
Israel oneAPI CoE @ Technion

Gal Oren | galoren@cs.technion.ac.il

oneAPI CoE

Technion oneAPI CoE
Th

e
Co

E

Ed
uc

at
or

 P
ro

gr
am

St
ud

en
t

Am
ba

ss
ad

or
s

Teaching Program - Technion + Tel Aviv University

Gal Oren - TAU

Gal Oren - Technion Re’em Harel - BGU Guy Tamir - Intel

Tim Mattson - Intel LabsYehonatan Fridman - Technion

Teaching Program - YouTube, LinkedIn, GitHub

ScalSALE and oneAPI - Example
Facilitating Scientific Computing in the New Heterogenous World with Intel

Portability and Scalability of OpenMP
Offloading on State-of-the-art Accelerators
Yehonatan Fridman, Guy Tamir, Gal Oren

Nov 2011

Top 500 supercomputers empowered by Accelerator/Co-Processor

Nov 2016

Top 500 supercomputers empowered by Accelerator/Co-Processor

Nov 2020

Top 500 supercomputers empowered by Accelerator/Co-Processor

June 2023

Top 500 supercomputers empowered by Accelerator/Co-Processor

Challenges in Targeting GPU

Different
hardware and

proprietary
locking

Language
incompatibility

Rewrite
(CPU-GPU
alternates)

Data
movements

Programming GPU

Programming GPU

Different
hardware and

proprietary
locking

Language
incompatibility

Rewrite
(CPU-GPU
alternates)

Data
movements

The growth complexity in OpenMP

The growth complexity in OpenMP

The growth complexity in OpenMP

Enhanced capabilities
and performance for
heterogenous systems

The growth complexity in OpenMP

The growth complexity in OpenMP

https://www.youtube.com/watch?v=W2Zcrhe 1-gq

https://www.youtube.com/watch?v=W2Zcrhe1-qg

OpenMP 5 and ecosystem
• OpenMP 5 adds features to make writing performance portable programs simpler.
• Highlighting some applicable to target:

– Loop construct
– Mappers
– Unified Shared Memory (USM)
– Function variants
– Reverse offload
– OMP_TARGET_OFFLOAD
– Reduction result mapping

– Reduction variables now implicitly map(tofrom)

Thanks: https://github.com/uob-hpc/openmp-tutorial

https://github.com/uob-hpc/openmp-tutorial

OpenMP 5.0: loop construct
• Assert that the iterations in a loop nest may execute in any order, including

concurrently
– Let the compiler figure our how to best utilize parallel resources

double a[N], b[N], c[N];

#pragma omp target
#pragma omp loop
for (int i=0; i<N; i++)

a[i] = FUNC(b[i], c[i]);

Iterations can execute in any order. Rely on the
compiler to schedule iterations across teams,
threads, simd, …

Thanks: https://github.com/uob-hpc/openmp-tutorial

https://github.com/uob-hpc/openmp-tutorial

https://www.olcf.ornl.gov/wp-content/uploads/ 2018/12fdp.ajdraidub_pohskrow_timmus/

Data Transfer between Host and Device
Performance Results: Timing Distribution
Porting a Fluid Dynamics Application: Riemann Problem

Summit node with (2) IBM Power9
+ (6) NVIDIA Volta V100

https://www.olcf.ornl.gov/wp-content/uploads/2018/12/summit_workshop_budiardja.pdf

OpenMP 5.0: #pragma omp requires
• Code requires specific features, e.g., shared memory between host and devices.

typedef struct mypoints {
struct myvec * x;
struct myvec scratch;
double useless_data[500000];

} mypoints_t;

#pragma omp requires unified_shared_memory

mypoints_t p = new_mypoints_t();

#pragma omp target
{

do_something_with_p(&p);
}

This code assumes that the host and
device share memory.

No map clauses. All of p is shared
between the host and device.

Thanks: https://github.com/uob-hpc/openmp-tutorial

https://github.com/uob-hpc/openmp-tutorial

OpenMP 5.0: reverse offload
• Execute a region of code back on the host from within a target region.

– A target device may not be able to execute this code.

double a[N], b[N], c[N];

#pragma omp target map(to:b,c) map(from:a)
{

for (int i=0; i<N; i++)
a[i] = FUNC(b[i], c[i]);

#pragma omp target device(ancestor:1)
printf_array(a);

…
}

Execute printf_array back on the host

Thanks: https://github.com/uob-hpc/openmp-tutorial

https://github.com/uob-hpc/openmp-tutorial

2 State-of-the-art accelerators

Intel Max 1100 GPU (Ponte Vecchio, PVC) NVIDIA A100 GPU

https://www.facebook.com/intelgraphics/videos/2088359258031184 https://www.nvidia.com/fr-fr/data-center/a 100/

https://www.facebook.com/intelgraphics/videos/2088359258031184
https://www.nvidia.com/fr-fr/data-center/a100/

