2019 Intel® eXtreme Performance Users Group (IXPUG) meeting

Massively scalable computing method to tackle large eigenvalue problems for nanoelectronics modeling

Hoon Ryu, Ph.D. (E: <u>elec1020@kisti.re.kr</u>)

Korea Institute of Science and Technology Information (KISTI) KISTI Intel® Parallel Computing Center

Two Big Features of Advanced Device Designs

Miniaturization + Functionalization

- Size miniaturization of CMOS transistor
 - → Quantum / atomistic effects start to play!
 - \rightarrow <u>New structures</u> to increase the TR density!

Intel eXtreme Performance Users Group (IXPUG) meeting / 2019 Jan.

Diversification in device functions

- → Devices dedicated to specific functions: Sensors, LEDs
- → No CMOS transistors: Need to explore the feasibility of <u>new materials and structures</u> beyond CMOS

Electronic Structure Calculations

Prediction of electron motions in nanoscale materials

• The state of electron motions in an electrostatic field created by the stationary nuclei.

 \rightarrow Prediction of electron motions in nanoscale materials and devices

- Physics, Chemistry, Materials Science, Electrical Engineering
 - \rightarrow Huge customers in the society of computational science

Electronic Structure Calculations

In a perspective of "numerical analysis"

- Two PDE-coupled Loop: Schrödinger Equation and Poisson Equation
- Both equations involve system matrices (Hamiltonian and Poisson)
 - \rightarrow DOFs of those matrices are proportional to the # of grids in the simulation domains

- (Stationary) Schrödinger Equations

 → Normal Eigenvalue Problem
 HΨ = EΨ

 Poisson Equations
 - \rightarrow Linear System Problem $-\nabla(\epsilon \nabla V) = \rho \rightarrow Ax = b$

Electronic Structure Calculations

In a perspective of "numerical analysis"

- Two PDE-coupled Loop: <u>Schrödinger Equation</u> and <u>Poisson Equation</u>
- Both equation involve system matrices (Hamiltonian and Poisson)
 - \rightarrow DOFs of those matrices are proportional to the # of grids in the simulation domains

• Schrödinger Equations • Normal Eigenvalue Problem $(H)\Psi = E\Psi$ • Poisson Equations • Linear System Problem $-\nabla(\epsilon\nabla V) = \rho \rightarrow Ax = b$ How large are these system matrices? Why do we need to handle those?

Intel eXtreme Performance Users Group (IXPUG) meeting / 2019 Jan.

5

Needs for "Large" Electronic Structures

Electron motion happens in cores, but we need more

- 1. Quantum Simulations of "Realizable" Nanoscale Materials and Devices
 - \rightarrow Needs to handle large-scale atomic systems (~ A few tens of nms)

Development Strategy: DD, Matrix Handling

System matrices for Schrödinger and Poisson equations

Intel eXtreme Performance Users Group (IXPUG) meeting / 2019 Jan.

7

Development Strategy: Numerical Algorithms

Schrödinger equations

Development Strategy: Numerical Algorithms

PCC KISTI

Poisson equations

Poisson Eqs. w/ CG Algorithm

- → A Problem of Solving Linear Systems
- Conv. Guaranteed: Symmetric & Positive Definite
- Poisson is always S & PD.

 $-\nabla(\varepsilon\nabla V) = \rho$

Steps for Iteration: Purely Scalable

Algebraic Ops.

We want to solve
$$Ax = b$$
. First compute $r_0 = b - Ax_0$, $p_0 = r_0$
loop for $(j=1; j \le K; j++)$
 $a_j \in \langle r_j \bullet r_j \rangle / \langle Ap_j \bullet p_j \rangle$;
 $x_{j+1} \in x_j + a_j p_j$;
 $r_{j+1} \in r_j - a_j Ap_j$;
if $(||r_{j+1}||/||r_0|| < e)$
declare r_{j+1} is the solution of $Ax = b$ and break the loop
 $c_j \in \langle r_{j+1} \bullet r_{j+1} \rangle / \langle r_j \bullet r_j \rangle$;
 $p_{j+1} \in r_{j+1} + c_j p_j$;
end loop

Performance Bottleneck?

