dataset
o working set for distributed programs over
distributed shared memory
o  bypass limitations in the MapReduce
cluster computing paradigm such as forced
linear dataflow structure

PC

Processing workflow managed as a
directed acyclic graph (DAQ)
o nodes are the RDDs

o edgesare the applied operations over the
RDDs

Handle acyclic and cyclic graphs that
allows representation of iterative
methods

DAG iterative methods representation
bypass another MapReduce limitation,
providing a solution to express iterative
algorithms



Apache Spark E4PC

e Engine deployment requires
o acluster manager

o  distributed storage system Worker Node
e C(luster Manager: standalone Spark cluster [Executor [ cache
o allows better control over the cluster T /——__—_N‘ = [
operation /
o  bypass rootless environment limitations SparkContext » Cluster Manager
o allocate resources across applications ﬁ‘ - Worker Node |
o send application code to the executors \ Executor | Cache
e SparkContext: Spark driver program = [
o responsible to send application code and

its tasks to the executors
e Executors: spawn on the nodes

o  run the computations
o  manage the application data



Apache Spark E4PC

e Block Manager:
o application data cache
o  key-value store for data blocks Worker Node
o acts as a local cache for the driver and Executor | Cache

>
executors on every node /___——\,
[ [ i Task || Task
o  provides interface for upload and fetch Driver Program /

b‘locks locally and remotely using memory, SparkContext > Cluster Manager
disk and external block stores ﬁ‘ Worker Node

. . A 4
e C(Client execution modes: \ Executor | Cache
o  cluster mode: driver process is launched on

a worker node | e
o  client mode: driver remains on the client
node that submitted the application
o local mode: all processes of the application
run on a single machine

/




Apache Spark

e Local execution mode is used in our base
tests with a single node

e With implemented Cluster Manager
support scripts for multi-node tests it is
possible to achieve cluster mode,
bypassing client mode limitation of
standalone deployment

e Support scripts are developed using bash

command language:
o manage deployment jobs
o always available in any site
o lesser maintenance effort since command
language assure regression testing for any
release
e Use apptainer to deploy the required

software

Driver Program

PC

/’—;b

SparkContext » Cluster Manager

Worker Node

Executor

Cache

Task

Task

\

/

Worker Node

A 4

Executor

Cache

Task

Task

10



Benchmark with Pi estimation

PC

e Pivalue estimation with Monte Carlo sampling methods

(@)

(@)

@)

direct sampling
importance sampling
rejection sampling

e Best fit method for Pivalue estimation is rejection sampling
allows to select samples within a region of the sampled distribution

(@)

O O O O O

simulate random points in a 2-D plane

domain is a square around a circle

square size equal the diameter of the circle

random number of points are generated inside the square
estimation is the ratio between points inside the circle and
total number of generated points

1.00 —

0.50

0.25

0.00
0.00 0.25 0.50 075 1.00

1



Performance Optimization

Single Node

e Base test of 10710 samples

e This test uses all resources of a
single node

e Algorithm tends to be more CPU
intensive

e Bestspeedup when leaving one
core available for the operating
system and driver for this
environment

Speedup vs. CPU cores

Speedup

9.75

9.65

9.55

9.45

9.35

9.25

54 55

CPU cores

PC

12



Performance Optimization E4PC

Speedup using Apache Spark Cluster for 10°10 samples
B speedupin [ speedup4n [ SUs (min)

Executors multi-node scaling

24

e We only use 140GB (at least "
2.5GB per task) to keep
executor memory equalin all
nodes

e Start to scale out the single
node test sample to different
number of nodes

e We noted the superscalar effect
of Intel processor caches that
brought great speedups

16

[oe]

N

4 8 10 12 14 16

32

13



Performance Optimization

Executors multi-node scaling

Next step scaled up 10 times
the sample

This can still run over the 4
nodes available memory

The performance with this
sample have better results now
with more nodes
Communication takes lesser
overhead with applied
optimizations

PC

Speedup using Apache Spark for 10711 samples

B speedupin [ speedup4n [ SUs (min)

24

20

14



Performance Optimization E4PC

Executors multi-node Scaling Speedup using Apache Spark for 10713 samples
M speedup 1n [l speedup 4n [ SUs (h)
e Nextstep scaled up 1000 768
times the initial sample 640
e To run this simulation we 512
need at least 256 nodes 38
because of required memory
Size

128

e Here the superscalar effect
overwhelms the previous
results, turning evident the
Frontera execution cost
optimization for this job sizes

0
4 256 512

15



Thanks E4PC

BigHPC consortium for supporting my research work on this case study
To TACC team a special thanks with the research work around Frontera

To LIP that is providing in Portugal the access to another HPC cluster to

continue this research work and validate the optimizations with different
hardware

16



E1PC

HIGH
PERFORMANCE
COMPUTING

=1PC

Partners:
INESC i @TEXAS
e TRAGG S wavecom
Funding:

CowPEE, Lish@20% FCT it @ .