Intel PVC1100 NVIDIA A100
GPU Architecture Xe-HPC NVIDIA Ampere

Memory 48GB HBM2e 40GB HBM2e
Memory Bandwidth 1228.8 GB/s 1555 GB/s

Compute Cores 7168 6912

System CPU (host) GPU (device) Compiler
#1 ×2 Intel 4th Gen Xeon

(Sapphire Rapids)
processors

Intel Data Center
GPU Max 1100

oneAPI 2023
ifx/icpx/icx

#2 ×2 Intel Xeon Gold 6338
processors

NVIDIA A100 Tensor
Core GPU

NVHPC 23.3
nvfortran/nvc++/nvc

System Compilation flags
#1 -O3 -qopenmp -fopenmp-targets=spir64 -fiopenmp

-fopenmp-version={50,51,52}

#2 -O3 -mp=gpu -gpu=cc80

GPUs
specs

Full
system

and
compilers

Compile
flags

Intel PVC1100 NVIDIA A100
GPU Architecture Xe-HPC NVIDIA Ampere

Memory 48GB HBM2e 40GB HBM2e
Memory Bandwidth 1228.8 GB/s 1555 GB/s

Compute Cores 7168 6912

System CPU (host) GPU (device) Compiler
#1 ×2 Intel 4th Gen Xeon

(Sapphire Rapids)
processors

Intel Data Center
GPU Max 1100

oneAPI 2023
ifx/icpx/icx

#2 ×2 Intel Xeon Gold 6338
processors

NVIDIA A100 Tensor
Core GPU

NVHPC 23.3
nvfortran/nvc++/nvc

System Compilation flags
#1 -O3 -qopenmp -fopenmp-targets=spir64 -fiopenmp

-fopenmp-version={50,51,52}

#2 -O3 -mp=gpu -gpu=cc80

GPUs
specs

Full
system

and
compilers

Compile
flags

PORTABILITY: SOLLVE OpenMP V&V
• SOLLVE = Scaling OpenMP with LLVm for Exascale.
• The OpenMP sub-project in US DoE’s ECP.
• Advancing the OpenMP specification and its implementations to address

Exascale application challenges.
• Proposing a validation suite (the V&V suite) to assess their progress and that of

vendors to ensure that quality implementations of OpenMP are being delivered to
Exascale systems.

• https://sollve.github.io
• https://crpl.cis.udel.edu/ompvvsollve/
• Huber, Thomas, et al. "ECP SOLLVE: Validation and Verification Testsuite Status Update and Compiler Insight for OpenMP." arXiv preprint arXiv:2208.13301 (2022).

https://sollve.github.io/
https://sollve.github.io/

SOLLVE OpenMP V&V with oneAPI & NVHPC for PVC1100 & A100

0

50

100

150

200

250
OpenMP v4.5

0

50

100

150

200

250
OpenMP v5.0

0
10
20
30
40
50
60
70
80

OpenMP v5.1

0

2

4

6

8

10

12
OpenMP v5.2

oneAPI+PVC NVHPC+A100

fail failpass pass

oneAPI+PVC NVHPC+A100

fail failpass pass

oneAPI+PVC NVHPC+A100

fail failpass pass

oneAPI+PVC NVHPC+A100

fail failpass pass

OpenMP Portability Discussion

• Directives with promising importance are not supported by both compilers
(NVHPC and oneAPI).

SCALABILITY: LULESH
• Simulates shock hydrodynamics using an unstructured mesh.
• Proxy-app that is designed to represent the computational patterns

and performance characteristics of complex scientific applications.
• Multi-bound (compute-bound, memory-bound, …).
• LULESH offload to GPU implementation with OpenMP 4.0.
o by AMD https://github.com/AMDComputeLibraries/OpenMPApps/tree/master/lulesh-mp4

o Very basic – OpenMP 4.0 does not support advanced capabilities for effectively
optimizing data movements.

https://github.com/AMDComputeLibraries/OpenMPApps/tree/master/lulesh-mp4

grep –ni “pragma omp target” lulesh.cc

grep –ni “pragma omp target” lulesh.cc

DEMO: OpenMP Offload to Intel PVC1100 with oneAPI - LULESH

While the A100 is slightly better due to faster memory
bandwidth, the PVC1100 reaches the next problem
size (4003) scalably due to the larger memory size.

Total LULESH time for PVC1100 and A100 (lower is better)

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

Ti
m

e
(s

ec
)

Problem Size (X3)

oneAPI+PVC1100 NVHPC+A100

Intel PVC1100 NVIDIA A100

GPU Architecture Xe-HPC NVIDIA Ampere

Memory 48GB HBM2e 40GB HBM2e

Memory Bandwidth 1228.8 GB/s 1555 GB/s

Compute Cores 7168 6912

X

Conclusions and Future Work

• Hardware – While there are further advanced GPUs, we reach
convergence in performance (Moore’s law, 5nm). Need more software
support in optimization.

• Software - OpenMP is now advanced to support and optimize scientific
workloads on GPUs. OpenMP covers enough functionality to be able to
offload data to GPUs with optimal data movement.

• Compiler – Relatively speaking, good compilers support but lacking in
main important directives. We believe according to the roadmap we see
that this support will be given.

• Application – Lulesh with OpenMP5.

Portability and Scalability of OpenMP
Offloading on State-of-the-art Accelerators
Yehonatan Fridman, Guy Tamir, Gal Oren

	Israel oneAPI CoE @ Technion
	oneAPI CoE
	Technion oneAPI CoE
	Teaching Program - Technion + Tel Aviv University
	Teaching Program - YouTube, LinkedIn, GitHub
	ScalSALE and oneAPI - ExampleFacilitating Scientific Computing in the New Heterogenous World with Intel
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	OpenMP 5 and ecosystem
	OpenMP 5.0: loop construct
	Slide Number 22
	OpenMP 5.0: #pragma omp requires
	OpenMP 5.0: reverse offload
	2 State-of-the-art accelerators
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