Matrix-vector multiplier: Sparse matrices

Vector Dot-Product (VVDot)

Main Concerns for Performance

- Collective Communication
 - → May not be the main bottleneck as we only need to collect a single value from a single MPI process
- Matrix-vector Multiplier
 - → Communication happens, but would not be a critical problem as it only happens between adjacent ranks
 - \rightarrow Data locality affects vectorization efficiency

Single-node Performance: Whole domain in MCDRAM

With no HBM With HBM (a) (b) **Description of BMT Target and Test Mode** • 10 CB states in 16x43x43(nm³) [100] Si:P quantum dot COMM COMM MVMUL → Material candidates for Si Quantum Info. Processors VVDOT VVDOT MEMOP MEMOP (Nature Nanotech. 9, 430) OTHERS OTHERS 3 → 15.36Mx15.36M Hamiltonian Matrix (~11GB) Speed-up Speed-up with HBM (a.u.) with HBM secs) • Xeon Phi 7210: 64 cores Wall-time (x10³ s MCDRAM control w/ numactrl; Quad Mode H. Rvu, Intel® HPC Developer Conference (2017) **Results** With no MCDRAM 25 2^{6} 2⁷ Number of cores \rightarrow No clear speed-up beyond 64 cores With MCDRAM \rightarrow Up to ~4x speed-up w.r.t. the case w/ no MCDRAM \rightarrow Intra-node scalability up to 256 cores 0 **Points of Questions** 2^{4} 25 2^{6} 2⁸ 2⁴ 25 2^{6} 2^7 2⁸ 27 Number of cores Number of cores How is the performance compared to the one under 2^4 cores = (1 MPI proc(s), 16 threads), 2^7 cores = (2 MPI proc(s), 64 threads) other computing environments? (GPU, CPU-only etc..) 2^5 cores = (2 MPI proc(s), 16 threads), 2^8 cores = (4 MPI proc(s), 64 threads) → In terms of speed and energy consumption 2^{6} cores = (2 MPI proc(s), 32 threads)

Speed in various computing platforms

Description of BMT Target and Test Mode

- 10 CB states in 16x43x43(nm³) [100] Si:P quantum dot
 → Material candidates for Si Quantum Info. Processors
 - (Nature Nanotech. **9**, 430)
 - → 15.36Mx15.36M Hamiltonian Matrix (~11GB)
- Specs of Other Platforms
 - → Xeon(V4): 24 cores of Broadwell (BW) 2.50GHz
 - → Xeon(V4)+KNC: 24 cores BW + 2 KNC 7120 cards
 - \rightarrow Xeon(V4)+P100: 24 cores BW + 2 P100 cards
 - \rightarrow KNL(HBM): the one described so far

Results

- KNL slightly beats Xeon(V4)+P100
 - \rightarrow Copy-time (CPIN): a critical bottleneck of PCI-E devices
 - → P100 shows better kernel speed, but the overall benefit reduces due to data-transfer between host and devices
 - \rightarrow CPIN would even increase if we consider periodic BCs
- Another critical figure of merit: Energy-efficiency

Description of BMT Target and Test Mode

- 10 CB states in 16x43x43(nm³) [100] Si:P quantum dot
 → Hamiltonian DOF: 15.36Mx15.36M (~11GB)
- Description of Device Categories
 - \rightarrow Xeon(V4): 24 cores of Broadwell (BW) 2.50GHz
 - → Xeon(V4)+KNC: 24 cores BW + 2 KNC 7120 cards
 - \rightarrow Xeon(V4)+P100: 24 cores BW + 2 P100 cards
 - \rightarrow KNL(HBM): the one described so far

Power Measurement

- w/ RAPL (Running Ave. Power Limit) API
- Host (CPU+Memory), PCI-E Devices

When problem sizes exceed > 16GB?

Matrix-vector multiplier

```
for (unsigned int i = 0; i < nSize; i++) {</pre>
   double real sum = 0.0;
   double imaginary sum = 0.0:
   const unsigned int nSubStart = pMatrixRow[i];
   const unsigned int nSubEnd = pMatrixRow[i + 1]:
   for (unsigned int j = nSubStart; j < nSubEnd; j++) { 1, index</pre>
        const unsigned int nColIndex = pMatrixColumn[i]:
                                                         2. Matrix
        const double m real = pMatrixReal[j];
                                                            element
        const double m imaginary = pMatrixImaginary[i];
        const double v real = pVectorReal[nColIndex];
        const double v imaginary = pVectorImaginary[nColIndex];
        real_sum += m_real * v_real - m_imaginary * v_imaginary;
        imaginary sum += m real * v imaginary + m imaginary * v real;
   }
   pResultReal[i] = real sum;
   pResultImaginary[i] = imaginary_sum;
```

Data to be saved in memory

- index: column index of matrix nonzero elements (indirect index)
- · matrix and vector: matrix nonzero elements and vector elements

Intel eXtreme Performance Users Group (IXPUG) meeting / 2019 Jan.

Available options for MCDRAM utilization

- Cache mode: use MCDRAM like L3 cache
- Preferred mode: First fill MCDRAM then go to DRAM
 → numactl -preferred=1 ...
- Library memkind: use dynamic allocations in code
 → hbw malloc(), hbw free()

When problem sizes exceed > 16GB?

Which component would be most affected by the enhanced bandwidth of MCDRAM?

• MVMul is tested with 11GB Hamiltonian matrix

Good for us – matrix is built upon the definition of geometry!

• Matrix nonzero elements drive the most remarkable performance improvement when combined w/ MCDRAM

Vectorization efficiency

Matrix-vector multiplier: Revisit

```
for (unsigned int i = 0; i < nSize; i++) {</pre>
   double real sum = 0.0;
   double imaginary sum = 0.0:
   const unsigned int nSubStart = pMatrixRow[i];
   const unsigned int nSubEnd = pMatrixRow[i + 1];
   for (unsigned int j = nSubStart; j < nSubEnd; j++) {</pre>
        const unsigned int nColIndex = pMatrixColumn[j];
        const double m real = pMatrixReal[i]:
        const double m imaginary = pMatrixImaginary[i];
        const double v real = pVectorReal[nColIndex];
        const double v imaginary = pVectorImaginary[nColIndex];
        real sum += m real * v real - m imaginary * v imaginary;
        imaginary sum += m real * v imaginary + m imaginary * v real;
   }
   pResultReal[i] = real sum;
   pResultImaginary[i] = imaginary_sum;
```


• Efficiency of vectorization would not be super excellent

→ Vector elements should be "gathered" onto register before processing vectorization for matrix-vector multiplier

Vectorization efficiency

Matrix-vector multiplier: Revisit

for (unsigned int i = 0; i < nSize; i++) {</pre> double real sum = 0.0; double imaginary sum = 0.0: const unsigned int nSubStart = pMatrixRow[i]; const unsigned int nSubEnd = pMatrixRow[i + 1]; for (unsigned int j = nSubStart; j < nSubEnd; j++) {</pre> const unsigned int nColIndex = pMatrixColumn[j]; const double m real = pMatrixReal[i]: const double m imaginary = pMatrixImaginary[i]; const double v real = pVectorReal[nColIndex]; const double v imaginary = pVectorImaginary[nColIndex]; real sum += m real * v real - m imaginary * v imaginary; imaginary sum += m real * v imaginary + m imaginary * v real; } pResultReal[i] = real sum; pResultImaginary[i] = imaginary_sum;

IPCC KISTI

Assembly

Block 2:
leal (%rcx,%rdi,1), %r15d
vpadddy (%rll,%rl5,4), %ymmO, %ymml
kxnorw %kO, %kO, %kl
vpxord %zmm9, %zmm9, %zmm9
vpxord %zmmll, %zmmll, %zmmll
kxnorw %k0, %k0, %k2
vmovupsz (%rax,%r15,8), %zmm10
vmovupsz (%rl0,%rl5,8), %zmml2
add \$0x8, %edi
vgatherdpdz (%r9,%ymm1,8), %k2, %zmmll
vgatherdpdz (%r14,%ymm1,8), %k1, %zmm9
vmulpd %zmml1, %zmm10, %zmm8
vmulpd %zmm10, %zmm9, %zmm13
vfmsub231pd %zmm12, %zmm9, %zmm8
vfmadd231pd %zmm12, %zmm11, %zmm13
vaddpd %zmm4, %zmm8, %zmm4
vaddpd %zmm2, %zmm13, %zmm2
cmp %r8d, %edi
jb 0x417920 <block 2=""></block>

• Efficiency of vectorization would not be super excellent

→ Vector elements should be "gathered" onto register before processing vectorization for matrix-vector multiplier

Vectorization efficiency

Matrix-vector multiplier: Revisit

```
for (unsigned int i = 0; i < nSize; i++) {</pre>
   double real sum = 0.0;
   double imaginary sum = 0.0:
   const unsigned int nSubStart = pMatrixRow[i];
    const unsigned int nSubEnd = pMatrixRow[i + 1];
   for (unsigned int j = nSubStart; j < nSubEnd; j++) {</pre>
        const unsigned int nColIndex = pMatrixColumn[j];
        const double m real = pMatrixReal[i]:
        const double m imaginary = pMatrixImaginary[i];
        const double v real = pVectorReal[nColIndex];
        const double v imaginary = pVectorImaginary[nColIndex];
        real sum += m real * v real - m imaginary * v imaginary;
        imaginary sum += m real * v imaginary + m imaginary * v real;
   }
    pResultReal[i] = real sum;
    pResultImaginary[i] = imaginary_sum;
```

Efficiency of vectorization would not be super excellent
 → Vector elements should be "gathered" onto register before proc

Intel eXtreme Performance Users Group (IXPUG) meeting / 2019 Jan.

Default (-O3) Vector length 2 Normalized vectorization overhead 1.020 Vector cost : 26.0 Estimated potential speedup: 1.70 AVX2 (-AVX2) Vector length 2 Normalized vectorization overhead 1.020 Vector cost : 24.5 Estimated potential speedup: 1.490 MIC-AVX512 (-xMIC-AVX512) Vector length 8 Normalized vectorization overhead 1.104 ier Vector cost : 8.370 Estimated potential speedup: 3.930

Extremely large-scale problems

In NURION computing resource

NURION System Overview

- 132 SKL (Xeon 6148) nodes / 8,305 KNL (Xeon Phi 7250) nodes
- Ranked at 13th in Top500.org as of 2018. Nov.
 - → Rpeak 25.7pFLOPS, Rmax, 13.9pFLOPS. https://www.top500.org/system/179421

Extremely large-scale problems

In NURION computing resource

Description of BMT Target

- \rightarrow contains 400 million (0.4 billion) atoms,
- \rightarrow Hamiltonian matrix DOF = 4 billion x 4 billion

Computing Environment

- Intel® Xeon Phi 7250 (NURION)
 - → 1.4GHz/68 cores, 96GB DRAM, 16GB MCDRAM (/node) → OPA (100GB)

Other Information for Code Compile and Runs

- Intel® Parallel Studio 17.0.5
- Instruction set for vectorization: MIC-AVX512
- MCDRAM allocation: numactl –preferred=1
- OPA fabric. 4 MPI processes / 17 threads per node

Memory Placement Policy Control

→ export I_MPI_HBW_POLICY = hbw_bind, hbw_preferred, hbw_bind (HBW memory for RMA operations and for Intel® MPI Library first. If HBW memory is not available, use local DDR) RMA: Remote Memory Access (for MPI communications)


```
export NUMACTL="numactl --preferred=1"
export I_MPI_HBW_POLICY=hbw_bind,hbw_preferred,hbw_bind
export I_MPI_FABRICS=ofi
```

ulimit -s unlimited cd \$PBS_O_WORKDIR cat \$PBS_NODEFILE time mpirun \$NUMACTL ...

Snapshot of a PBS script

Extremely large-scale problems

In NURION computing resource

Summary

KISTI Intel® Parallel Computing Center

- Introduction to Code Functionality
- Main Numerical Problems and Strategy of Development
- Performance (speed and energy consumption) in a single KNL node
 - \rightarrow Benefits against the case of CPU + 2xP100 GPU devices
- Performance in extremely huge computing environment
 - → Strong scalability up to 2,500 KNL nodes in NURION system
- (Appendix) Strategy of Performance Improvement towards PCI-E devices
- (Appendix) List of Related Publications

Thanks for your attention!!

Appendix: Strategy for offload-computing

Asynchronous Offload (for Xeon(V4) + KNC, Xeon(V4) + GPU)

The real bottleneck of computing: Overcome with asynchronous offload [H. Ryu et al., Comp. Phys. Commun. (2016) (http://dx.doi.org/10.1016/j.cpc.2016.08.015)

- Vector dot-product is not expensive: All-reduce, but small communication loads
- Vector communication is not a big deal: only communicates between adjacent layers
- Sparse-matrix-vector multiplication is a big deal: Host and PCI-E device shares computing load

Intel eXtreme Performance Users Group (IXPUG) meeting / 2019 Jan.

of Supercomp,

Appendix: Strategy for offload-computing

Data-transfer and Kernel Functions for GPU Computing

Data-transfer between host and GPU Devices

- 3x increased bandwidth with pinned memory
- Overlap of computation and data-transfer with <u>asynchronous streams</u>

Speed-up of GPU Kernel Function (MVMul)

• Treating several rows at one time with WARPs Data-Access with a thread-base (no WARPs)

<u>H. Ryu et al., J. Comp. Elec. (2018)</u> (http://dx.doi.org/10.1007/s10825-018-1138-4)

[Synchronous Data Transfer with Pageable Memory]

List of Related Publications

Journals and Conference Proceedings

Journal Articles / Book Chapters

- [1] H. Ryu, O. Kwon, Journal of Computational Electronics (2018) https://doi.org/10.1007/s10825-018-1138-4
 - → "Fast, Energy-efficient Electronic Structure Simulations for Multi-million Atomic Systems with GPU Devices",
- [2] S. Choi, W. Kim, M. Yeam, H. Ryu, International Journal of Quantum Chemistry (2018) https://doi.org/10.1002/qua.25622
 - → "On the achievement of high fidelity and scalability for large-scale diagonalizations in grid-based DFT simulations"
- [3] O. Kwon, H. Ryu, A Book Chapter in "High Performance Parallel Computing", InTechOpen (2018) <u>https://doi.org/10.5772/intechopen.80997</u>
 - → "Acceleration of Large-scale Electronic Structure Simulations with Heterogeneous Parallel Computing"
- [4] H. Ryu, Y. Jeong, J. Kang, K. Cho, Computer Physics Communications (2016) https://doi.org/10.1016/j.cpc.2016.08.015
 - → "Time-efficient simulations of tight-binding electronic structures with Intel Xeon PhiTM many-core processors

Conference Proceedings / Presentations

- [1] H. Ryu, K.-H. Hong (2018), Proceedings of IEEE SISPAD, <u>https://doi.org/10.1109/SISPAD.2018.8551719</u>
 - → "Optical Properties of Organic Perovskite Materials for Finite Nanostructures"
- [2] J. Kang, O. Kwon, J. Jeong, K. Lim, H. Ryu (2018), Proceedings of HPCS, https://doi.org/10.1109/HPCS.2018.00063
 - → "Performance Evaluation of Scientific Applications on Intel Xeon Phi Knights Landing Clusters"
- [3] H. Ryu, O. Kwon (2017), Top 20 Research Posters in GPU Technology Conference, http://www.gputechconf.com/resources/poster-gallery/2017/computational-physics
 - → "Q-AND: Fast, Energy-efficient Computing of Electronic Structures for Multi-million Atomic Structures with GPGPU Devices"
- [4] H. Ryu, Y. Jeong (2016), Proceedings of IEEE CLUSTER, https://doi.org/10.1109/CLUSTER.2016.76
 - → "Enhancing Performance of Large-scale Electronic Structure Calculations with Many-core Computing"